BibTex RIS Kaynak Göster

MODELING CONVECTIVE WATER FLOW IN REPACKED SAND COLUMNS BY BREAKTHROUGH CURVES OF CHLORIDE

Yıl 2010, Cilt: 25 Sayı: 3, 157 - 163, 20.08.2010

Öz

This paper describes a novel theory for modeling water flow in porous media, such as soils, using breakthrough curves of nonreactive chemicals. Miscible displacement tests of chloride were conducted in repacked sand columns (30.0 cm length and 8.0 cm id.) that were prepared using washed sand particles with diameters of 2.0-1.0, 1.0-0.5, 0.5-0.25, and <0.25 mm. Sands with different particle-size were used to evaluate the theory in different water flow regimes. The resultant BTCs of Cl were used to model the hydraulic conductivity as a function of mobile water content (K(qm)) of the sand columns. Laboratory measured and modeled values of saturated hydraulic conductivity (Ks) were compared to validate the model developed. Correlation analysis of the measured and approximated Ks values resulted in a correlation coefficient of r = 0.91 (P<0.001), suggesting that the model developed successfully utilized the data in BTCs to quantify the water flow in the sand columns evaluated in this study.

Kaynakça

  • Angulo-Jaramillo, R., Gaudet, J.P.,Thony, J.L., Vauclin, M., 1996. Measurement of hydraulic properties and mobile water content of a field soil. Soil Sci. Soc. Am. J. 60: 710-715.
  • Biggar, J.W., Nielsen, D.R., 1962. Miscible displacement: II. Behavior of tracers. Soil Sci. Soc. Am. Proc. 25: 125.
  • Boersma L, Cary, J.W, Evans, D.D., Ferguson, A.H., Gardner, W.H., Hanks, R.J., Jackson, R.D., Kemper, W.D., Miller, D.E., Nielsen, D.R., Uehara, G., 1972. Soil Water. ASA, Madison, WI.
  • Carman, P.C., 1948. Some physical aspects of water flow in porous media. Discuss. Faraday Soc. 3: 72-77.
  • Carman, P.C., 1956. Flow of gases through porous media. Butterworths Scientific Publications, London.
  • Deeks, L.K., Williams, A.G., Dowd, J.F. and Scholefield, D., 1999. Quantification of pore size distribution and movement of solutes through isolated soil blocks. Geoderma90: 65-86
  • Ersahin, S., Papendick, A.R., Smith, J.L. Keller, C.K., and Manoranjan, V.S., 2002. Macropore transport of bromide as influenced by soil structure differences. Geoderma, 108 (3-4): 207-223.
  • Gardner, W.H., 1986. Early soil physics to the mid-20th century. Adv. Soil Sci. 4: 1-101.
  • German, P., Beven, K., 1981. Water flow in soil macropores I. An experimental approach. Eur. J. Soil Sci. 32: 1-13.
  • Hillel, D., 1980. Introduction to Soil Physics. Academic Pres, Inc. San Diego, CA.
  • Jury, A.W., Gardner, W.R., Gardner, W.H., 1991. Soil Physics. Forth Edition, John Willey & Sons, Inc., New York, NY.
  • Kamra, S.K., Lennartz, B., 2005. Quantitative indices to characterize the extent of preferential flow in soil. Environ. Modeling & Software, 20: 903-915.
  • Klute, A., Dirksen, C., 1986. Hydraulic conductivity and diffusivity: Laboratory methods. In: A. Klute, (Editor) Methods of Soil Analysis, Part 1, 2nd edn. Agron. Monogr 9, ASA, Madison, WI, pp 687–734.
  • Kozeny, J., 1927. Über kapillare Leitung des Wassers im Boden. Sb Akad Wiss Wien, Math-naturw Kl Abt IIa, 136: 271-306.
  • Kung, K.S.J., Hanke, J.S.M., Helling, C.S., Kladivko, E.J., Gish, T.J., Steenhuis, T.S., Jaynes, D.B., 2005. Quantifying pore-size spectrum of macropore-type preferential pathways. Soil Sci. Soc. Am. J. 69: 11961208.
  • Nielsen, D.R., Biggar, J.W., 1961. Miscible displacement. I. Experimental information. Soil Sci. Soc. Am. Proc. 25: 1-5.
  • Nielsen, D.R., Biggar, J.W., 1962. Miscible displacement. III. Theoretical considerations. Soil Sci. Soc. Am. Proc. 26: 216-221.
  • Nielsen, D.R., Biggar, J.W., 1963. Miscible displacement. IV. Mixing in glass beads. Soil Sci. Soc. Am. Proc. 27: 10-13.
  • Radulovich, R., Solorzano, E., Sollins, P., 1989. Soil macropore size distribution from water breakthrough curves. Soil Sci. Soc. Am. J. 53: 556-559.
  • Stephens, D.B., 1996. Vadose Zone Hydrology. Lewis Publishers, CRC Press Inc, Boca Raton, FL.
  • Tuli, A., 2002. Pore geometry effect on gaseous diffusion and convective fluid flow in soils. Ph.D. thesis, University of California, Davis.
  • van Genuchten M.Th., Wierenga, P.J., 1977. Mass transfer in sorbing porous media. II. Experimental evaluation with tritium (3H2O). Soil Sci. Soc. Am. J. 41: 272-278.
  • Vogel, H.J., Roth, K., 1998. A new approach for determining effective soil hydraulic functions. Eur. J. Soil Sci. 49: 547-556.

S. ERŞAHİ 1,* T. AŞKI 2 C. TARAKÇIOĞLU2 D.B. ÖZE Ç2 K. KORKMAZ T. KUTLU3

Yıl 2010, Cilt: 25 Sayı: 3, 157 - 163, 20.08.2010

Öz

Kaynakça

  • Angulo-Jaramillo, R., Gaudet, J.P.,Thony, J.L., Vauclin, M., 1996. Measurement of hydraulic properties and mobile water content of a field soil. Soil Sci. Soc. Am. J. 60: 710-715.
  • Biggar, J.W., Nielsen, D.R., 1962. Miscible displacement: II. Behavior of tracers. Soil Sci. Soc. Am. Proc. 25: 125.
  • Boersma L, Cary, J.W, Evans, D.D., Ferguson, A.H., Gardner, W.H., Hanks, R.J., Jackson, R.D., Kemper, W.D., Miller, D.E., Nielsen, D.R., Uehara, G., 1972. Soil Water. ASA, Madison, WI.
  • Carman, P.C., 1948. Some physical aspects of water flow in porous media. Discuss. Faraday Soc. 3: 72-77.
  • Carman, P.C., 1956. Flow of gases through porous media. Butterworths Scientific Publications, London.
  • Deeks, L.K., Williams, A.G., Dowd, J.F. and Scholefield, D., 1999. Quantification of pore size distribution and movement of solutes through isolated soil blocks. Geoderma90: 65-86
  • Ersahin, S., Papendick, A.R., Smith, J.L. Keller, C.K., and Manoranjan, V.S., 2002. Macropore transport of bromide as influenced by soil structure differences. Geoderma, 108 (3-4): 207-223.
  • Gardner, W.H., 1986. Early soil physics to the mid-20th century. Adv. Soil Sci. 4: 1-101.
  • German, P., Beven, K., 1981. Water flow in soil macropores I. An experimental approach. Eur. J. Soil Sci. 32: 1-13.
  • Hillel, D., 1980. Introduction to Soil Physics. Academic Pres, Inc. San Diego, CA.
  • Jury, A.W., Gardner, W.R., Gardner, W.H., 1991. Soil Physics. Forth Edition, John Willey & Sons, Inc., New York, NY.
  • Kamra, S.K., Lennartz, B., 2005. Quantitative indices to characterize the extent of preferential flow in soil. Environ. Modeling & Software, 20: 903-915.
  • Klute, A., Dirksen, C., 1986. Hydraulic conductivity and diffusivity: Laboratory methods. In: A. Klute, (Editor) Methods of Soil Analysis, Part 1, 2nd edn. Agron. Monogr 9, ASA, Madison, WI, pp 687–734.
  • Kozeny, J., 1927. Über kapillare Leitung des Wassers im Boden. Sb Akad Wiss Wien, Math-naturw Kl Abt IIa, 136: 271-306.
  • Kung, K.S.J., Hanke, J.S.M., Helling, C.S., Kladivko, E.J., Gish, T.J., Steenhuis, T.S., Jaynes, D.B., 2005. Quantifying pore-size spectrum of macropore-type preferential pathways. Soil Sci. Soc. Am. J. 69: 11961208.
  • Nielsen, D.R., Biggar, J.W., 1961. Miscible displacement. I. Experimental information. Soil Sci. Soc. Am. Proc. 25: 1-5.
  • Nielsen, D.R., Biggar, J.W., 1962. Miscible displacement. III. Theoretical considerations. Soil Sci. Soc. Am. Proc. 26: 216-221.
  • Nielsen, D.R., Biggar, J.W., 1963. Miscible displacement. IV. Mixing in glass beads. Soil Sci. Soc. Am. Proc. 27: 10-13.
  • Radulovich, R., Solorzano, E., Sollins, P., 1989. Soil macropore size distribution from water breakthrough curves. Soil Sci. Soc. Am. J. 53: 556-559.
  • Stephens, D.B., 1996. Vadose Zone Hydrology. Lewis Publishers, CRC Press Inc, Boca Raton, FL.
  • Tuli, A., 2002. Pore geometry effect on gaseous diffusion and convective fluid flow in soils. Ph.D. thesis, University of California, Davis.
  • van Genuchten M.Th., Wierenga, P.J., 1977. Mass transfer in sorbing porous media. II. Experimental evaluation with tritium (3H2O). Soil Sci. Soc. Am. J. 41: 272-278.
  • Vogel, H.J., Roth, K., 1998. A new approach for determining effective soil hydraulic functions. Eur. J. Soil Sci. 49: 547-556.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Toprak Bilimi ve Bitki Besleme
Yazarlar

S. Erşahin Bu kişi benim

T. Aşkın Bu kişi benim

C. Tarakçıoğlu Bu kişi benim

D.B. Özenç Bu kişi benim

K. Korkmaz Bu kişi benim

T. Kutlu Bu kişi benim

Yayımlanma Tarihi 20 Ağustos 2010
Yayımlandığı Sayı Yıl 2010 Cilt: 25 Sayı: 3

Kaynak Göster

APA Erşahin, S., Aşkın, T., Tarakçıoğlu, C., Özenç, D., vd. (2010). MODELING CONVECTIVE WATER FLOW IN REPACKED SAND COLUMNS BY BREAKTHROUGH CURVES OF CHLORIDE. Anadolu Tarım Bilimleri Dergisi, 25(3), 157-163. https://doi.org/10.7161/anajas.2010.25.3.157-163
AMA Erşahin S, Aşkın T, Tarakçıoğlu C, Özenç D, Korkmaz K, Kutlu T. MODELING CONVECTIVE WATER FLOW IN REPACKED SAND COLUMNS BY BREAKTHROUGH CURVES OF CHLORIDE. ANAJAS. Ağustos 2010;25(3):157-163. doi:10.7161/anajas.2010.25.3.157-163
Chicago Erşahin, S., T. Aşkın, C. Tarakçıoğlu, D.B. Özenç, K. Korkmaz, ve T. Kutlu. “MODELING CONVECTIVE WATER FLOW IN REPACKED SAND COLUMNS BY BREAKTHROUGH CURVES OF CHLORIDE”. Anadolu Tarım Bilimleri Dergisi 25, sy. 3 (Ağustos 2010): 157-63. https://doi.org/10.7161/anajas.2010.25.3.157-163.
EndNote Erşahin S, Aşkın T, Tarakçıoğlu C, Özenç D, Korkmaz K, Kutlu T (01 Ağustos 2010) MODELING CONVECTIVE WATER FLOW IN REPACKED SAND COLUMNS BY BREAKTHROUGH CURVES OF CHLORIDE. Anadolu Tarım Bilimleri Dergisi 25 3 157–163.
IEEE S. Erşahin, T. Aşkın, C. Tarakçıoğlu, D. Özenç, K. Korkmaz, ve T. Kutlu, “MODELING CONVECTIVE WATER FLOW IN REPACKED SAND COLUMNS BY BREAKTHROUGH CURVES OF CHLORIDE”, ANAJAS, c. 25, sy. 3, ss. 157–163, 2010, doi: 10.7161/anajas.2010.25.3.157-163.
ISNAD Erşahin, S. vd. “MODELING CONVECTIVE WATER FLOW IN REPACKED SAND COLUMNS BY BREAKTHROUGH CURVES OF CHLORIDE”. Anadolu Tarım Bilimleri Dergisi 25/3 (Ağustos 2010), 157-163. https://doi.org/10.7161/anajas.2010.25.3.157-163.
JAMA Erşahin S, Aşkın T, Tarakçıoğlu C, Özenç D, Korkmaz K, Kutlu T. MODELING CONVECTIVE WATER FLOW IN REPACKED SAND COLUMNS BY BREAKTHROUGH CURVES OF CHLORIDE. ANAJAS. 2010;25:157–163.
MLA Erşahin, S. vd. “MODELING CONVECTIVE WATER FLOW IN REPACKED SAND COLUMNS BY BREAKTHROUGH CURVES OF CHLORIDE”. Anadolu Tarım Bilimleri Dergisi, c. 25, sy. 3, 2010, ss. 157-63, doi:10.7161/anajas.2010.25.3.157-163.
Vancouver Erşahin S, Aşkın T, Tarakçıoğlu C, Özenç D, Korkmaz K, Kutlu T. MODELING CONVECTIVE WATER FLOW IN REPACKED SAND COLUMNS BY BREAKTHROUGH CURVES OF CHLORIDE. ANAJAS. 2010;25(3):157-63.
Online ISSN: 1308-8769