Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2015, Cilt: 1 Sayı: 2, 28 - 41, 25.12.2015
https://doi.org/10.23884/mejs.2015.1.2.02

Öz

Kaynakça

  • [1] Aboul-Enein, H. Y., & Ali, I. (2003). Chiral separations by liquid chromatography and related technologies (Vol. 90): CRC Press.
  • [2] 2. Altria, K. D. (1996). Capillary electrophoresis guidebook: principles, operation, and applications (Vol. 52): Springer.
  • [3] 3. Armstrong, D. W., Chang, C.-d., & Haing Lee, S. (1991). (R)-and (S)-Naphthylethylcarbamate-substituted β-cyclo-dextrin bonded stationary phases for the reversed-phase liquid chromatographic separation of enantiomers. Journal of Chromatography A, 539, 83-90.
  • [4] 4. Bencini, A., Benelli, C., & Gatteschi, D. (1984). The angular overlap model for the description of the paramagnetic properties of transition metal complexes. Coordination chemistry reviews, 60, 131-169.
  • [5] 5. Berthod, A., Chen, X., Kullman, J. P., Armstrong, D. W., Gasparrini, F., D'Acquaric, I., Villani, C., & Carotti, A. (2000). Role of the carbohydrate moieties in chiral recognition on teicoplanin-based LC stationary phases. Analytical chemistry, 72, 1767-1780.
  • [6] 6. Bezhan Chankvetadze. (2012). Recent developments on polysaccharide-based chiral stationary phases for liquid-phase separation of enantiomers. Journal of Chromatography A, 1269, 26-51
  • [7] 7. Bojarski, J., Aboul-Enein, H. Y., & Ghanem, A. (2005). What's new in chromatographic enantioseparations. Current Analytical Chemistry, 1, 59-77.
  • [8] 8. Cabrera, K. (2004). Applications of silica‐based monolithic HPLC columns. Journal of separation science, 27, 843-852.
  • [9] 9. Cakmak, R. (2008). PirkLe -tip kiral kolon kromotografisi yöntemiyle biyolojik öneme sahip kiral aminlerden (±)-β-metilfeniletilamin’in rezolüsyonu. Yüksek Lisans Tezi, Harran Üniversitesi.
  • [10] 10. Caude, M., Tambuté, A., & Siret, L. (1991). Chiral stationary phases derived from tyrosine. Journal of Chromatography A, 550, 357-382.
  • [11] 11. Cavazzini, A., Pasti, L., Massi, A., Marchetti, N., & Dondi, F. (2011). Recent applications in chiral high performance liquid chromatography: A review. Analytica Chimica Acta, 706, 205-222.
  • [12] 12. Chankvetadze, B., Chankvetadze, L., Sidamonidze, S., Kasashima, E., Yashima, E., & Okamoto, Y. (1997). 3-Fluoro-, 3-chloro- and 3-bromo-5-methylphenylcarbamates of cellulose and amylose as chiral stationary phases for high-performance liquid chromatographic enantioseparation. Journal of Chromatography A, 787, 67-77.
  • [13] 13. Chen, Z., Fuyumuro, T., Watabe, K., & Hobo, T. (2004). Influence of spacers and organic modifiers on chromatographic behaviors on chiral diamide stationary phase with N-(3, 5-dimethylbenzoyl)-D-phenylglycine. Analytica chimica acta, 518, 181-189.
  • [14] 14. Choi, H. J., Ha, H. J., Han, S. C., & Hyun, M. H. (2008). Liquid chromatographic resolution of β-amino acids on CSPs based on optically active (3,3′-diphenyl-1,1′-binaphthyl)-20-crown-6. Analytica Chimica Acta, 619, 122-128.
  • [15] 15. D’Acquarica, I., Gasparrini, F., Misiti, D., Zappia, G., Cimarelli, C., Palmieri, G., Carotti, A., Cellamare, S., & Villani, C. (2000). Application of a new chiral stationary phase containing the glycopeptide antibiotic A-40,926 in the direct chromatographic resolution of β-amino acids. Tetrahedron: Asymmetry, 11, 2375-2385.
  • [16] 16. Easson, L. H., & Stedman, E. (1933). Studies on the relationship between chemical constitution and physiological action: Molecular dissymmetry and physiological activity. Biochemical Journal, 27, 1257.
  • [17] 17. Eriksson, B.-M., & Wallin, A. (1995). Evaluation of the liquid-chromatographic resolution of indenoindolic racemic compounds on three protein-based chiral stationary phases. Journal of Pharmaceutical and Biomedical Analysis, 13, 551-561.
  • [18] 18. Fu, Y., Huang, T., Chen, B., Shen, J., Duan, X., Zhang, J., & Li, W. (2013). Enantioselective resolution of chiral drugs using BSA functionalized magnetic nanoparticles. Separation and Purification Technology, 107, 11-18.
  • [19] 19. Guillaume, Y.-C., Ismaili, L., Truong, T.-T., Nicod, L., Millet, J., & Thomassin, M. (2002). Chiral discrimination of phenoxypropionic acid herbicide enantiomers on teicoplanin phase: methanol dependence and eluent pH consideration. Talanta, 58, 951-959.
  • [20] 20. Haginaka, J. (2008). Recent progresses in protein-based chiral stationary phases for enantioseparations in liquid chromatography. Journal of Chromatography B, 875, 12-19.
  • [21] 21. Haginaka, J. (2012). 8.9 Chromatographic Separations and Analysis: Protein and Glycoprotein Stationary Phases. In E. M. Carreira & H. Yamamoto (Eds.), Comprehensive Chirality (pp. 153-176). Amsterdam: Elsevier.
  • [22] 22. Haginaka, J. (2014). Chiral Separations: Protein Stationary Phases. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering: Elsevier.
  • [23] 23. Haginaka, J., Murashima, T., Fujima, H., & Wada, H. (1993). Direct injection assay of drug enantiomers in serum on ovomucoid-bonded silica materials by liquid chromatography. Journal of Chromatography B: Biomedical Sciences and Applications, 620, 199-204.
  • [24] 24. Harada, K., Yuan, Q., Nakayama, M., & Sugii, A. (1996). Effects of organic modifiers on the chiral recognition by different types of silica-immobilized bovine serum albumin. Journal of Chromatography A, 740, 207-213.
  • [25] 25. Hegstrom, R. A., & Kondepudi, D. K. (1990). The handedness of the universe. Scientific American, 262, 108-115.
  • [26] 26. Hermansson, J. (1985). Resolution of racemic aminoalcohols (β-blockers), amines and acids as enantiomeric derivatives using a chiral α-1-acid glycoprotein column. Journal of Chromatography A, 325, 379-384.
  • [27] 27. Hyun, M. H. (2003). Characterization of liquid chromatographic chiral separation on chiral crown ether stationary phases. Journal of separation science, 26, 242-250.
  • [28] 28. Hyun, M. H. (2012). 8.13 Chromatographic Separations and Analysis: Chiral Crown Ether-Based Chiral Stationary Phases. In E. M. Carreira & H. Yamamoto (Eds.), Comprehensive Chirality (pp. 263-285). Amsterdam: Elsevier.
  • [29] 29. Hyun, M. H. (2016). Liquid chromatographic enantioseparations on crown-ether based chiral stationary phases. Journal of Chromatography A, 1467, 19-32.
  • [30] 30. Hyun, M. H., Cho, Y. J., Ryoo, J.-J., Jyung, K. K., & Heo, G. S. (1995). Preparation and application of an (S)-naproxen chiral stationary phase. Journal of Chromatography A, 696, 173-183.
  • [31] 31. Hyun, M. H., Tan, G., & Xue, J. Y. (2005). Unusual resolution of N-(3,5-dinitrobenzoyl)-α-amino acids on a chiral stationary phase based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid. Journal of Chromatography A, 1097, 188-191.
  • [32] 32. Kiyohara, S., Nakamura, M., Saito, K., Sugita, K., & Sugo, T. (1999). Binding of dl-tryptophan to BSA adsorbed in multilayers by polymer chains grafted onto a porous hollow-fiber membrane in a permeation mode. Journal of Membrane Science, 152, 143-149.
  • [33] 33. Kondepudi, D. K., & Asakura, K. (2001). Chiral autocatalysis, spontaneous symmetry breaking, and stochastic behavior. Accounts of chemical research, 34, 946-954.
  • [34] 34. Kubota, T., Yamamoto, C., & Okamoto, Y. (2004). Reversed‐phase liquid chromatographic enantioseparation by cycloalkylcarboxylates of cellulose and amylose. Chirality, 16, 309-313.
  • [35] 35. Majors, R. E. (2006). Developments in HPLC column packing design. LC GC Magazine-North America-Solutions for Separation Scientists, 29, 8-15.
  • [36] 36. Mitchell, C. R., & Armstrong, D. W. (2004). Cyclodextrin-based chiral stationary phases for liquid chromatography. In Chiral Separations (pp. 61-112): Springer.
  • [37] 37. Narayanan, S. R. (1992). Immobilized proteins as chromatographic supports for chiral resolution. Journal of Pharmaceutical and Biomedical Analysis, 10, 251-262.
  • [38] 38. Nimura, N., & Kinoshita, T. (1986). o-Phthalaldehyde—N-acetyl-L-cysteine as a chiral derivatization reagent for liquid chromatographic optical resolution of amino acid ernantiomers and its application to conventional amino acid analysis. Journal of Chromatography A, 352, 169-177.
  • [39] 39. Ou, J., Lin, H., Tang, S., Zhang, Z., Dong, J., & Zou, H. (2012). Hybrid monolithic columns coated with cellulose tris (3, 5-dimethylphenyl-carbamate) for enantioseparations in capillary electrochromatography and capillary liquid chromatography. Journal of Chromatography A, 1269, 372-378.
  • [40] 40. Pirkle, W. H., & Murray, P. G. (1996). Observations relevant to the differential intercalation of enantiomers between the strands of brush-type chiral stationary phases. Journal of Chromatography A, 719, 299-305.
  • [41] 41. Pirkle, W. H., Pochapsky, T. C., Mahler, G. S., & Field, R. E. (1985). Chromatographic separation of the enantiomers of 2-carboalkoxyindolines and N-aryl-α-amino esters on chiral stationary phases derived from N-(3,5-dinitrobenzoyl)-α-amino acids. Journal of Chromatography A, 348, 89-96.
  • [42] 42. Qin, W., Xu, S., Xu, G., Xie, Q., Wang, C., & Xu, Z. (2013). Preparation of silica gel bound crown ether and its extraction performance towards zirconium and hafnium. Chemical Engineering Journal, 225, 528-534.
  • [43] 43. Sheldon, R. A. (1993). Chirotechnology: industrial synthesis of optically active compounds: CRC press.
  • [44] 44. Shinbo, T., Yamaguchi, T., Nishimura, K., & Sugiura, M. (1987). Chromatographic separation of racemic amino acids by use of chiral crown ether-coated reversed-phase packings. Journal of Chromatography A, 405, 145-153.
  • [45] 45. Steffeck, R. J., Zelechonok, Y., & Gahm, K. H. (2002). Enantioselective separation of racemic secondary amines on a chiral crown ether-based liquid chromatography stationary phase. Journal of Chromatography A, 947, 301-305.
  • [46] 46. Stewart, K. K., & Doherty, R. F. (1973). Resolution of DL-tryptophan by affinity chromatography on bovine-serum albumin-agarose columns. Proceedings of the National Academy of Sciences, 70, 2850-2852.
  • [47] 47. Tang, M., Zhang, J., Zhuang, S., & Liu, W. (2012) Development of chiral stationary phases for high-performance liquid chromatographic separation. Trends İn Analytical Chemistry, 39, 180-194
  • [48] 48. Van Gyseghem, E., Van Hemelryck, S., Daszykowski, M., Questier, F., Massart, D., & Vander Heyden, Y. (2003). Determining orthogonal chromatographic systems prior to the development of methods to characterise impurities in drug substances. Journal of Chromatography A, 988, 77-93.
  • [49] 49. Wainer, I. W., & Chu, Y.-Q. (1988). Use of mobile phase modifiers to alter retention and stereoselectivity on a bovine serum albumin high-performance liquid chromatographic chiral stationary phase. Journal of Chromatography A, 455, 316-322.
  • [50] 50. Yamagishi, A., Taniguchi, M., Imamura, Y., & Sato, H. (1996). Clay column chromatography for optical resolution: selectivities of Lambda-[Ru (phen) 3] 2+ and Lambda-[Ru (bpy) 3] 2+ laponite columns towards 1, 1'-binaphthol. Applied clay science, 11, 1-10.
  • [51] 51. Yilmaz, H., Topal, G., Cakmak, R., & Hosgoren, H. (2010). Resolution of (±)‐β‐methylphenylethylamine by a novel chiral stationary phase for Pirkle‐type column chromatography. Chirality, 22, 252-257.
  • [52] 52. Zhang, Q., Zou, H., Wang, H., & Ni, J. (2000). Synthesis of a silica-bonded bovine serum albumin s-triazine chiral stationary phase for high-performance liquid chromatographic resolution of enantiomers. Journal of Chromatography A, 866, 173-181.
  • [53] 53. Zhou, L., Mao, B., & Ge, Z. (2008). Comparative study of immobilized α1 acid glycoprotein and ovomucoid protein stationary phases for the enantiomeric separation of pharmaceutical compounds. Journal of pharmaceutical and biomedical analysis, 46, 898-906.

CHIRAL STATIONARY PHASES USED FOR ENANTIOMERIC RESOLUTION

Yıl 2015, Cilt: 1 Sayı: 2, 28 - 41, 25.12.2015
https://doi.org/10.23884/mejs.2015.1.2.02

Öz


Enantiomer separation has attracted increasing attentions in pharmaceutical industry, due to great differences in pharmacological, toxicological and/or metabolic activities of enantiomeric drugs in living system. Several methods have been succesfully used to achieve chiral separation. To date the chromatographic method is one of the most effective. Numerous kinds of CSPs have been developed for chiral separation these include cyclo-dextrins, polysaccharides, macrocyclic antibiotics, ligand-exchange, Pirkle, crown ethers and protein derivatives. İn this rewiev we will inform ligands and macromolecules used as CSP.


Kaynakça

  • [1] Aboul-Enein, H. Y., & Ali, I. (2003). Chiral separations by liquid chromatography and related technologies (Vol. 90): CRC Press.
  • [2] 2. Altria, K. D. (1996). Capillary electrophoresis guidebook: principles, operation, and applications (Vol. 52): Springer.
  • [3] 3. Armstrong, D. W., Chang, C.-d., & Haing Lee, S. (1991). (R)-and (S)-Naphthylethylcarbamate-substituted β-cyclo-dextrin bonded stationary phases for the reversed-phase liquid chromatographic separation of enantiomers. Journal of Chromatography A, 539, 83-90.
  • [4] 4. Bencini, A., Benelli, C., & Gatteschi, D. (1984). The angular overlap model for the description of the paramagnetic properties of transition metal complexes. Coordination chemistry reviews, 60, 131-169.
  • [5] 5. Berthod, A., Chen, X., Kullman, J. P., Armstrong, D. W., Gasparrini, F., D'Acquaric, I., Villani, C., & Carotti, A. (2000). Role of the carbohydrate moieties in chiral recognition on teicoplanin-based LC stationary phases. Analytical chemistry, 72, 1767-1780.
  • [6] 6. Bezhan Chankvetadze. (2012). Recent developments on polysaccharide-based chiral stationary phases for liquid-phase separation of enantiomers. Journal of Chromatography A, 1269, 26-51
  • [7] 7. Bojarski, J., Aboul-Enein, H. Y., & Ghanem, A. (2005). What's new in chromatographic enantioseparations. Current Analytical Chemistry, 1, 59-77.
  • [8] 8. Cabrera, K. (2004). Applications of silica‐based monolithic HPLC columns. Journal of separation science, 27, 843-852.
  • [9] 9. Cakmak, R. (2008). PirkLe -tip kiral kolon kromotografisi yöntemiyle biyolojik öneme sahip kiral aminlerden (±)-β-metilfeniletilamin’in rezolüsyonu. Yüksek Lisans Tezi, Harran Üniversitesi.
  • [10] 10. Caude, M., Tambuté, A., & Siret, L. (1991). Chiral stationary phases derived from tyrosine. Journal of Chromatography A, 550, 357-382.
  • [11] 11. Cavazzini, A., Pasti, L., Massi, A., Marchetti, N., & Dondi, F. (2011). Recent applications in chiral high performance liquid chromatography: A review. Analytica Chimica Acta, 706, 205-222.
  • [12] 12. Chankvetadze, B., Chankvetadze, L., Sidamonidze, S., Kasashima, E., Yashima, E., & Okamoto, Y. (1997). 3-Fluoro-, 3-chloro- and 3-bromo-5-methylphenylcarbamates of cellulose and amylose as chiral stationary phases for high-performance liquid chromatographic enantioseparation. Journal of Chromatography A, 787, 67-77.
  • [13] 13. Chen, Z., Fuyumuro, T., Watabe, K., & Hobo, T. (2004). Influence of spacers and organic modifiers on chromatographic behaviors on chiral diamide stationary phase with N-(3, 5-dimethylbenzoyl)-D-phenylglycine. Analytica chimica acta, 518, 181-189.
  • [14] 14. Choi, H. J., Ha, H. J., Han, S. C., & Hyun, M. H. (2008). Liquid chromatographic resolution of β-amino acids on CSPs based on optically active (3,3′-diphenyl-1,1′-binaphthyl)-20-crown-6. Analytica Chimica Acta, 619, 122-128.
  • [15] 15. D’Acquarica, I., Gasparrini, F., Misiti, D., Zappia, G., Cimarelli, C., Palmieri, G., Carotti, A., Cellamare, S., & Villani, C. (2000). Application of a new chiral stationary phase containing the glycopeptide antibiotic A-40,926 in the direct chromatographic resolution of β-amino acids. Tetrahedron: Asymmetry, 11, 2375-2385.
  • [16] 16. Easson, L. H., & Stedman, E. (1933). Studies on the relationship between chemical constitution and physiological action: Molecular dissymmetry and physiological activity. Biochemical Journal, 27, 1257.
  • [17] 17. Eriksson, B.-M., & Wallin, A. (1995). Evaluation of the liquid-chromatographic resolution of indenoindolic racemic compounds on three protein-based chiral stationary phases. Journal of Pharmaceutical and Biomedical Analysis, 13, 551-561.
  • [18] 18. Fu, Y., Huang, T., Chen, B., Shen, J., Duan, X., Zhang, J., & Li, W. (2013). Enantioselective resolution of chiral drugs using BSA functionalized magnetic nanoparticles. Separation and Purification Technology, 107, 11-18.
  • [19] 19. Guillaume, Y.-C., Ismaili, L., Truong, T.-T., Nicod, L., Millet, J., & Thomassin, M. (2002). Chiral discrimination of phenoxypropionic acid herbicide enantiomers on teicoplanin phase: methanol dependence and eluent pH consideration. Talanta, 58, 951-959.
  • [20] 20. Haginaka, J. (2008). Recent progresses in protein-based chiral stationary phases for enantioseparations in liquid chromatography. Journal of Chromatography B, 875, 12-19.
  • [21] 21. Haginaka, J. (2012). 8.9 Chromatographic Separations and Analysis: Protein and Glycoprotein Stationary Phases. In E. M. Carreira & H. Yamamoto (Eds.), Comprehensive Chirality (pp. 153-176). Amsterdam: Elsevier.
  • [22] 22. Haginaka, J. (2014). Chiral Separations: Protein Stationary Phases. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering: Elsevier.
  • [23] 23. Haginaka, J., Murashima, T., Fujima, H., & Wada, H. (1993). Direct injection assay of drug enantiomers in serum on ovomucoid-bonded silica materials by liquid chromatography. Journal of Chromatography B: Biomedical Sciences and Applications, 620, 199-204.
  • [24] 24. Harada, K., Yuan, Q., Nakayama, M., & Sugii, A. (1996). Effects of organic modifiers on the chiral recognition by different types of silica-immobilized bovine serum albumin. Journal of Chromatography A, 740, 207-213.
  • [25] 25. Hegstrom, R. A., & Kondepudi, D. K. (1990). The handedness of the universe. Scientific American, 262, 108-115.
  • [26] 26. Hermansson, J. (1985). Resolution of racemic aminoalcohols (β-blockers), amines and acids as enantiomeric derivatives using a chiral α-1-acid glycoprotein column. Journal of Chromatography A, 325, 379-384.
  • [27] 27. Hyun, M. H. (2003). Characterization of liquid chromatographic chiral separation on chiral crown ether stationary phases. Journal of separation science, 26, 242-250.
  • [28] 28. Hyun, M. H. (2012). 8.13 Chromatographic Separations and Analysis: Chiral Crown Ether-Based Chiral Stationary Phases. In E. M. Carreira & H. Yamamoto (Eds.), Comprehensive Chirality (pp. 263-285). Amsterdam: Elsevier.
  • [29] 29. Hyun, M. H. (2016). Liquid chromatographic enantioseparations on crown-ether based chiral stationary phases. Journal of Chromatography A, 1467, 19-32.
  • [30] 30. Hyun, M. H., Cho, Y. J., Ryoo, J.-J., Jyung, K. K., & Heo, G. S. (1995). Preparation and application of an (S)-naproxen chiral stationary phase. Journal of Chromatography A, 696, 173-183.
  • [31] 31. Hyun, M. H., Tan, G., & Xue, J. Y. (2005). Unusual resolution of N-(3,5-dinitrobenzoyl)-α-amino acids on a chiral stationary phase based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid. Journal of Chromatography A, 1097, 188-191.
  • [32] 32. Kiyohara, S., Nakamura, M., Saito, K., Sugita, K., & Sugo, T. (1999). Binding of dl-tryptophan to BSA adsorbed in multilayers by polymer chains grafted onto a porous hollow-fiber membrane in a permeation mode. Journal of Membrane Science, 152, 143-149.
  • [33] 33. Kondepudi, D. K., & Asakura, K. (2001). Chiral autocatalysis, spontaneous symmetry breaking, and stochastic behavior. Accounts of chemical research, 34, 946-954.
  • [34] 34. Kubota, T., Yamamoto, C., & Okamoto, Y. (2004). Reversed‐phase liquid chromatographic enantioseparation by cycloalkylcarboxylates of cellulose and amylose. Chirality, 16, 309-313.
  • [35] 35. Majors, R. E. (2006). Developments in HPLC column packing design. LC GC Magazine-North America-Solutions for Separation Scientists, 29, 8-15.
  • [36] 36. Mitchell, C. R., & Armstrong, D. W. (2004). Cyclodextrin-based chiral stationary phases for liquid chromatography. In Chiral Separations (pp. 61-112): Springer.
  • [37] 37. Narayanan, S. R. (1992). Immobilized proteins as chromatographic supports for chiral resolution. Journal of Pharmaceutical and Biomedical Analysis, 10, 251-262.
  • [38] 38. Nimura, N., & Kinoshita, T. (1986). o-Phthalaldehyde—N-acetyl-L-cysteine as a chiral derivatization reagent for liquid chromatographic optical resolution of amino acid ernantiomers and its application to conventional amino acid analysis. Journal of Chromatography A, 352, 169-177.
  • [39] 39. Ou, J., Lin, H., Tang, S., Zhang, Z., Dong, J., & Zou, H. (2012). Hybrid monolithic columns coated with cellulose tris (3, 5-dimethylphenyl-carbamate) for enantioseparations in capillary electrochromatography and capillary liquid chromatography. Journal of Chromatography A, 1269, 372-378.
  • [40] 40. Pirkle, W. H., & Murray, P. G. (1996). Observations relevant to the differential intercalation of enantiomers between the strands of brush-type chiral stationary phases. Journal of Chromatography A, 719, 299-305.
  • [41] 41. Pirkle, W. H., Pochapsky, T. C., Mahler, G. S., & Field, R. E. (1985). Chromatographic separation of the enantiomers of 2-carboalkoxyindolines and N-aryl-α-amino esters on chiral stationary phases derived from N-(3,5-dinitrobenzoyl)-α-amino acids. Journal of Chromatography A, 348, 89-96.
  • [42] 42. Qin, W., Xu, S., Xu, G., Xie, Q., Wang, C., & Xu, Z. (2013). Preparation of silica gel bound crown ether and its extraction performance towards zirconium and hafnium. Chemical Engineering Journal, 225, 528-534.
  • [43] 43. Sheldon, R. A. (1993). Chirotechnology: industrial synthesis of optically active compounds: CRC press.
  • [44] 44. Shinbo, T., Yamaguchi, T., Nishimura, K., & Sugiura, M. (1987). Chromatographic separation of racemic amino acids by use of chiral crown ether-coated reversed-phase packings. Journal of Chromatography A, 405, 145-153.
  • [45] 45. Steffeck, R. J., Zelechonok, Y., & Gahm, K. H. (2002). Enantioselective separation of racemic secondary amines on a chiral crown ether-based liquid chromatography stationary phase. Journal of Chromatography A, 947, 301-305.
  • [46] 46. Stewart, K. K., & Doherty, R. F. (1973). Resolution of DL-tryptophan by affinity chromatography on bovine-serum albumin-agarose columns. Proceedings of the National Academy of Sciences, 70, 2850-2852.
  • [47] 47. Tang, M., Zhang, J., Zhuang, S., & Liu, W. (2012) Development of chiral stationary phases for high-performance liquid chromatographic separation. Trends İn Analytical Chemistry, 39, 180-194
  • [48] 48. Van Gyseghem, E., Van Hemelryck, S., Daszykowski, M., Questier, F., Massart, D., & Vander Heyden, Y. (2003). Determining orthogonal chromatographic systems prior to the development of methods to characterise impurities in drug substances. Journal of Chromatography A, 988, 77-93.
  • [49] 49. Wainer, I. W., & Chu, Y.-Q. (1988). Use of mobile phase modifiers to alter retention and stereoselectivity on a bovine serum albumin high-performance liquid chromatographic chiral stationary phase. Journal of Chromatography A, 455, 316-322.
  • [50] 50. Yamagishi, A., Taniguchi, M., Imamura, Y., & Sato, H. (1996). Clay column chromatography for optical resolution: selectivities of Lambda-[Ru (phen) 3] 2+ and Lambda-[Ru (bpy) 3] 2+ laponite columns towards 1, 1'-binaphthol. Applied clay science, 11, 1-10.
  • [51] 51. Yilmaz, H., Topal, G., Cakmak, R., & Hosgoren, H. (2010). Resolution of (±)‐β‐methylphenylethylamine by a novel chiral stationary phase for Pirkle‐type column chromatography. Chirality, 22, 252-257.
  • [52] 52. Zhang, Q., Zou, H., Wang, H., & Ni, J. (2000). Synthesis of a silica-bonded bovine serum albumin s-triazine chiral stationary phase for high-performance liquid chromatographic resolution of enantiomers. Journal of Chromatography A, 866, 173-181.
  • [53] 53. Zhou, L., Mao, B., & Ge, Z. (2008). Comparative study of immobilized α1 acid glycoprotein and ovomucoid protein stationary phases for the enantiomeric separation of pharmaceutical compounds. Journal of pharmaceutical and biomedical analysis, 46, 898-906.
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Konular Kimya Mühendisliği
Bölüm Makale
Yazarlar

Ömer Erdoğan

Giray Topal

Yayımlanma Tarihi 25 Aralık 2015
Gönderilme Tarihi 9 Ekim 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 1 Sayı: 2

Kaynak Göster

IEEE Ö. Erdoğan ve G. Topal, “CHIRAL STATIONARY PHASES USED FOR ENANTIOMERIC RESOLUTION”, MEJS, c. 1, sy. 2, ss. 28–41, 2015, doi: 10.23884/mejs.2015.1.2.02.