Araştırma Makalesi
BibTex RIS Kaynak Göster

Biosynthesis of copper nanoparticles using aqueous extract of Capparis spinosa fruit and investigation of its antibacterial activity

Yıl 2017, Cilt: 21 Sayı: 4, 866 - 871, 01.12.2017

Öz

The present study was aimed to use the aqueous extract of
Capparis spinosa to synthesize the copper nanoparticles and also
evaluated their antibacterial activities again some pathogenic
bacterial strains. UV-vis spectroscopy analyses, fourier
transform of infrared (FTIR), scanning electron microscopy
(SEM), and energy dispersive X-ray (EDX) were used to identify
the synthesized nanoparticles. The antimicrobial activity of
the synthesized copper nanoparticles was investigated using
disk diffusion method and broth microdilution against some
Gram-positive and Gram-negative bacteria. After adding the
extract to the copper sulfate solution, the color of the solution
changed from light blue to yellowish green. Existence of a
maximum peak at the wavelength of 414 nm confirmed the
formation of the copper nanoparticles. FTIR spectrum analysis
showed that the factor groups created a coating extract on the
surface of the nanoparticles. Scanning electron microscopy
demonstrated the particle size between 17 and 41 nm. These
findings showed that Staphylococcus aureus and Bacillus cereus
as Gram-positive bacteria were most susceptible to synthesized
copper nanoparticles in comparison with the Gram-negative
bacteria (Klebsiella pneumoniae, and Escherichia coli). The
obtained findings demonstrated that the aqueous extract of C.
spinosa acts as a reviver and stabilizer factor. The synthesized
copper nanoparticles demonstrated activity against both Grampositive
and Gram-negative bacteria.

Kaynakça

  • 1. Furno F, Morley KS, Wong B, Sharp BL, Arnold PL, Howdle SM, Bayston R, Brown PD, Winship PD, Reid HJ. Silver nanoparticles and polymeric medical devices: A new approach to prevention of infection. J Antimicrob Chemother 2004; 54: 1019–24. 2. Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 2012; 64: 24–36. 3. Roy K, Mao HQ, Huang SK, Leong KW. Oral gene delivery with chitosan-DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat Med 1999; 5: 387–91. 4. Basarkar A, Singh J. Poly (lactide-co-glycolide)- polymethacrylate nanoparticles for intramuscular delivery of plasmid encoding interleukin-10 to prevent autoimmune diabetes in mice. Pharm Res 2009; 26: 72–81. 5. Wilson DS, Dalmasso G, Wang L, Sitaraman SV, Merlin D, Murthy N. Orally delivered thioketal nanoparticles loaded with TNF-α–siRNA target inflammation and inhibit gene expression in the intestines. Nat Mater 2010; 9: 923–8. 6. Mano Priya M, Karunai Selvia B, John Paul JA. Green synthesis of silver nanoparticles from the leaf extracts of Euphorbia hirta and Nerium indicum. Digest J Nanomat Biostruct 2011; 6: 869 – 77. 7. Chandrakant K, Tagad, Sreekantha Reddy D, Rohini A, Sungha P, Atul K, Sushma S. Green synthesis of silver nanoparticles and their application for the development of optical fiber based hydrogen peroxide sensor. Sens Actuators B Chem 2013; 183: 144– 9. 8. Yamini Sudha Lakshmi G, Fouzia B, Ezhilarasan, Arumugam, Sahadevan. Green synthesis of silver nanoparticles from Cleome viscosa: Synthesis and antimicrobial activity. International Conference on Bioscience, Biochemistry and Bioinformatics 2011; 5: 334-337. 9. Awwad AM, Salem NM. Green synthesis of silver nanoparticles by mulberry leaves extract. J Nanosci Nanotechnol 2012; 2: 125-8. 10. Jagtap UB, Bapat WA. Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity. Ind Crop Prod 2013; 46: 132–7. 11. Kalimuthu K, Babu RS, Venkataraman D, Bilal M, Gurunathan S. Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B 2008; 65: 150-3. 12. Safarpour S, Givianrad MH, Beheshti P. Detection and determination of antioxidant compound of seed oil of Capparis spinosa L. in Iran. Iran J Med Aromat Plants 2012; 28: 153-60. 13. Mallikarjunaa K, Narasimhab G, Dillipa GR, Praveenb B, Shreedharc B, Sree Lakshmic C, Reddy BVS, Deva Prasad Raju B. Green synthesis of silver nanoparticles using Ocimum leaf extract and their characterization. Digest J Nanomat Biostruct 2011; 6: 181–6. 14. Zargari A, Medicinal Plants, Vol.2, Tehran University Publication, Tehran, Iran 1989, pp. 550. 15. Ghahraman A. Chromophytes of Iran, Vol.1 Tehran University Press, Tehran, Iran 1998, pp. 202. 16. Kulkarni VD, Kulkarni, PS. Green synthesis of copper nanoparticles using Ocimum sanctum leaf extract. Int J Chem Stud. 2013; 1(3): 1-4. 17. Saranyaadevi K, Subha V, Ernest Ravindran Rs, Renganathan S. Synthesis and caharacterization of copper nanoparticle using Capparis zeylanica leaf extract. Int J Chem Tech Res 2014; 6: 4533-41. 18. Naika HR, Lingaraju K, Manjunath K, Kumar D, Nagaraju G, Suresh D, Nagabhushana H. Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity. J Taibah Uni Sci 2015; 9: 7-12. 19. Angrasan J, Subbaiya R. Biosynthesis of copper nanoparticles by Vitis vinifera leaf aqueous extract and its antibacterial activity. Int J Curr Microbiol Appl Sci 2014; 3: 768-74. 20. Gopinath M, Subbaiya R, Selvam MM, Suresh D. Synthesis of copper nanoparticles from Nerium oleander leaf aqueous extract and its antibacterial activity. Int J Curr Microbiol Appl Sci 2014; 3 : 814-8. 21. Katha U, and Gajera H. Synthesis of copper nanoparticles by two different methods and size comparison. Int J Pharm Bio Sci 2014; 5: 533-40. 22. Subhankari I, Nayak P. Synthesis of copper nanoparticles using Syzygium aromaticum (Cloves) aqueous extract by using green chemistry. World J Nano Sci Technol 2013; 2: 14-7. 23. Shende S, Ingle AP, Gade A, Rai M. Green synthesis of copper nanoparticles by Citrus medica Linn.(Idilimbu) juice and its antimicrobial activity. World J Microbiol Biotechnol 2015; 31: 865-73. 24. Kheirandish F, Delfan B, Mahmoudvand H, Moradi N, Ezatpour B, Ebrahimzadeh F, Rashidipour M. Antileishmanial, antioxidant, and cytotoxic activities of Quercus infectoria Olivier extract. Biomed Pharmacother 2016; 82: 208-15. 25. Saedi Dezaki E, Mahmoudvand H, Sharififar F, Fallahi S, Monzote L, Ezatkhah F. Chemical composition along with anti-leishmanial and cytotoxic activity of Zataria multiflora. Pharm Biol 2016; 54:752-8. 26. Abboud Y, Saffaj T, Chagraoui A, Brouzi K, Tanane O, Ihssane B. Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CPNPs) produced using brown alga extract (Bifurcaria bifurcata). Appl Nanosci 2014; 4: 571- 6. 27. Das S, Das J, Samadder A, Bhattacharyya SS, Das D, Khuda- Bukhsh AR. Biosynthesized silver nanoparticles by ethanolic extracts of Phytolacca decandra, Gelsemium sempervirens, Hydrastis canadesis and Thuja occidentalis induce differential cytotaxicity through G2/M arrest in A375 cells. Colloids Surf B Biointerfaces 2013;101: 325-36. 28. Khatami M, Pourseyedi S. Phoenix dactylifera (date palm) pit aqueous extract mediated novel route for synthesis highstable silver nanoparticles with high antifungal and antibacterial activity. IET Nanobiotechnol 2015; 9:184-90. 29. Khatami M, Amini E, Amini A, Mortazavi SM, Kishani Farahani Z, Heli H. Biosynthesis of silver nanoparticles using pine pollen and evaluation of the antifungal efficiency. Iran J Biotechnol 2017; 15: 1–7. 30. Khatami M, Mehnipor R, Poor MHS, Jouzani GS. Facile biosynthesis of silver nanoparticles using Descurainia sophia and evaluation of their antibacterial and antifungal properties. J Clust Sci 2016; 27: 1601–12. 31. Soltani Nejad M, Khatami M, Shahidi Bonjar GH. Extracellular synthesis gold nanotriangles using biomass of Streptomyces microflavus. IET Nanobiotechnol 2016; 10: 33–8. 32. Li Z, Lee D, Sheng X, Chohen RF, Ruber MF. Two –level antibacterial coating with both release-killing and contactkilling capabilities. Langmuir 2006; 22: 9820-3. 33. Engelkirk J, Engelkirk P. Laboratory Diagnosis of Infectious, Duben Lippincott Williams & Wilkins, 2008, pp. 168
Yıl 2017, Cilt: 21 Sayı: 4, 866 - 871, 01.12.2017

Öz

Kaynakça

  • 1. Furno F, Morley KS, Wong B, Sharp BL, Arnold PL, Howdle SM, Bayston R, Brown PD, Winship PD, Reid HJ. Silver nanoparticles and polymeric medical devices: A new approach to prevention of infection. J Antimicrob Chemother 2004; 54: 1019–24. 2. Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 2012; 64: 24–36. 3. Roy K, Mao HQ, Huang SK, Leong KW. Oral gene delivery with chitosan-DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat Med 1999; 5: 387–91. 4. Basarkar A, Singh J. Poly (lactide-co-glycolide)- polymethacrylate nanoparticles for intramuscular delivery of plasmid encoding interleukin-10 to prevent autoimmune diabetes in mice. Pharm Res 2009; 26: 72–81. 5. Wilson DS, Dalmasso G, Wang L, Sitaraman SV, Merlin D, Murthy N. Orally delivered thioketal nanoparticles loaded with TNF-α–siRNA target inflammation and inhibit gene expression in the intestines. Nat Mater 2010; 9: 923–8. 6. Mano Priya M, Karunai Selvia B, John Paul JA. Green synthesis of silver nanoparticles from the leaf extracts of Euphorbia hirta and Nerium indicum. Digest J Nanomat Biostruct 2011; 6: 869 – 77. 7. Chandrakant K, Tagad, Sreekantha Reddy D, Rohini A, Sungha P, Atul K, Sushma S. Green synthesis of silver nanoparticles and their application for the development of optical fiber based hydrogen peroxide sensor. Sens Actuators B Chem 2013; 183: 144– 9. 8. Yamini Sudha Lakshmi G, Fouzia B, Ezhilarasan, Arumugam, Sahadevan. Green synthesis of silver nanoparticles from Cleome viscosa: Synthesis and antimicrobial activity. International Conference on Bioscience, Biochemistry and Bioinformatics 2011; 5: 334-337. 9. Awwad AM, Salem NM. Green synthesis of silver nanoparticles by mulberry leaves extract. J Nanosci Nanotechnol 2012; 2: 125-8. 10. Jagtap UB, Bapat WA. Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity. Ind Crop Prod 2013; 46: 132–7. 11. Kalimuthu K, Babu RS, Venkataraman D, Bilal M, Gurunathan S. Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B 2008; 65: 150-3. 12. Safarpour S, Givianrad MH, Beheshti P. Detection and determination of antioxidant compound of seed oil of Capparis spinosa L. in Iran. Iran J Med Aromat Plants 2012; 28: 153-60. 13. Mallikarjunaa K, Narasimhab G, Dillipa GR, Praveenb B, Shreedharc B, Sree Lakshmic C, Reddy BVS, Deva Prasad Raju B. Green synthesis of silver nanoparticles using Ocimum leaf extract and their characterization. Digest J Nanomat Biostruct 2011; 6: 181–6. 14. Zargari A, Medicinal Plants, Vol.2, Tehran University Publication, Tehran, Iran 1989, pp. 550. 15. Ghahraman A. Chromophytes of Iran, Vol.1 Tehran University Press, Tehran, Iran 1998, pp. 202. 16. Kulkarni VD, Kulkarni, PS. Green synthesis of copper nanoparticles using Ocimum sanctum leaf extract. Int J Chem Stud. 2013; 1(3): 1-4. 17. Saranyaadevi K, Subha V, Ernest Ravindran Rs, Renganathan S. Synthesis and caharacterization of copper nanoparticle using Capparis zeylanica leaf extract. Int J Chem Tech Res 2014; 6: 4533-41. 18. Naika HR, Lingaraju K, Manjunath K, Kumar D, Nagaraju G, Suresh D, Nagabhushana H. Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity. J Taibah Uni Sci 2015; 9: 7-12. 19. Angrasan J, Subbaiya R. Biosynthesis of copper nanoparticles by Vitis vinifera leaf aqueous extract and its antibacterial activity. Int J Curr Microbiol Appl Sci 2014; 3: 768-74. 20. Gopinath M, Subbaiya R, Selvam MM, Suresh D. Synthesis of copper nanoparticles from Nerium oleander leaf aqueous extract and its antibacterial activity. Int J Curr Microbiol Appl Sci 2014; 3 : 814-8. 21. Katha U, and Gajera H. Synthesis of copper nanoparticles by two different methods and size comparison. Int J Pharm Bio Sci 2014; 5: 533-40. 22. Subhankari I, Nayak P. Synthesis of copper nanoparticles using Syzygium aromaticum (Cloves) aqueous extract by using green chemistry. World J Nano Sci Technol 2013; 2: 14-7. 23. Shende S, Ingle AP, Gade A, Rai M. Green synthesis of copper nanoparticles by Citrus medica Linn.(Idilimbu) juice and its antimicrobial activity. World J Microbiol Biotechnol 2015; 31: 865-73. 24. Kheirandish F, Delfan B, Mahmoudvand H, Moradi N, Ezatpour B, Ebrahimzadeh F, Rashidipour M. Antileishmanial, antioxidant, and cytotoxic activities of Quercus infectoria Olivier extract. Biomed Pharmacother 2016; 82: 208-15. 25. Saedi Dezaki E, Mahmoudvand H, Sharififar F, Fallahi S, Monzote L, Ezatkhah F. Chemical composition along with anti-leishmanial and cytotoxic activity of Zataria multiflora. Pharm Biol 2016; 54:752-8. 26. Abboud Y, Saffaj T, Chagraoui A, Brouzi K, Tanane O, Ihssane B. Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CPNPs) produced using brown alga extract (Bifurcaria bifurcata). Appl Nanosci 2014; 4: 571- 6. 27. Das S, Das J, Samadder A, Bhattacharyya SS, Das D, Khuda- Bukhsh AR. Biosynthesized silver nanoparticles by ethanolic extracts of Phytolacca decandra, Gelsemium sempervirens, Hydrastis canadesis and Thuja occidentalis induce differential cytotaxicity through G2/M arrest in A375 cells. Colloids Surf B Biointerfaces 2013;101: 325-36. 28. Khatami M, Pourseyedi S. Phoenix dactylifera (date palm) pit aqueous extract mediated novel route for synthesis highstable silver nanoparticles with high antifungal and antibacterial activity. IET Nanobiotechnol 2015; 9:184-90. 29. Khatami M, Amini E, Amini A, Mortazavi SM, Kishani Farahani Z, Heli H. Biosynthesis of silver nanoparticles using pine pollen and evaluation of the antifungal efficiency. Iran J Biotechnol 2017; 15: 1–7. 30. Khatami M, Mehnipor R, Poor MHS, Jouzani GS. Facile biosynthesis of silver nanoparticles using Descurainia sophia and evaluation of their antibacterial and antifungal properties. J Clust Sci 2016; 27: 1601–12. 31. Soltani Nejad M, Khatami M, Shahidi Bonjar GH. Extracellular synthesis gold nanotriangles using biomass of Streptomyces microflavus. IET Nanobiotechnol 2016; 10: 33–8. 32. Li Z, Lee D, Sheng X, Chohen RF, Ruber MF. Two –level antibacterial coating with both release-killing and contactkilling capabilities. Langmuir 2006; 22: 9820-3. 33. Engelkirk J, Engelkirk P. Laboratory Diagnosis of Infectious, Duben Lippincott Williams & Wilkins, 2008, pp. 168
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Konular Sağlık Kurumları Yönetimi
Bölüm Makaleler
Yazarlar

Katrin Ebrahımı Bu kişi benim

Sima Shıravand Bu kişi benim

Hossein Mahmoudvand Bu kişi benim

Yayımlanma Tarihi 1 Aralık 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 21 Sayı: 4

Kaynak Göster

APA Ebrahımı, K., Shıravand, S., & Mahmoudvand, H. (2017). Biosynthesis of copper nanoparticles using aqueous extract of Capparis spinosa fruit and investigation of its antibacterial activity. Marmara Pharmaceutical Journal, 21(4), 866-871.
AMA Ebrahımı K, Shıravand S, Mahmoudvand H. Biosynthesis of copper nanoparticles using aqueous extract of Capparis spinosa fruit and investigation of its antibacterial activity. mpj. Aralık 2017;21(4):866-871.
Chicago Ebrahımı, Katrin, Sima Shıravand, ve Hossein Mahmoudvand. “Biosynthesis of Copper Nanoparticles Using Aqueous Extract of Capparis Spinosa Fruit and Investigation of Its Antibacterial Activity”. Marmara Pharmaceutical Journal 21, sy. 4 (Aralık 2017): 866-71.
EndNote Ebrahımı K, Shıravand S, Mahmoudvand H (01 Aralık 2017) Biosynthesis of copper nanoparticles using aqueous extract of Capparis spinosa fruit and investigation of its antibacterial activity. Marmara Pharmaceutical Journal 21 4 866–871.
IEEE K. Ebrahımı, S. Shıravand, ve H. Mahmoudvand, “Biosynthesis of copper nanoparticles using aqueous extract of Capparis spinosa fruit and investigation of its antibacterial activity”, mpj, c. 21, sy. 4, ss. 866–871, 2017.
ISNAD Ebrahımı, Katrin vd. “Biosynthesis of Copper Nanoparticles Using Aqueous Extract of Capparis Spinosa Fruit and Investigation of Its Antibacterial Activity”. Marmara Pharmaceutical Journal 21/4 (Aralık 2017), 866-871.
JAMA Ebrahımı K, Shıravand S, Mahmoudvand H. Biosynthesis of copper nanoparticles using aqueous extract of Capparis spinosa fruit and investigation of its antibacterial activity. mpj. 2017;21:866–871.
MLA Ebrahımı, Katrin vd. “Biosynthesis of Copper Nanoparticles Using Aqueous Extract of Capparis Spinosa Fruit and Investigation of Its Antibacterial Activity”. Marmara Pharmaceutical Journal, c. 21, sy. 4, 2017, ss. 866-71.
Vancouver Ebrahımı K, Shıravand S, Mahmoudvand H. Biosynthesis of copper nanoparticles using aqueous extract of Capparis spinosa fruit and investigation of its antibacterial activity. mpj. 2017;21(4):866-71.