BibTex RIS Kaynak Göster

THE EFFECT OF AGGREGATE MAXIMUM SIZE ON IMPACT RESISTANCE OF FIBER REINFORCED CONCRETE

Yıl 2008, Cilt: 14 Sayı: 3, 237 - 245, 01.03.2008

Öz

In this study, the effect of maximum size of aggregate on impact resistance of fiber reinforced concrete were investigated. Using crushed limestone aggregate with 10, 15, 20 and 25 mm of maximum size, 8 different normal-steel fiber reinforced concretes were produced. Water/cement ratio and cement dosage of concrete mixtures are 0.5 and 400 kg/m3, respectively. Hooked-end bundled steel fibers with l/d ratio of 65 and 1.0% fiber volume were used in fiber concretes. After 28 days standard curing, compressive strength, split tensile strength and ultrasonic pulse velocity tests were performed on 150/150/150 mm cube specimens. Additionally, impact resistances of concrete specimens were determined using impact test apparatus described in ACI 544.3R-93. 150x300 mm cylinders were prepared for impact resistance tests. After 28 days curing, these specimens were cut and 150x64 mm special discs were prepared. Impact resistance test were performed on these special discs. Experimental results were evaluated corresponding to presence of steel fiber and aggregate maximum size.

Kaynakça

  • ACI Committe 544.3R-93 1998. “Guide for Specifying, Proportioning, Mixing, Placing, and Finishing Steel Fiber Reinforced Concrete”, ACI Report.
  • Akçaoğlu, T., Tokyay, M. and Çelik T. 2004. Effect of coarse aggregate size and matrix quality on ITZ and failure behaviour of concrete under uniaxial compression. Cement and Concrete Composites. (6), 633-638.
  • Al-Oraimi, S.K., Taha, R. and Hassan H.F. 2006. The effect of the minerology of coarse aggregate on the mechanical properties of high strength concrete. Construction and Building Materials. (7), 499-503.
  • Arslan, A. 1993. Çelik Lifli Betonların Özellikleri ve Kullanım Potansiyeli. Türkiye Mühendislik Haberleri Dergisi. 369, 29-33.
  • Arslan, A. ve Aydın, A.C. 1999. Lifli Betonların Genel Özellikleri. Hazır Beton Dergisi. (36), 67-75.
  • Balasubramanian, K., Bharatkumar, B.H., Gopalakrishnan S. and Parameswaran V.S. 1996. Impect resistance of steel fiber reinforced concrete. Indian Concrete Journal. (5), 257-262.
  • Bentur, A. and Mindness, S. 1990. Fibre Reinforced Cementitious Composites. Elsevier Applied Science, London and Newyork.
  • Erdoğan, T. Y. 2003. Beton, METU Press, Ankara.
  • Gao J., Sun W. and Morino K. 1997. Mechanical Properties of Steel Fiber-reinforced, High-Strength, Lightweight Concrete. Cement and Concrete Composites. (4), 307-313.
  • Marar, K, Eren, Ö. and Çelik, T. 2001. Relationship between impact energy and compression toughness energy of high-strength fiber-reinforced concrete. Materials Letters. (4), 297-304.
  • Mobasher, B. and Li, C.Y. 1996. Effect of Interfacial Properties on The Crack Propagation in Cementitious Composites. Advanced Cement Based Materials. (4), 93-105.
  • Mindess, S. and Yan, C. 1992. Bond of Reinforcing Bars in Fiber Reinforced Concrete Under Impact Loading, Performance Fiber Reinforced Cement Composites. ed: Reinhardt H.W. and Naaman A.E., London. pp. 479-491.
  • Nataraja, M.C., Dhang, N. and Gupta, A.P. 1999. Statistical Variations in Impact Resistance of SteelReinforced Concrete Subjected to Drop Weight Test. Cement and Concrete Research. (7), 989-995.
  • Otter, D.E. and Naaman, A.E. 1988. Properties of Steel Fiber Reinforced Concrete under Cyclic Loading. ACI Materials Journal. (4), 254-261.
  • Özyurt, N., İlki A., Taşdemir, C., Taşdemir, M.A. and Yerlikaya, M. 2002. “Mechanical Behavior of High Strength Steel Fiber Reinforced Concretes with Various Steel Fiber Contents” Fifth International Congress on Advances in Civil Engineering, ITU, September 2002. İstanbul, 885.
  • Qian, C.X. and Stroeven, P. 2000. Development of Hyprit Polypropylen-Steel Fibers Reinforced Concrete. Cement and Concrete Research. (1), 63-69.
  • Song, P.S. and Hwang, S. 2004. Mechanical Properties of High-strength Steel Fiber-reinforced Concrete. Construction and Building Materials. (9), 669-673.
  • Song, P.S., Wu, J.C., Hwang, S. and Sheu, B.C. 2005. Statistical Analysis of Impact Strength and Strength Reliability of Steel-polyproplene Hybrid Fiber-reinforced Concrete. Construction and Building Materials. (1), 1-9.
  • Tabak, V. 2004. Çelik Lifli Betonlarda lif ve lif boy/çap oranlarının değişiminin betonun mekanik özelliklerine etkisi. Yüksek Lisans Tezi, DEÜ. s. 134.
  • Wimal, S. and Shah, S.P. 1982. Strain-rate effects in fibre-reinforced concrete subjected to impact and impulsive loading. Composites. (2), 153-159.
  • Yıldırım, S.T. 2003. Lifli Betonlarda Yorulma Tesirlerinin Araştırılması. Kocaeli Deprem Sempozyumu Bildiriler Kitabı, Kocaeli 2003. s. 294.
  • Zollo, R. F. 1997. Fiber-reinforced Concrete: an Overwier After 30 Years of Development. Cement and Concrete Composites. (2), 107-122.

ÇELİK LİFLİ BETONLARIN DARBE DİRENCİNE AGREGA MAKSİMUM BOYUTUNUN ETKİSİ

Yıl 2008, Cilt: 14 Sayı: 3, 237 - 245, 01.03.2008

Öz

Bu çalısmada çelik lifli betonların darbe direncine, agrega maksimum dane boyutunun etkisi incelenmistir. Çalısmada maksimum dane boyutu 10 mm, 15 mm, 20 mm ve 25 mm olan kireç tası kökenli kırma agrega kullanılarak, 8 farklı lifsiz-çelik lifli beton üretilmistir. Üretilen lifli-lifsiz betonlarda; su/çimento oranı 0.50, çimento dozajı 400 kg/m3 olarak sabit tutulmustur. Lifli betonlarda hacimce % 1.0 oranında, narinligi 65 olan, iki ucu çengelli çelik lif kullanılmıstır. Üretilen betonlardan hazırlanan 150 mm ayrıtlı küp örnekler üzerinde, 28 günlük standart kür sonunda tek eksenli basınç, yarmada çekme ve ultra ses deneyleri yapılarak, betonların mekanik özellikleri belirlenmistir. Ayrıca, çalısma kapsamında üretilen betonların darbe testleri ACI 544.3R-93 'ce önerilen darbe deney düzenegi kullanılarak gerçeklestirilmistir. Darbe testleri için 150 mm çaplı 300 mm yükseklikli örnekler hazırlanarak 28 gün kür edildikten sonra, çapı 150 mm yüksekligi 64 mm olacak sekilde kesilerek özel diskler hazırlanmıs ve bu diskler üzerinde darbe testleri yapılmıstır. Deneylerden elde edilen sonuçlar lif varlıgı ve agrega maksimum boyutunun degisimine baglı olarak degerlendirilmistir.

Kaynakça

  • ACI Committe 544.3R-93 1998. “Guide for Specifying, Proportioning, Mixing, Placing, and Finishing Steel Fiber Reinforced Concrete”, ACI Report.
  • Akçaoğlu, T., Tokyay, M. and Çelik T. 2004. Effect of coarse aggregate size and matrix quality on ITZ and failure behaviour of concrete under uniaxial compression. Cement and Concrete Composites. (6), 633-638.
  • Al-Oraimi, S.K., Taha, R. and Hassan H.F. 2006. The effect of the minerology of coarse aggregate on the mechanical properties of high strength concrete. Construction and Building Materials. (7), 499-503.
  • Arslan, A. 1993. Çelik Lifli Betonların Özellikleri ve Kullanım Potansiyeli. Türkiye Mühendislik Haberleri Dergisi. 369, 29-33.
  • Arslan, A. ve Aydın, A.C. 1999. Lifli Betonların Genel Özellikleri. Hazır Beton Dergisi. (36), 67-75.
  • Balasubramanian, K., Bharatkumar, B.H., Gopalakrishnan S. and Parameswaran V.S. 1996. Impect resistance of steel fiber reinforced concrete. Indian Concrete Journal. (5), 257-262.
  • Bentur, A. and Mindness, S. 1990. Fibre Reinforced Cementitious Composites. Elsevier Applied Science, London and Newyork.
  • Erdoğan, T. Y. 2003. Beton, METU Press, Ankara.
  • Gao J., Sun W. and Morino K. 1997. Mechanical Properties of Steel Fiber-reinforced, High-Strength, Lightweight Concrete. Cement and Concrete Composites. (4), 307-313.
  • Marar, K, Eren, Ö. and Çelik, T. 2001. Relationship between impact energy and compression toughness energy of high-strength fiber-reinforced concrete. Materials Letters. (4), 297-304.
  • Mobasher, B. and Li, C.Y. 1996. Effect of Interfacial Properties on The Crack Propagation in Cementitious Composites. Advanced Cement Based Materials. (4), 93-105.
  • Mindess, S. and Yan, C. 1992. Bond of Reinforcing Bars in Fiber Reinforced Concrete Under Impact Loading, Performance Fiber Reinforced Cement Composites. ed: Reinhardt H.W. and Naaman A.E., London. pp. 479-491.
  • Nataraja, M.C., Dhang, N. and Gupta, A.P. 1999. Statistical Variations in Impact Resistance of SteelReinforced Concrete Subjected to Drop Weight Test. Cement and Concrete Research. (7), 989-995.
  • Otter, D.E. and Naaman, A.E. 1988. Properties of Steel Fiber Reinforced Concrete under Cyclic Loading. ACI Materials Journal. (4), 254-261.
  • Özyurt, N., İlki A., Taşdemir, C., Taşdemir, M.A. and Yerlikaya, M. 2002. “Mechanical Behavior of High Strength Steel Fiber Reinforced Concretes with Various Steel Fiber Contents” Fifth International Congress on Advances in Civil Engineering, ITU, September 2002. İstanbul, 885.
  • Qian, C.X. and Stroeven, P. 2000. Development of Hyprit Polypropylen-Steel Fibers Reinforced Concrete. Cement and Concrete Research. (1), 63-69.
  • Song, P.S. and Hwang, S. 2004. Mechanical Properties of High-strength Steel Fiber-reinforced Concrete. Construction and Building Materials. (9), 669-673.
  • Song, P.S., Wu, J.C., Hwang, S. and Sheu, B.C. 2005. Statistical Analysis of Impact Strength and Strength Reliability of Steel-polyproplene Hybrid Fiber-reinforced Concrete. Construction and Building Materials. (1), 1-9.
  • Tabak, V. 2004. Çelik Lifli Betonlarda lif ve lif boy/çap oranlarının değişiminin betonun mekanik özelliklerine etkisi. Yüksek Lisans Tezi, DEÜ. s. 134.
  • Wimal, S. and Shah, S.P. 1982. Strain-rate effects in fibre-reinforced concrete subjected to impact and impulsive loading. Composites. (2), 153-159.
  • Yıldırım, S.T. 2003. Lifli Betonlarda Yorulma Tesirlerinin Araştırılması. Kocaeli Deprem Sempozyumu Bildiriler Kitabı, Kocaeli 2003. s. 294.
  • Zollo, R. F. 1997. Fiber-reinforced Concrete: an Overwier After 30 Years of Development. Cement and Concrete Composites. (2), 107-122.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makale
Yazarlar

Şemsi Yazıcı Bu kişi benim

Gözde İNAN Sezer Bu kişi benim

Yayımlanma Tarihi 1 Mart 2008
Yayımlandığı Sayı Yıl 2008 Cilt: 14 Sayı: 3

Kaynak Göster

APA Yazıcı, Ş. ., & Sezer, G. İ. . (2008). ÇELİK LİFLİ BETONLARIN DARBE DİRENCİNE AGREGA MAKSİMUM BOYUTUNUN ETKİSİ. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 14(3), 237-245.
AMA Yazıcı Ş, Sezer Gİ. ÇELİK LİFLİ BETONLARIN DARBE DİRENCİNE AGREGA MAKSİMUM BOYUTUNUN ETKİSİ. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Mart 2008;14(3):237-245.
Chicago Yazıcı, Şemsi, ve Gözde İNAN Sezer. “ÇELİK LİFLİ BETONLARIN DARBE DİRENCİNE AGREGA MAKSİMUM BOYUTUNUN ETKİSİ”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 14, sy. 3 (Mart 2008): 237-45.
EndNote Yazıcı Ş, Sezer Gİ (01 Mart 2008) ÇELİK LİFLİ BETONLARIN DARBE DİRENCİNE AGREGA MAKSİMUM BOYUTUNUN ETKİSİ. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 14 3 237–245.
IEEE Ş. . Yazıcı ve G. İ. . Sezer, “ÇELİK LİFLİ BETONLARIN DARBE DİRENCİNE AGREGA MAKSİMUM BOYUTUNUN ETKİSİ”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 14, sy. 3, ss. 237–245, 2008.
ISNAD Yazıcı, Şemsi - Sezer, Gözde İNAN. “ÇELİK LİFLİ BETONLARIN DARBE DİRENCİNE AGREGA MAKSİMUM BOYUTUNUN ETKİSİ”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 14/3 (Mart 2008), 237-245.
JAMA Yazıcı Ş, Sezer Gİ. ÇELİK LİFLİ BETONLARIN DARBE DİRENCİNE AGREGA MAKSİMUM BOYUTUNUN ETKİSİ. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2008;14:237–245.
MLA Yazıcı, Şemsi ve Gözde İNAN Sezer. “ÇELİK LİFLİ BETONLARIN DARBE DİRENCİNE AGREGA MAKSİMUM BOYUTUNUN ETKİSİ”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 14, sy. 3, 2008, ss. 237-45.
Vancouver Yazıcı Ş, Sezer Gİ. ÇELİK LİFLİ BETONLARIN DARBE DİRENCİNE AGREGA MAKSİMUM BOYUTUNUN ETKİSİ. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2008;14(3):237-45.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.