BibTex RIS Kaynak Göster

BİTKİ PATOJENİ BAKTERİLERDE SALGI SİSTEMLERİ

Yıl 2012, Cilt: 27 Sayı: 1, 48 - 54, 21.01.2012
https://doi.org/10.7161/anajas.2012.v27n1.4854

Öz

Bitki patojeni gram negatif ve pozitif bakteriler bitkilerde hastalığa neden olan efektör proteinlere sahiptir. Bu proteinleri özel bakteriyel salgı sistemleri aracılığıyla bitki hücresi içerisine aktarırlar. Bitki patojeni bakteriler, hücre dışı protein salgılamasını kendi türüne özgü protein taşıma sistemi ile gerçekleştirir. Baz dizisi analizine göre bitki ve hayvan patojeni bakterilerin sahip oldukları hücre dışı salgı sistemleri büyük ölçüde benzerlik göstermektedir. Bu benzerliklere göre bakterilerdeki salgı sistemlerini Gram negatif bakterilerde; Tip I, Tip II, Tip III, Tip IV ve Tip V olmak üzere 5 grupta, Gram pozitif bakterilerde; Tip I, Tip II ve Tip V olmak üzere 3 grupta toplamak mümkündür. Gram negatif bitki patojeni bakterilerin çoğu Tip III Salgı sistemine sahiptir. Bu salgı sistemi hrp (aşırı duyarlılık ve hastalık oluşturma) genleri tarafından kodlanır ve bu genler, hassas bitkilerde hastalık oluşturma, dayanıklı bitkilerde ise aşırı duyarlılık için gereklidir

SECRETION SYSTEMS IN PLANT PATHOGENIC BACTERIA

Plant pathogenic gram-negative and positive bacteria that cause disease in plants have effector proteins. These proteins pass into the plant cell via special bacterial secretion systems. Plant pathogenic bacteria implement extracellular secretion by their own protein transport systems. The base sequence analyses have shown that extracellular secretion systems in plant and animal pathogenic bacteria are to a large extent similar. According to these similarities, secretion systems in gram negative bacteria can be classified into five groups: Type I, Type II, Type III, Type IV and Type V, whereas gram-positive bacteria have three groups: Type I, Type II and Type V. Most of plant pathogenic gram-negative bacteria have type III secretion system. This secretion system is encoded by hrp (for hypersensitive response and pathogenicity) genes, which are so named because they are required for bacteria in order to cause disease in susceptible plants and to elicit the hypersensitive response in resistant plants.

Kaynakça

  • Bartsev, A.V., Deakin, W.J., Boukli, N.M., McAlvin, C.B., Stacey, G., Malnoe, P., Broughton, W.J., Staehelin, C., 2004. NopL, an effector protein of Rhizobium sp. NGR234, thwarts activation of plant defense reactions. Plant Physiol., 134:871-879.
  • Bouley, J., Condemine, G., Shevchik. V.E., 2001. The PDZ domain of OutC ve the N-terminal region of OutD determine the secretion specificity of the type II out pathway of Erwinia chrysanthemi. J. Mol. Biol., 308: 205–219.
  • Burns, D.L., 2003. Type IV transporters of pathogenic bacteria. Curr. Opin. Microbiol. 6:29–34.
  • Christie, P.J., Vogel, J.P., 2000. Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol., 8:354–360.
  • Cossart, P., Jonquieres, R., 2000. Sortase, a universal target for therapeutic agents against gram - positive bacteria? Proc. Natl. Acad. Sci., 97: 5013–5015.
  • Büttner, D., Bonas, U., 2006. Who comes first? How plant pathogenic bacteria orchestrate type III secretion. Current Opinion in Microbiology, 9:193–200.
  • Driessen, A.J., 2001. SecB, a molecular chaperone with two faces. Trends Microbiol. 9:193–196.
  • Economou, A., 1999. Following the leader: bacterial protein export through the Sec pathway. Trends Microbiol. 7:315–320.
  • Eichler, J., Moll, R., 2001. The signal recognition particle of Archaea. Trends Microbiol. 9:130–136.
  • Ghigo, J.M., Wveersman, C., 1992. Cloning, nucleotide sequence ve characterization of the gene encoding the Erwinia chrysanthemi B374 PrtA metalloprotease: a third metalloprotease secreted via a C-terminal secretion signal. Mol. Gen. Genet. 236:135–144.
  • Jin, Q., Hu, W., Brown, G.M., Hart, P., Jones, A.L., He, S.Y., 2001. Visulization of sectered Hrp ve Avr proteins along the Hrp pilus during type III secretion in Erwinia amylovora ve Pseudomonas syringae. Molecular Microbiol., 40(5), 1129-1139.
  • He, S.Y., Nomura, K., Whittam, T.S., 2004. Type III protein secretion mechanism in mammalian ve plant pathogens. Biochim. Biophys. Acta, 1694:181-206.
  • Henderson, I.R., Navarro-Garcia, F., Desvaux, M., Fernveez, R.C., Ala’Aldeen, D., 2004. Type V Protein Secretion Pathway: the Autotransporter Story. Microbiology Mol. Biol. R., 68(4): 692–744.
  • Herskovits, A.A., Bochkareva, E.S., Bibi, E., 2000. New prospects in studying the bacterial signal recognition particle pathway. Mol. Microbiol., 38: 927–939.
  • Lindeberg, M., Salmond, G.P., Collmer, A., 1996. Complementation of deletion mutations in a cloned functional cluster of Erwinia chrysanthemi out genes with Erwinia carotovora out homologues reveals OutC ve OutD as cveidate gatekeepers of species-specific secretion of proteins via the type II pathway. Mol. Microbiol. 20: 175–190.
  • Losada, L.C., Hutcheson, S.W., 2005. Type III secretion chaperones of Pseudomonas syringae protect effectors from Lonassociated degradation. Mol. Microbiol. 55: 41-953.
  • Marie, C., Broughton, W.J., Deakin, W.J., 2001. Rhizobium type III secretion systems: legume charmers or alarmers? Curr. Opin. Plant Biol., 4:336-342.
  • Mazmanian, S.K., Ton-That, H., Schneewind, O., 2001. Sortase-catalysed anchoring of surface proteins to the cell wall of Staphylococcus aureus. Mol. Microbiol. 40:1049–1057.
  • Mori, H., Ho, K., 2001. The Sec protein-translocation pathway. Trends Microbiol,. 9: 494–500.
  • Mudgett, M.B., 2005. New Insights to the Function of Phytopathogenic Bacterial Type III Effectors in Plants. Annu. Rev. Plant Biol., 56:509–31.
  • Parsot, C., Hamiaux, C., Page, A.L., 2003. The various ve varying roles of specific chaperones in type III secretion systems. Curr Opin Microbiol 2003, 6: 7-14.
  • Possot, O.M., Gerard-Vincent, M., Pugsley, A.P., 1999. Membrane association ve multimerization of secreton component pulC. J. Bacteriol., 181: 4004 – 4011.
  • Robinson, C., Bolhuis, A., 2001. Protein targeting by the twin - arginine translocation pathway. Nat. Rev. Mol. Cell. Biol. 2: 350–356.
  • Schechter, L.M., Roberts, K.A., Jamir, Y., Alfano, J.R., Collmer, A., 2004. Pseudomonas syringae type III secretion system targeting signals ve novel effectors studied with a Cya translocation reporter. J. Bacteriol., 186: 543-555.

BİTKİ PATOJENİ BAKTERİLERDE SALGI SİSTEMLERİ

Yıl 2012, Cilt: 27 Sayı: 1, 48 - 54, 21.01.2012
https://doi.org/10.7161/anajas.2012.v27n1.4854

Öz

Bitki patojeni gram negatif ve pozitif bakteriler bitkilerde hastalığa neden olan efektör proteinlere sahiptir. Bu proteinleri özel bakteriyel salgı sistemleri aracılığıyla bitki hücresi içerisine aktarırlar. Bitki patojeni bakteriler, hücre dışı protein salgılamasını kendi türüne özgü protein taşıma sistemi ile gerçekleştirir. Baz dizisi analizine göre bitki ve hayvan patojeni bakterilerin sahip oldukları hücre dışı salgı sistemleri büyük ölçüde benzerlik göstermektedir. Bu benzerliklere göre bakterilerdeki salgı sistemlerini Gram negatif bakterilerde; Tip I, Tip II, Tip III, Tip IV ve Tip V olmak üzere 5 grupta, Gram pozitif bakterilerde; Tip I, Tip II ve Tip V olmak üzere 3 grupta toplamak mümkündür. Gram negatif bitki patojeni bakterilerin çoğu Tip III Salgı sistemine sahiptir. Bu salgı sistemi hrp (aşırı duyarlılık ve hastalık oluşturma) genleri tarafından kodlanır ve bu genler, hassas bitkilerde hastalık oluşturma, dayanıklı bitkilerde ise aşırı duyarlılık için gereklidir

Kaynakça

  • Bartsev, A.V., Deakin, W.J., Boukli, N.M., McAlvin, C.B., Stacey, G., Malnoe, P., Broughton, W.J., Staehelin, C., 2004. NopL, an effector protein of Rhizobium sp. NGR234, thwarts activation of plant defense reactions. Plant Physiol., 134:871-879.
  • Bouley, J., Condemine, G., Shevchik. V.E., 2001. The PDZ domain of OutC ve the N-terminal region of OutD determine the secretion specificity of the type II out pathway of Erwinia chrysanthemi. J. Mol. Biol., 308: 205–219.
  • Burns, D.L., 2003. Type IV transporters of pathogenic bacteria. Curr. Opin. Microbiol. 6:29–34.
  • Christie, P.J., Vogel, J.P., 2000. Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol., 8:354–360.
  • Cossart, P., Jonquieres, R., 2000. Sortase, a universal target for therapeutic agents against gram - positive bacteria? Proc. Natl. Acad. Sci., 97: 5013–5015.
  • Büttner, D., Bonas, U., 2006. Who comes first? How plant pathogenic bacteria orchestrate type III secretion. Current Opinion in Microbiology, 9:193–200.
  • Driessen, A.J., 2001. SecB, a molecular chaperone with two faces. Trends Microbiol. 9:193–196.
  • Economou, A., 1999. Following the leader: bacterial protein export through the Sec pathway. Trends Microbiol. 7:315–320.
  • Eichler, J., Moll, R., 2001. The signal recognition particle of Archaea. Trends Microbiol. 9:130–136.
  • Ghigo, J.M., Wveersman, C., 1992. Cloning, nucleotide sequence ve characterization of the gene encoding the Erwinia chrysanthemi B374 PrtA metalloprotease: a third metalloprotease secreted via a C-terminal secretion signal. Mol. Gen. Genet. 236:135–144.
  • Jin, Q., Hu, W., Brown, G.M., Hart, P., Jones, A.L., He, S.Y., 2001. Visulization of sectered Hrp ve Avr proteins along the Hrp pilus during type III secretion in Erwinia amylovora ve Pseudomonas syringae. Molecular Microbiol., 40(5), 1129-1139.
  • He, S.Y., Nomura, K., Whittam, T.S., 2004. Type III protein secretion mechanism in mammalian ve plant pathogens. Biochim. Biophys. Acta, 1694:181-206.
  • Henderson, I.R., Navarro-Garcia, F., Desvaux, M., Fernveez, R.C., Ala’Aldeen, D., 2004. Type V Protein Secretion Pathway: the Autotransporter Story. Microbiology Mol. Biol. R., 68(4): 692–744.
  • Herskovits, A.A., Bochkareva, E.S., Bibi, E., 2000. New prospects in studying the bacterial signal recognition particle pathway. Mol. Microbiol., 38: 927–939.
  • Lindeberg, M., Salmond, G.P., Collmer, A., 1996. Complementation of deletion mutations in a cloned functional cluster of Erwinia chrysanthemi out genes with Erwinia carotovora out homologues reveals OutC ve OutD as cveidate gatekeepers of species-specific secretion of proteins via the type II pathway. Mol. Microbiol. 20: 175–190.
  • Losada, L.C., Hutcheson, S.W., 2005. Type III secretion chaperones of Pseudomonas syringae protect effectors from Lonassociated degradation. Mol. Microbiol. 55: 41-953.
  • Marie, C., Broughton, W.J., Deakin, W.J., 2001. Rhizobium type III secretion systems: legume charmers or alarmers? Curr. Opin. Plant Biol., 4:336-342.
  • Mazmanian, S.K., Ton-That, H., Schneewind, O., 2001. Sortase-catalysed anchoring of surface proteins to the cell wall of Staphylococcus aureus. Mol. Microbiol. 40:1049–1057.
  • Mori, H., Ho, K., 2001. The Sec protein-translocation pathway. Trends Microbiol,. 9: 494–500.
  • Mudgett, M.B., 2005. New Insights to the Function of Phytopathogenic Bacterial Type III Effectors in Plants. Annu. Rev. Plant Biol., 56:509–31.
  • Parsot, C., Hamiaux, C., Page, A.L., 2003. The various ve varying roles of specific chaperones in type III secretion systems. Curr Opin Microbiol 2003, 6: 7-14.
  • Possot, O.M., Gerard-Vincent, M., Pugsley, A.P., 1999. Membrane association ve multimerization of secreton component pulC. J. Bacteriol., 181: 4004 – 4011.
  • Robinson, C., Bolhuis, A., 2001. Protein targeting by the twin - arginine translocation pathway. Nat. Rev. Mol. Cell. Biol. 2: 350–356.
  • Schechter, L.M., Roberts, K.A., Jamir, Y., Alfano, J.R., Collmer, A., 2004. Pseudomonas syringae type III secretion system targeting signals ve novel effectors studied with a Cya translocation reporter. J. Bacteriol., 186: 543-555.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil TR
Bölüm Derleme
Yazarlar

Hasan Murat Aksoy

Çiğdem Kara Bu kişi benim

Yayımlanma Tarihi 21 Ocak 2012
Yayımlandığı Sayı Yıl 2012 Cilt: 27 Sayı: 1

Kaynak Göster

APA Aksoy, H. M., & Kara, Ç. (2012). BİTKİ PATOJENİ BAKTERİLERDE SALGI SİSTEMLERİ. Anadolu Tarım Bilimleri Dergisi, 27(1), 48-54. https://doi.org/10.7161/anajas.2012.v27n1.4854
AMA Aksoy HM, Kara Ç. BİTKİ PATOJENİ BAKTERİLERDE SALGI SİSTEMLERİ. ANAJAS. Ocak 2012;27(1):48-54. doi:10.7161/anajas.2012.v27n1.4854
Chicago Aksoy, Hasan Murat, ve Çiğdem Kara. “BİTKİ PATOJENİ BAKTERİLERDE SALGI SİSTEMLERİ”. Anadolu Tarım Bilimleri Dergisi 27, sy. 1 (Ocak 2012): 48-54. https://doi.org/10.7161/anajas.2012.v27n1.4854.
EndNote Aksoy HM, Kara Ç (01 Ocak 2012) BİTKİ PATOJENİ BAKTERİLERDE SALGI SİSTEMLERİ. Anadolu Tarım Bilimleri Dergisi 27 1 48–54.
IEEE H. M. Aksoy ve Ç. Kara, “BİTKİ PATOJENİ BAKTERİLERDE SALGI SİSTEMLERİ”, ANAJAS, c. 27, sy. 1, ss. 48–54, 2012, doi: 10.7161/anajas.2012.v27n1.4854.
ISNAD Aksoy, Hasan Murat - Kara, Çiğdem. “BİTKİ PATOJENİ BAKTERİLERDE SALGI SİSTEMLERİ”. Anadolu Tarım Bilimleri Dergisi 27/1 (Ocak 2012), 48-54. https://doi.org/10.7161/anajas.2012.v27n1.4854.
JAMA Aksoy HM, Kara Ç. BİTKİ PATOJENİ BAKTERİLERDE SALGI SİSTEMLERİ. ANAJAS. 2012;27:48–54.
MLA Aksoy, Hasan Murat ve Çiğdem Kara. “BİTKİ PATOJENİ BAKTERİLERDE SALGI SİSTEMLERİ”. Anadolu Tarım Bilimleri Dergisi, c. 27, sy. 1, 2012, ss. 48-54, doi:10.7161/anajas.2012.v27n1.4854.
Vancouver Aksoy HM, Kara Ç. BİTKİ PATOJENİ BAKTERİLERDE SALGI SİSTEMLERİ. ANAJAS. 2012;27(1):48-54.

Cited By

FİTOPATOJEN BAKTERİLERE AİT SALGI SİSTEMLERİNİN GENEL ÖZELLİKLERİ
Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji
Berna BAŞ
https://doi.org/10.18036/estubtdc.599174
Online ISSN: 1308-8769