Sıcaklığa Bağlı Olarak Etil Asetat Hidroliz Tepkimesi Hız İfadesinin Belirlenmesi
Yıl 2019,
Cilt: 9 Sayı: 1, 382 - 388, 01.03.2019
Alime Çıtak
,
Arif Kıvrak
Öz
Bu bilimsel çalışmada, etilasetatın hidroliz
reaksiyonu tepkime mertebesinin ne olduğunu, farklı sıcaklıklarda hız sabitini
ve aynı zamanda aktivasyon enerjisini ve frekans faktörünü kesikli bir reaktörde
test etmek için gerçekleştirildi. Bu amaçla, bu hidroliz reaksiyonu, kesikli
bir reaktörde farklı sıcaklık aralığında (283-313 K) zamana bağlı NaOH tüketimi
ile deneysel olarak gerçekleştirildi. Sonuçlar etil asetatın hidrolizinin
tersinmez ikinci dereceden bir reaksiyon olduğunu göstermektedir. Deneysel
verilerin analizi, aktivasyon enerjisinin 29.775 kJ mol-1 ve frekans
faktörünün 27038 olduğunu gösterdi.
Kaynakça
-
Ahmad A, Ahmad MI, Younas M, Khan H, Shah MH, 2013. A comparative study of alkaline hydrolysis of ethyl acetate using design of experiments. Iranian Journal of Chemistry and Chemical Engineering, 32: 33-47.
-
Das K, Sahoo P, Sai Baba M, Muralı N, Swamınathan P, 2011. Kinetic studies on saponification of ethyl acetate using an innovative conductivity-monitoring instrument with a pulsating sensor. International Journal of Chemical Kinetics, 43: 648-656.
-
Ikhazuangbe PMO, Oni AB, 2015. Reaction rate and rate constant of the hydrolysis of ethyl acetate with sodium hydroxide. American Journal of Scientific and Industrial Research, 6: 1-4.
-
Kapoor, KL, 2004. A Textbook of Physical Chemistry; McMillan: New Delhi, Vol. 5, 116 p, India.
-
Kim YW, Baird JK, 2004. Reaction kinetics and critical phenomena: saponification of ethyl acetate at the consolute point of 2-butoxyethanol + water. International Journal of Thermophysics, 25: 1025-1036.
-
Levenspiel O, 1999. Chemical Reaction Engineering. John Wiley, Third Edition, NY. 668 p, New York.
-
Malik SR, Awan BA, Shafiq U, Mukhtar A, 2015. Investigation of the Agitation Effect on the Conversion of Saponification Reaction in a Batch Reactor at STP Conditions. International Journal of Applied Sciences and Engineering Research, 4: 461-466.
-
Mukhtar A, Shafiq U, Khan AF, Qadir HA, Qizilbash M, 2015. Estimation of parameters of arrhenius equation for ethyl acetate saponification reaction. Research Journal of Chemical Sciences, 5: 46-50.
-
Mukhtar A, Shafiq U, Qazi MO, Qadir HA, Qizilbash M, Awan BA, 2017. Kinetics of alkaline hydrolysis of ethyl acetate by conductometric measurement approach over temperature ranges (298.15-343.15 K). Austin Chemical Engineering, 4: 1-11.
-
Paul OC, Daniel EC, 2014. Optimization of A Soap Production Mix Using Response Surface Modeling: A Case Of Niger Bar Soap Manufacturing Industry Onitsha, Anambra State, NigeriaIwenofu Chinwe Onyedika, Sinebe Jude Ebieladoh, International Journal of Scientific & Technology Research, 3: 346-352.
-
Schneider, MA, Stoessel F, 2005. Determination of the kinetic parameters of fast exothermal reactions using a novel microreactor-based calorimeter. Chemical Engineering Journal, 115: 73–83.
Determination of the Expression Rate of Ethyl Acetate Hydrolysis Reaction Depending on the Temperature
Yıl 2019,
Cilt: 9 Sayı: 1, 382 - 388, 01.03.2019
Alime Çıtak
,
Arif Kıvrak
Öz
In this scientific
study, the hydrolysis reaction was carried out in a batch reactor to test which order of the reaction is, the rate constant at different temperatures and also,
activation energy, and frequency factor.
For this purpose, this hydrolysis reaction was experimentally performed the
time-dependent NaOH consumption in a
batch reactor in the different temperature range (283 K-313 K). The
results show that hydrolysis of the ethyl acetate is a forward one-way second order reaction. The analysis of the experimental data showed
that the activation energy is 29.775 kJ mol-1 and frequency
factor 27038.
Kaynakça
-
Ahmad A, Ahmad MI, Younas M, Khan H, Shah MH, 2013. A comparative study of alkaline hydrolysis of ethyl acetate using design of experiments. Iranian Journal of Chemistry and Chemical Engineering, 32: 33-47.
-
Das K, Sahoo P, Sai Baba M, Muralı N, Swamınathan P, 2011. Kinetic studies on saponification of ethyl acetate using an innovative conductivity-monitoring instrument with a pulsating sensor. International Journal of Chemical Kinetics, 43: 648-656.
-
Ikhazuangbe PMO, Oni AB, 2015. Reaction rate and rate constant of the hydrolysis of ethyl acetate with sodium hydroxide. American Journal of Scientific and Industrial Research, 6: 1-4.
-
Kapoor, KL, 2004. A Textbook of Physical Chemistry; McMillan: New Delhi, Vol. 5, 116 p, India.
-
Kim YW, Baird JK, 2004. Reaction kinetics and critical phenomena: saponification of ethyl acetate at the consolute point of 2-butoxyethanol + water. International Journal of Thermophysics, 25: 1025-1036.
-
Levenspiel O, 1999. Chemical Reaction Engineering. John Wiley, Third Edition, NY. 668 p, New York.
-
Malik SR, Awan BA, Shafiq U, Mukhtar A, 2015. Investigation of the Agitation Effect on the Conversion of Saponification Reaction in a Batch Reactor at STP Conditions. International Journal of Applied Sciences and Engineering Research, 4: 461-466.
-
Mukhtar A, Shafiq U, Khan AF, Qadir HA, Qizilbash M, 2015. Estimation of parameters of arrhenius equation for ethyl acetate saponification reaction. Research Journal of Chemical Sciences, 5: 46-50.
-
Mukhtar A, Shafiq U, Qazi MO, Qadir HA, Qizilbash M, Awan BA, 2017. Kinetics of alkaline hydrolysis of ethyl acetate by conductometric measurement approach over temperature ranges (298.15-343.15 K). Austin Chemical Engineering, 4: 1-11.
-
Paul OC, Daniel EC, 2014. Optimization of A Soap Production Mix Using Response Surface Modeling: A Case Of Niger Bar Soap Manufacturing Industry Onitsha, Anambra State, NigeriaIwenofu Chinwe Onyedika, Sinebe Jude Ebieladoh, International Journal of Scientific & Technology Research, 3: 346-352.
-
Schneider, MA, Stoessel F, 2005. Determination of the kinetic parameters of fast exothermal reactions using a novel microreactor-based calorimeter. Chemical Engineering Journal, 115: 73–83.