Araştırma Makalesi
BibTex RIS Kaynak Göster

Enzymes During Pregnancy: Cytosolic Carbonic Anhydrase, Catalase, Paraoxonase 1 and Xanthine Oxidase Levels

Yıl 2019, Cilt: 4 Sayı: 1, 79 - 93, 31.03.2019
https://doi.org/10.26453/otjhs.409112

Öz

Pregnancy is a physiological condition
which requires high energy and therefore more oxygen for many body functions.
This increase in oxygen and energy requirements leads to an increase in
oxidative stress. High energy and increased oxygen are needed in the duration
of pregnancy - 1st, 2nd and 3rd trimesters. There can be significant
correlations between biochemical changes and some enzyme activities. This study
investigates the activities of cytosolic CA, CAT, PON 1 and XO enzymes during
pregnancy. The antioxidant enzymes’ activities were measured
spectrophotometrically using the UV assay method on a Biotek. Cytosolic CA
ctivity was measured by the hydration of CO2 in accordance with Wilbur and
Anderson's method. According to the findings of this study, CAT (p=0.048) and
cytosolic CA (p<0.001) activities decreased during pregnancy whereas both
PON 1 (p<0.001) and XO (p=0.016) activity levels were higher in pregnancy.
However, there were no statistically significant difference between 1st, 2nd
and 3rd trimesters of pregnancy in terms of cytosolic CA, CAT, PON 1 or XO enzyme
levels (p>0.05).Different antioxidant enzymes' activities may increase or
decrease during pregnancy. The decrease of CA enzyme levels in the group
consisting pregnants may have significant impact on biochemical and
physiological aspect of fetal and maternal health.

Kaynakça

  • 1. Stefanović A, Ardalic D, Kotur-Stevuljević J, et al. Longitudinal changes in PON1 activities, PON1 phenotype distribution and oxidative status throughout normal pregnancy. Reprod Toxicol. 2012; 33(1): 20-26.
  • 2. Gitto E, Reiter RJ, Karbownik M, et al. Causes of oxidative stress in the pre-and perinatal period. Biol Neonate. 2002; 81(3): 146-157.
  • 3. Al-Gubory KH, Fowler PA, Garrel C. The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. Int J Biochem Cell Biol. 2010; 42(10): 1634-1650.
  • 4. Little RE, Gladen BC. Levels of lipid peroxides in uncomplicated pregnancy: a review of the literature. Reprod Toxicol. 1999; 13(5): 347-352.
  • 5. Verit FF, Erel O, Sav M, Celik N, Cadirci D. Oxidative stress is associated with clinical severity of nausea and vomiting of pregnancy. Am J Perinatol. 2007; 24(9): 545-548.
  • 6. Natarajan V. Oxidants and signal transduction in vascular endothelium. J Lab Clin Med. 1995; 125(1): 26-37.
  • 7. Armstrong D. Free Radical and Antioxidant Protocols. New Jersey, USA: Humana Press; 1998.
  • 8. Ozensoy O, Kockar F, Arslan O, Isik S, Supuran CT, Lyon M. An evaluation of cytosolic erythrocyte carbonic anhydrase and catalase in carcinoma patients: An elevation of carbonic anhydrase activity. Clin Biochem. 2006; 39(8): 804-809.
  • 9. Cengiz FP, Beyaztas S, Gokce B, Arslan O, Guler OO. Catalase, carbonic anhydrase and xanthine oxidase activities in patients with mycosis fungoides. J Enzyme Inhib Med Chem. 2015; 30(2): 212-215.
  • 10. Kaya MO, Sinan S, Güler ÖÖ, Arslan O. Is there a relation between genetic susceptibility with cancer? A study about paraoxanase (PON1) enzyme activity in breast cancer cases. J Enzyme Inhib Med Chem. 2016; 31(6): 1349-1355.
  • 11. Bilen Ç, Beyaztaş S, Arslan O, Güler ÖÖ. Investigation of heavy metal effects on immobilized paraoxanase by glutaraldehyde. . J Enzyme Inhib Med Chem. 2013; 28(3): 440-446.
  • 12. Abuhandan M, Cakmak A, Taskın A, Karakaya E, Kocyigit A, Kılıc H. The effect of age on the paraoxonase and arylesterase activity of pregnant mothers and their infants. J Clin Lab Anal. 2012; 26(4): 302-306.
  • 13. Kaya MO, Kaya Y, Çelik G, Kurtuluş F, Arslan O, Güler ÖÖ. Differential in vitro inhibition studies of some cerium vanadate derivatives on xanthine oxidase. J Enzyme Inhib Med Chem. 2015; 30(2): 286-289.
  • 14. Brondino CD, Romão MJ, Moura I, Moura JJ. Molybdenum and tungsten enzymes: the xanthine oxidase family. Curr Opin Chem Biol. 2006; 10(2): 109-114.
  • 15. Beyaztaş S, Arslan O. Purification of xanthine oxidase from bovine milk by affinity chromatography with a novel gel. J Enzyme Inhib Med Chem. 2015; 30(3): 442-447.
  • 16. Sathisha KR, Khanum SA, Chandra JN, et al. Synthesis and xanthine oxidase inhibitory activity of 7-methyl-2-(phenoxymethyl)-5H-[1, 3, 4] thiadiazolo [3, 2-a] pyrimidin-5-one derivatives. Bioorg Med Chem. 2011; 19(1): 211-220.
  • 17. Bytyqi-Damoni A, Genç H, Zengin M, Beyaztas S, Gençer N, Arslan O. In vitro effect of novel β-lactam compounds on xanthine oxidase enzyme activity. Artif Cells Blood Substit Immobil Biotechnol. 2012; 40(6): 369-377.
  • 18. Isık H, Aynıoglu O, Tımur H, et al. Is Xanthine oxidase activity in polycystic ovary syndrome associated with inflammatory and cardiovascular risk factors?. J Reprod Immunol. 2016; 116: 98-103.
  • 19. Miric DJ, Kisic BM, Filipovic-Danic S, et. al. Xanthine oxidase activity in type 2 diabetes mellitus patients with and without diabetic peripheral neuropathy. J Diabetes Res. 2016; 2016: 4370490.
  • 20. Feoli AM, Macagnan FE, Piovesan CH, Bodanese LC, Siqueira IR. Xanthine oxidase activity is associated with risk factors for cardiovascular disease and inflammatory and oxidative status markers in metabolic syndrome: effects of a single exercise session. Oxid Med Cell Longev 2014; 2014: 587083.
  • 21. Güleç M, Akın H, Yüce HH, et al. Adenosine deaminase and xanthine oxidase activities in bladder washing fluid from patients with bladder cancer: a preliminary study. Clin Biochem. 2003; 36(3): 193-196.
  • 22. Alterio V, Di Fiore A, D’Ambrosio K, Supuran CT, De Simone G. Multiple binding modes of inhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms?. Chem Rev. 2012; 112(8):4421-4468.
  • 23. Chegwidden WR, Carter, ND. Introduction to the carbonic anhydrases. EXS 2000; 90:13-28.
  • 24. Thiry A, Dogné JM, Masereel B, Supuran CT. Targeting tumor-associated carbonic anhydrase IX in cancer therapy. Trends Pharmacol Sci. 2006; 27(11):566-573. 25. Tashian RE, Hewett-Emmett D, Goodman N. On the evolution and genetics of carbonic anhydrases I, II, and III, Isozyme. Isozymes Curr Top Biol Med Res. 1983; 7:79-100.
  • 26. Imtaiyaz Hassan M, Shajee B, Waheed A, Ahmad F, Sly WS. Structure, function and applications of carbonic anhydrase isozymes. Bioorg Med Chem. 2013; 21(6):1570-1582.
  • 27. Silverman DN, Mckenna R. Solvent-mediated proton transfer in catalysis by carbonic anhydrase. Acc Chem Res. 2007; 40(8):669-675.
  • 28. Tashian RE. Genetics of the mammalian carbonic anhydrases. Adv Genet. 1992; 30:321-356.
  • 29. Wilbur KM, Anderson NG. Electrometric and colorimetric determination of carbonic anhydrase. J Biol Chem 1948; 176:147-154.
  • 30. Gan KN, Smolen AN, Eckerson HW, La Du BN. Purification of human serum paraoxonase/arylesterase. Evidence for one esterase catalyzing both activities. Drug Metab Dispos. 1991; 19(1): 100-106.
  • 31. Arslan M, Gencer N, Arslan O, Guler OO. In vitro efficacy of some cattle drugs on bovine serum paraoxonase 1 (PON1) activity. J Enzyme Inhib Med Chem. 2012; 27(5): 722-729.
  • 32. Roussos GG. Xanthine oxidase from bovine small intestine. Methods Enzymol. 1967; 12: 5-16.
  • 33. Saker M, Mokhtari NS, Merzouk SA, Merzouk H, Belarbi B, Narce M. Oxidant and antioxidant status in mothers and their newborns according to birthweight. Eur J Obstet Gynecol Reprod Biol. 2008; 141(2): 95-99.
  • 34. Negara I, Surya IG, Sanjaya H, Anantasika AA, Mahardika I. Lower Serum Catalase Level is Associated with Preterm Labor among Pregnant Women at Sanglah Hospital Denpasar, Bali-Indonesia. Balı Medıcal Journal 2016; 5.
  • 35. Ademuyiwa O, Odusoga OL, Adebawo OO, Ugbaja RN. Endogenous antioxidant defences in plasma and erythrocytes of pregnant women during different trimesters of pregnancy. Acta Obstet Gynecol Scand. 2007; 86(10): 1175-1180.
  • 36. Djordjevic A, Spasic S, Jovanovic-Galovic A, Djordjevic R, Grubor-Lajsic G. Oxidative stress in diabetic pregnancy: SOD, CAT and GSH-Px activity and lipid peroxidation products. J Matern Fetal Neonatal Med. 2004; 16(6): 367-372.
  • 37. Yüksel S, Yiğit AA. Malondialdehyde and nitric oxide levels and catalase, superoxide dismutase, and glutathione peroxidase levels in maternal blood during different trimesters of pregnancy and in the cord blood of newborns. Turk J Med Sci. 2015; 45(2): 454-459.
  • 38. Góth L, Tóth Z, Tarnai I, Bérces M, Török P, Bigler WN. Blood catalase activity in gestational diabetes is decreased but not associated with pregnancy complications. Clin Chem. 2005; 51(12): 2401-2404.
  • 39. Lekharu R, Pradhan R, Sharma R, Sharma D. A Study of Lipid Peroxidation and Antioxidant Enzymes in Normal Pregnancy. GCSMC J Med Sci 2014; 3: 55-56.
  • 40. Patil SB, Kodliwadmath MV, Kodliwadmath SM. Study of oxidative stress and enzymatic antioxidants in normal pregnancy. Indian J Clin Biochem. 2007; 22(1): 135-137.
  • 41. Patra SK, Singh K, Singh R. Paraoxonase 1: a better atherosclerotic risk predictor than HDL in type 2 diabetes mellitus. Diabetes Metab Syndr. 2013; 7(2): 108-111.
  • 42. FÅhraeus L, Larsson-Cohn UL, Wallentin L. Plasma lipoproteins including high density lipoprotein subfractions during normal pregnancy. Obstet Gynecol. 1985; 66(4): 468-472.
  • 43. Stone NJ. Secondary causes of hyperlipidemia. Med Clin North Am. 1994; 78(1): 117-141.
  • 44. Kourtis A, Gkiomisi A, Mouzaki M, et. al. Apelin levels in normal pregnancy. Clin Endocrinol (Oxf). 2011; 75(3): 367-371.
  • 45. Vlachos GD, Bartzeliotou A, Schulpis KH, et. al. Maternal–neonatal serum paraoxonase 1 activity in relation to the mode of delivery. Clin Biochem. 2006; 39(9): 923-928.
  • 46. Roy AC, Loke DF, Saha N, Viegas O, Tay JS, Ratnam SS. Interrelationships of serum paraoxonase, serum lipids and apolipoproteins in normal pregnancy. Gynecol Obstet Invest. 1994; 38(1): 10-13.
  • 47. Stevens CR, Millar TM, Clinch JG, Kanczler JM, Bodamyali T, Blake DR. Antibacterial properties of xanthine oxidase in human milk. The Lancet. 2000; 356(9232): 829-830.
  • 48. Tsutsumi K, Kotegawa T, Matsuki S, et al. The effect of pregnancy on cytochrome P4501A2, xanthine oxidase, and N‐acetyltransferase activities in humans. Clin Pharmacol Ther. 2001; 70(2): 121-125.
  • 49. Uesato T. Carbonic Anhydrase Levels of Erythrocytes in Normal Pregnancy. Tohoku J. Exp. Med 1980;130(2):153-158.
  • 50. Shepherd JN, Spencer N. Human carbonic anhydrase I concentration in erythrocytes during pregnancy and the menstrual cycle. Clin Biochem 1985;18(6):369-372.

Gebelikte Enzimler: Sitozolik Karbonik Anhidraz, Katalaz, Paraoksonaz 1 ve Ksantin Oksidaz Düzeyleri

Yıl 2019, Cilt: 4 Sayı: 1, 79 - 93, 31.03.2019
https://doi.org/10.26453/otjhs.409112

Öz

Gebelik, birçok vücut fonksiyonu için
yüksek enerji ve dolayısıyla daha fazla oksijen gerektiren fizyolojik bir
durumdur. Oksijen ve enerji gereksinimlerindeki bu artış, oksidatif streste
artışa neden olmaktadır. Gebeliğin 1., 2. ve 3. trimesterlarında yüksek enerji
ve artmış oksijen ihtiyacı duyulur. Bu biyokimyasal değişiklikler ile bazı
enzim aktiviteleri arasında anlamlı ilişki olabilir. Yapılan bu çalışmada
gebelik sırasında sitozolik CA, CAT, PON 1 ve XO enzim aktiviteleri
araştırılmıştır. Antioksidan enzimlerin aktiviteleri Biotek cihazı ile
spektrofotometrik olarak ölçülmüştür. Sitozolik CA aktivitesi, Wilbur ve
Anderson yöntemine göre CO2'nin hidratasyonu ile ölçülmüştür. Bulgulara göre,
gebelikte CAT (p=0,048) ve sitozolik CA (p<0,001) enzim aktiviteleri azalırken,
PON 1 (p<0,001) ve XO (p=0,016) enzim aktiviteleri artmıştır. Bununla
birlikte, sitozolik CA, CAT, PON 1 veya XO enzim düzeyleri açısından 1., 2. ve
3. trimesterlar arasında istatistiksel olarak anlamlı bir fark saptanamamıştır
(p>0,05). Farklı antioksidan enzim aktiviteleri hamilelikte artabilir veya
azalabilir. Ayrıca, gebe grubunda sitozolik CA enzim düzeyleri azalmasının
fetal ve maternal sağlığın biyokimyasal ve fizyolojik yönleri üzerinde önemli
etkisi olabilir.

Kaynakça

  • 1. Stefanović A, Ardalic D, Kotur-Stevuljević J, et al. Longitudinal changes in PON1 activities, PON1 phenotype distribution and oxidative status throughout normal pregnancy. Reprod Toxicol. 2012; 33(1): 20-26.
  • 2. Gitto E, Reiter RJ, Karbownik M, et al. Causes of oxidative stress in the pre-and perinatal period. Biol Neonate. 2002; 81(3): 146-157.
  • 3. Al-Gubory KH, Fowler PA, Garrel C. The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. Int J Biochem Cell Biol. 2010; 42(10): 1634-1650.
  • 4. Little RE, Gladen BC. Levels of lipid peroxides in uncomplicated pregnancy: a review of the literature. Reprod Toxicol. 1999; 13(5): 347-352.
  • 5. Verit FF, Erel O, Sav M, Celik N, Cadirci D. Oxidative stress is associated with clinical severity of nausea and vomiting of pregnancy. Am J Perinatol. 2007; 24(9): 545-548.
  • 6. Natarajan V. Oxidants and signal transduction in vascular endothelium. J Lab Clin Med. 1995; 125(1): 26-37.
  • 7. Armstrong D. Free Radical and Antioxidant Protocols. New Jersey, USA: Humana Press; 1998.
  • 8. Ozensoy O, Kockar F, Arslan O, Isik S, Supuran CT, Lyon M. An evaluation of cytosolic erythrocyte carbonic anhydrase and catalase in carcinoma patients: An elevation of carbonic anhydrase activity. Clin Biochem. 2006; 39(8): 804-809.
  • 9. Cengiz FP, Beyaztas S, Gokce B, Arslan O, Guler OO. Catalase, carbonic anhydrase and xanthine oxidase activities in patients with mycosis fungoides. J Enzyme Inhib Med Chem. 2015; 30(2): 212-215.
  • 10. Kaya MO, Sinan S, Güler ÖÖ, Arslan O. Is there a relation between genetic susceptibility with cancer? A study about paraoxanase (PON1) enzyme activity in breast cancer cases. J Enzyme Inhib Med Chem. 2016; 31(6): 1349-1355.
  • 11. Bilen Ç, Beyaztaş S, Arslan O, Güler ÖÖ. Investigation of heavy metal effects on immobilized paraoxanase by glutaraldehyde. . J Enzyme Inhib Med Chem. 2013; 28(3): 440-446.
  • 12. Abuhandan M, Cakmak A, Taskın A, Karakaya E, Kocyigit A, Kılıc H. The effect of age on the paraoxonase and arylesterase activity of pregnant mothers and their infants. J Clin Lab Anal. 2012; 26(4): 302-306.
  • 13. Kaya MO, Kaya Y, Çelik G, Kurtuluş F, Arslan O, Güler ÖÖ. Differential in vitro inhibition studies of some cerium vanadate derivatives on xanthine oxidase. J Enzyme Inhib Med Chem. 2015; 30(2): 286-289.
  • 14. Brondino CD, Romão MJ, Moura I, Moura JJ. Molybdenum and tungsten enzymes: the xanthine oxidase family. Curr Opin Chem Biol. 2006; 10(2): 109-114.
  • 15. Beyaztaş S, Arslan O. Purification of xanthine oxidase from bovine milk by affinity chromatography with a novel gel. J Enzyme Inhib Med Chem. 2015; 30(3): 442-447.
  • 16. Sathisha KR, Khanum SA, Chandra JN, et al. Synthesis and xanthine oxidase inhibitory activity of 7-methyl-2-(phenoxymethyl)-5H-[1, 3, 4] thiadiazolo [3, 2-a] pyrimidin-5-one derivatives. Bioorg Med Chem. 2011; 19(1): 211-220.
  • 17. Bytyqi-Damoni A, Genç H, Zengin M, Beyaztas S, Gençer N, Arslan O. In vitro effect of novel β-lactam compounds on xanthine oxidase enzyme activity. Artif Cells Blood Substit Immobil Biotechnol. 2012; 40(6): 369-377.
  • 18. Isık H, Aynıoglu O, Tımur H, et al. Is Xanthine oxidase activity in polycystic ovary syndrome associated with inflammatory and cardiovascular risk factors?. J Reprod Immunol. 2016; 116: 98-103.
  • 19. Miric DJ, Kisic BM, Filipovic-Danic S, et. al. Xanthine oxidase activity in type 2 diabetes mellitus patients with and without diabetic peripheral neuropathy. J Diabetes Res. 2016; 2016: 4370490.
  • 20. Feoli AM, Macagnan FE, Piovesan CH, Bodanese LC, Siqueira IR. Xanthine oxidase activity is associated with risk factors for cardiovascular disease and inflammatory and oxidative status markers in metabolic syndrome: effects of a single exercise session. Oxid Med Cell Longev 2014; 2014: 587083.
  • 21. Güleç M, Akın H, Yüce HH, et al. Adenosine deaminase and xanthine oxidase activities in bladder washing fluid from patients with bladder cancer: a preliminary study. Clin Biochem. 2003; 36(3): 193-196.
  • 22. Alterio V, Di Fiore A, D’Ambrosio K, Supuran CT, De Simone G. Multiple binding modes of inhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms?. Chem Rev. 2012; 112(8):4421-4468.
  • 23. Chegwidden WR, Carter, ND. Introduction to the carbonic anhydrases. EXS 2000; 90:13-28.
  • 24. Thiry A, Dogné JM, Masereel B, Supuran CT. Targeting tumor-associated carbonic anhydrase IX in cancer therapy. Trends Pharmacol Sci. 2006; 27(11):566-573. 25. Tashian RE, Hewett-Emmett D, Goodman N. On the evolution and genetics of carbonic anhydrases I, II, and III, Isozyme. Isozymes Curr Top Biol Med Res. 1983; 7:79-100.
  • 26. Imtaiyaz Hassan M, Shajee B, Waheed A, Ahmad F, Sly WS. Structure, function and applications of carbonic anhydrase isozymes. Bioorg Med Chem. 2013; 21(6):1570-1582.
  • 27. Silverman DN, Mckenna R. Solvent-mediated proton transfer in catalysis by carbonic anhydrase. Acc Chem Res. 2007; 40(8):669-675.
  • 28. Tashian RE. Genetics of the mammalian carbonic anhydrases. Adv Genet. 1992; 30:321-356.
  • 29. Wilbur KM, Anderson NG. Electrometric and colorimetric determination of carbonic anhydrase. J Biol Chem 1948; 176:147-154.
  • 30. Gan KN, Smolen AN, Eckerson HW, La Du BN. Purification of human serum paraoxonase/arylesterase. Evidence for one esterase catalyzing both activities. Drug Metab Dispos. 1991; 19(1): 100-106.
  • 31. Arslan M, Gencer N, Arslan O, Guler OO. In vitro efficacy of some cattle drugs on bovine serum paraoxonase 1 (PON1) activity. J Enzyme Inhib Med Chem. 2012; 27(5): 722-729.
  • 32. Roussos GG. Xanthine oxidase from bovine small intestine. Methods Enzymol. 1967; 12: 5-16.
  • 33. Saker M, Mokhtari NS, Merzouk SA, Merzouk H, Belarbi B, Narce M. Oxidant and antioxidant status in mothers and their newborns according to birthweight. Eur J Obstet Gynecol Reprod Biol. 2008; 141(2): 95-99.
  • 34. Negara I, Surya IG, Sanjaya H, Anantasika AA, Mahardika I. Lower Serum Catalase Level is Associated with Preterm Labor among Pregnant Women at Sanglah Hospital Denpasar, Bali-Indonesia. Balı Medıcal Journal 2016; 5.
  • 35. Ademuyiwa O, Odusoga OL, Adebawo OO, Ugbaja RN. Endogenous antioxidant defences in plasma and erythrocytes of pregnant women during different trimesters of pregnancy. Acta Obstet Gynecol Scand. 2007; 86(10): 1175-1180.
  • 36. Djordjevic A, Spasic S, Jovanovic-Galovic A, Djordjevic R, Grubor-Lajsic G. Oxidative stress in diabetic pregnancy: SOD, CAT and GSH-Px activity and lipid peroxidation products. J Matern Fetal Neonatal Med. 2004; 16(6): 367-372.
  • 37. Yüksel S, Yiğit AA. Malondialdehyde and nitric oxide levels and catalase, superoxide dismutase, and glutathione peroxidase levels in maternal blood during different trimesters of pregnancy and in the cord blood of newborns. Turk J Med Sci. 2015; 45(2): 454-459.
  • 38. Góth L, Tóth Z, Tarnai I, Bérces M, Török P, Bigler WN. Blood catalase activity in gestational diabetes is decreased but not associated with pregnancy complications. Clin Chem. 2005; 51(12): 2401-2404.
  • 39. Lekharu R, Pradhan R, Sharma R, Sharma D. A Study of Lipid Peroxidation and Antioxidant Enzymes in Normal Pregnancy. GCSMC J Med Sci 2014; 3: 55-56.
  • 40. Patil SB, Kodliwadmath MV, Kodliwadmath SM. Study of oxidative stress and enzymatic antioxidants in normal pregnancy. Indian J Clin Biochem. 2007; 22(1): 135-137.
  • 41. Patra SK, Singh K, Singh R. Paraoxonase 1: a better atherosclerotic risk predictor than HDL in type 2 diabetes mellitus. Diabetes Metab Syndr. 2013; 7(2): 108-111.
  • 42. FÅhraeus L, Larsson-Cohn UL, Wallentin L. Plasma lipoproteins including high density lipoprotein subfractions during normal pregnancy. Obstet Gynecol. 1985; 66(4): 468-472.
  • 43. Stone NJ. Secondary causes of hyperlipidemia. Med Clin North Am. 1994; 78(1): 117-141.
  • 44. Kourtis A, Gkiomisi A, Mouzaki M, et. al. Apelin levels in normal pregnancy. Clin Endocrinol (Oxf). 2011; 75(3): 367-371.
  • 45. Vlachos GD, Bartzeliotou A, Schulpis KH, et. al. Maternal–neonatal serum paraoxonase 1 activity in relation to the mode of delivery. Clin Biochem. 2006; 39(9): 923-928.
  • 46. Roy AC, Loke DF, Saha N, Viegas O, Tay JS, Ratnam SS. Interrelationships of serum paraoxonase, serum lipids and apolipoproteins in normal pregnancy. Gynecol Obstet Invest. 1994; 38(1): 10-13.
  • 47. Stevens CR, Millar TM, Clinch JG, Kanczler JM, Bodamyali T, Blake DR. Antibacterial properties of xanthine oxidase in human milk. The Lancet. 2000; 356(9232): 829-830.
  • 48. Tsutsumi K, Kotegawa T, Matsuki S, et al. The effect of pregnancy on cytochrome P4501A2, xanthine oxidase, and N‐acetyltransferase activities in humans. Clin Pharmacol Ther. 2001; 70(2): 121-125.
  • 49. Uesato T. Carbonic Anhydrase Levels of Erythrocytes in Normal Pregnancy. Tohoku J. Exp. Med 1980;130(2):153-158.
  • 50. Shepherd JN, Spencer N. Human carbonic anhydrase I concentration in erythrocytes during pregnancy and the menstrual cycle. Clin Biochem 1985;18(6):369-372.
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Kurumları Yönetimi
Bölüm Araştırma Makalesi
Yazarlar

Ender Şimşek 0000-0001-6635-4125

Ayşe Filiz Yavuz Bu kişi benim 0000-0003-3699-7757

Emine Terzi Bu kişi benim 0000-0001-9106-3848

Tuğba Kevser Uysal Bu kişi benim 0000-0002-5684-6641

Beyza Ecem Öz Bedir Bu kişi benim 0000-0002-0596-834X

Emin Haqverdiyev Bu kişi benim 0000-0001-7562-9696

Özen Özensoy Güler 0000-0003-0389-9624

Yayımlanma Tarihi 31 Mart 2019
Gönderilme Tarihi 12 Temmuz 2018
Kabul Tarihi 18 Eylül 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 4 Sayı: 1

Kaynak Göster

AMA Şimşek E, Yavuz AF, Terzi E, Uysal TK, Öz Bedir BE, Haqverdiyev E, Özensoy Güler Ö. Enzymes During Pregnancy: Cytosolic Carbonic Anhydrase, Catalase, Paraoxonase 1 and Xanthine Oxidase Levels. OTSBD. Mart 2019;4(1):79-93. doi:10.26453/otjhs.409112

Creative Commons Lisansı

Online Türk Sağlık Bilimleri Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.


Makale gönderme süreçleri ve "Telif Hakkı Devir Formu" hakkında yardım almak için tıklayınız.