Araştırma Makalesi
BibTex RIS Kaynak Göster

Improvement of indoor positioning accuracy of ultra-wide band sensors by using big bang-big crunch optimization method

Yıl 2018, Cilt: 24 Sayı: 5, 921 - 928, 12.10.2018

Öz

Ultra-wide
Band technology is an emerging technology that offers successful solutions in
many indoor positioning systems and performs better than other methods. In this
study, an indoor positioning system using Ultra-wide Band (UWB) sensors was
developed and it was aimed to increase the accuracy level of the standard
equipment with the additional algorithms used while reducing the average error.
For this purpose, the Big Bang-Big Crunch (BB-BC) optimization method has been
applied to the experimental indoor positioning system and the positive effect
on the measurement accuracy has been proved by the tests made. An area of 39.76
m2 was selected as a test area of 7.35 m × 5.41 m and three different Ultra-wide Band receivers were installed at
a height of 2.85 m on a specially designed ceiling system and a total of 10.920
measurements were taken from 182 test points for 60 seconds. By correcting the
measurement results with the Big Bang - Big Crunch optimization algorithm, the
average error was reduced from the previous 20.72 cm to 15.02 cm, thus the
accuracy of the measurement results were improved.

Kaynakça

  • Hofmann-Wellenhof B, Lichtenegger H, and Collins J. Global Positioning System: Theory and practice. Wien, Austria, Springer, 2001.
  • Djuknic GM, Richton RE. “Geolocation and assisted GPS”. Computer, 34(2), 123-125, 2001.
  • Huang H, Gartner G. A Survey of Mobile Indoor Navigation Systems, Editors: Gartner G, Ortag F. Cartography in Central and Eastern Europe, 305-319, Heidelberg, Germany, Springer, 2010.
  • Liu H, Darabi H, Banerjee P, Liu J. “Survey of wireless indoor positioning techniques and systems”. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 37(6), 1067-1080, 2007.
  • Ram S, Sharf J. “The people sensor: A mobility aid for the visually impaired”. In Proceedings of the Second International Symposium on Wearable Computers, Pittsburgh, PA, USA, 19-20 October 1998.
  • Gu Y, Lo A, Niemegeers I. “A survey of indoor positioning systems for wireless personal networks”. IEEE Communications Surveys & Tutorials, 11(1), 13-32, 2009.
  • Dag T, Arsan T. “Received signal strength based least squares lateration algorithm for indoor localization”. Computers & Electrical Engineering, 66, 114-126, 2018.
  • Xu J, Ma M, Law C. “AOA cooperative position localization”. IEEE GLOBECOM 2008-2008 IEEE Global Telecommunications Conference, New Orleans, LO, USA, 30 November-4 December 2008.
  • Lee Y. “Weighted-average based aoa parameter estimations for LR-UWB wireless positioning system”. IEICE Transactions on Communications, 94(3), 599-602, 2011.
  • Dardari D, Conti A, Ferner U, Giorgetti A, Win MZ. “Ranging with ultrawide bandwidth signals in multipath environments”. IEEE Proceedings, 97(2), 404-426, 2009
  • Alsindi N, Alavi B, Pahlavan K. “Spatial characteristics of UWB TOA based ranging in indoor multipath environments”. 18th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Athens, Greece, 3-7 September 2007.
  • Ganick A, Ryan D. “Method and system for modulating a light source in a light based positioning system using a DC bias.”, United States Patent, Patent No: 8,334,901 B1, 18 Dec. 2012.
  • Gezici S. “A survey on wireless position estimation”. Wireless Pers Communicaiton, 44(3), 263-282, 2008.
  • House S, Connell S, Milligan I, Austin D, Hayes TL, Chiang P. “Indoor localization using pedestrian dead reckoning updated with RFID-based fiducials”. 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS ’11), Boston, MA, USA, 30 August-3 September 2011.
  • Pai D, Malpani M, Sasi I, Aggarwal N, Mantripragada PS. “Padati: A Robust pedestrian dead reckoning system on smartphones”. 11th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom ’12) IEEE, Liverpool, UK, 25-27 June 2012.
  • Alarifi A, Al-Salman A, Alsaleh M, Alnafessah A, Al-Hadhrami S, Al-Ammar MA, Al-Khalifa HS. “Ultra-wide band indoor positioning technologies: analysis and recent advances”. Sensors, 16(5), 707, 36 pages, 2016.
  • Want R, Hopper A, Falcao V, Gibbons J. “The active badge location system”. ACM Transactions Information Systems, 10(1), 91-102, 1992.
  • Ward A, Jones A, Hopper A. “A new location technique for the active office”. IEEE Personal Communications, 4, 42-47, 1997.
  • Montaser A, Moselhi O. “RFID indoor location identification for construction projects”. Automation in Construction, 39, 167-179, 2014.
  • Ni LM, Liu Y, Lau YC, Patil AP. “LANDMARC: Indoor location sensing using active RFID”. Wireless Networks. 10(6), 701-710, 2004.
  • Kriz P, Maly F, Kozel T. “Improving indoor localization using bluetooth low energy beacons”. Mobile Information Systems, 2016, 1-11, 2016.
  • Alsindi N, Alavi B, Pahlavan K. “Measurement and modeling of ultrawideband TOA-Based ranging in indoor multipath environments”. IEEE Transactions Vehicle Technologies, 58(3), 1046-1058, 2009.
  • Hämäläinen M, Hovinen V, Latva-aho M. “Survey to Ultra-wide band systems”. European Cooperation in the Field of Scientific and Technical Research–COST 262, Thessaloniki, Greece, 8-9 July 1999.
  • Kopta V, Farserotu J, Enz C. “FM-UWB: Towards a robust, low-power radio for body area networks”. Sensors, 17(5), 1043, 21 pages, 2017.
  • Nasr KM. “Hybrid channel modelling for ultra-wideband portable multimedia application”. IET Microwaves Antennas & Propagation, 2(3), 229-235, 2008.
  • De Santis V, Feliziani M, Maradei F. “Safety assessment of UWB radio systems for body area network by the FD2TD method”. IEEE Transactions on Magnetics, 46(8), 3245-3248, 2010.
  • Fort A, Ryckaert J, Desset C, De Doncker P, Wambacq P, Van Biesen L. “Ultra-wideband channel model for communication around the human body”. IEEE Journal on Selected Areas in Communications, 24(4), 927-933, 2006.
  • Moghtadaiee V, Dempster AG. “Determining the best vector distance measure for use in location fingerprinting”. Pervasive and Mobile Computing, 23, 59-79, 2015.
  • Krulwich B. “Ultra-wide band Poised to Enter Smartphones: A Location Opportunity”. Available online: http://www.gpsbusinessnews.com/Ultra-WidebandPois ed-to-Enter-Smartphones-a-LocationOpportunity_a4969. html (04.03.2017).
  • Rowe NC, Fathy AE, Kuhny MJ, Mahfouzy MR. “UWB transmit-only based scheme for multi-tag support in a millimeter accuracy localization system”. Proceedings of the 2013 IEEE Topical Conference on Wireless Sensors and Sensor Networks, Austin, TX, USA, 20-23 January 2013.
  • Kuhn M, Mahfouz M, Turnmire J, Wang Y, Fathy A. “A multi-tag access scheme for indoor UWB localization systems used in medical environments”. Proceedings of the 2011 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS), Phoenix, AZ, USA, 16-19 January 2011.
  • Mahfouz M, Kuhn M, Wang Y, Turnmire J, Fathy A. “Towards sub-millimeter accuracy in UWB positioning for indoor medical environments”. Proceedings of the 2011 IEEE Topical Conference on BiomedicalWireless Technologies, Networks, and Sensing Systems (BioWireleSS), Phoenix, AZ, USA, 16-19 January 2011.
  • Deissler T, Janson M, Zetik R, Thielecke J. “Infrastructureless indoor mapping using a mobile antenna array”. 19th International Conference on Systems, Signals and Image Processing (IWSSIP), Vienna, Austria, 11-13 April 2012.
  • DecaWave, “TREK1000 User Manual, How to Install, Configure and Evaluate the Decawave Trek1000 Two-Way Ranging (TWR) RTLS IC Evaluation Kit. DecaWave, Version 1.06.2016.” https://www. decawave.com/ support#term7 (22.12.2016).
  • Erol OK, Eksin I. “A new optimization method: Big Bang-Big Crunch”. Advances in Engineering Software, 37(2), 106-11, 2006.
  • Arsan T, Kepez O. “Early steps in automated behavior mapping via indoor sensors”. Sensors, 17(12), 2925, 22 pages, 2017

Büyük patlama büyük çöküş optimizasyon yöntemi ile ultra geniş band sensörlerinin iç mekân konum belirleme doğruluklarının iyileştirilmesi

Yıl 2018, Cilt: 24 Sayı: 5, 921 - 928, 12.10.2018

Öz

Ultra
geniş band teknolojisi, birçok iç mekân konum belirleme sisteminde başarılı
çözümler sunan, diğer yöntemlere kıyasla daha iyi performans gösteren,
gelişmekte olan bir teknolojidir. Bu çalışmada, ultra geniş band (Ultra Wide
Band-UWB) sensörler kullanılarak bir iç mekân konum belirleme sistemi
geliştirilmiş ve kullanılan ek algoritmalarla, standart donanımların sağladığı
doğruluk düzeyi arttırılırken aynı zamanda ortalama hatayı azaltmak
hedeflenmiştir. Bu amaçla Büyük Patlama - Büyük Çöküş (Big Bang-Big Crunch veya
BB-BC) optimizasyon yöntemi deneysel iç mekân konumlandırma sistemine
uygulanmış ve ölçüm doğruluğu üzerindeki olumlu etkisi yapılan testlerle
kanıtlanmıştır. Test alanı olarak 7.35 m × 5.41 m boyutlarında 39.76 m2'lik
bir alan seçilmiş ve özel olarak tasarlanmış bir tavan sistemine yerden 2.85 m
yüksekliğe üç farklı UWB alıcı yerleştirilmiş ve 182 adet test noktasından 60 sn.
süreyle toplam 10.920 ölçüm alınmıştır. Ölçüm sonuçları Büyük Patlama - Büyük
Çöküş optimizasyon algoritması ile düzeltilerek, ortalama hatası önceki 20.72 cm değerinden 15.02 cm’ye düşürülmüş, böylelikle ölçüm sonuçlarının
doğruluğu arttırılmıştır.

Kaynakça

  • Hofmann-Wellenhof B, Lichtenegger H, and Collins J. Global Positioning System: Theory and practice. Wien, Austria, Springer, 2001.
  • Djuknic GM, Richton RE. “Geolocation and assisted GPS”. Computer, 34(2), 123-125, 2001.
  • Huang H, Gartner G. A Survey of Mobile Indoor Navigation Systems, Editors: Gartner G, Ortag F. Cartography in Central and Eastern Europe, 305-319, Heidelberg, Germany, Springer, 2010.
  • Liu H, Darabi H, Banerjee P, Liu J. “Survey of wireless indoor positioning techniques and systems”. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 37(6), 1067-1080, 2007.
  • Ram S, Sharf J. “The people sensor: A mobility aid for the visually impaired”. In Proceedings of the Second International Symposium on Wearable Computers, Pittsburgh, PA, USA, 19-20 October 1998.
  • Gu Y, Lo A, Niemegeers I. “A survey of indoor positioning systems for wireless personal networks”. IEEE Communications Surveys & Tutorials, 11(1), 13-32, 2009.
  • Dag T, Arsan T. “Received signal strength based least squares lateration algorithm for indoor localization”. Computers & Electrical Engineering, 66, 114-126, 2018.
  • Xu J, Ma M, Law C. “AOA cooperative position localization”. IEEE GLOBECOM 2008-2008 IEEE Global Telecommunications Conference, New Orleans, LO, USA, 30 November-4 December 2008.
  • Lee Y. “Weighted-average based aoa parameter estimations for LR-UWB wireless positioning system”. IEICE Transactions on Communications, 94(3), 599-602, 2011.
  • Dardari D, Conti A, Ferner U, Giorgetti A, Win MZ. “Ranging with ultrawide bandwidth signals in multipath environments”. IEEE Proceedings, 97(2), 404-426, 2009
  • Alsindi N, Alavi B, Pahlavan K. “Spatial characteristics of UWB TOA based ranging in indoor multipath environments”. 18th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Athens, Greece, 3-7 September 2007.
  • Ganick A, Ryan D. “Method and system for modulating a light source in a light based positioning system using a DC bias.”, United States Patent, Patent No: 8,334,901 B1, 18 Dec. 2012.
  • Gezici S. “A survey on wireless position estimation”. Wireless Pers Communicaiton, 44(3), 263-282, 2008.
  • House S, Connell S, Milligan I, Austin D, Hayes TL, Chiang P. “Indoor localization using pedestrian dead reckoning updated with RFID-based fiducials”. 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS ’11), Boston, MA, USA, 30 August-3 September 2011.
  • Pai D, Malpani M, Sasi I, Aggarwal N, Mantripragada PS. “Padati: A Robust pedestrian dead reckoning system on smartphones”. 11th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom ’12) IEEE, Liverpool, UK, 25-27 June 2012.
  • Alarifi A, Al-Salman A, Alsaleh M, Alnafessah A, Al-Hadhrami S, Al-Ammar MA, Al-Khalifa HS. “Ultra-wide band indoor positioning technologies: analysis and recent advances”. Sensors, 16(5), 707, 36 pages, 2016.
  • Want R, Hopper A, Falcao V, Gibbons J. “The active badge location system”. ACM Transactions Information Systems, 10(1), 91-102, 1992.
  • Ward A, Jones A, Hopper A. “A new location technique for the active office”. IEEE Personal Communications, 4, 42-47, 1997.
  • Montaser A, Moselhi O. “RFID indoor location identification for construction projects”. Automation in Construction, 39, 167-179, 2014.
  • Ni LM, Liu Y, Lau YC, Patil AP. “LANDMARC: Indoor location sensing using active RFID”. Wireless Networks. 10(6), 701-710, 2004.
  • Kriz P, Maly F, Kozel T. “Improving indoor localization using bluetooth low energy beacons”. Mobile Information Systems, 2016, 1-11, 2016.
  • Alsindi N, Alavi B, Pahlavan K. “Measurement and modeling of ultrawideband TOA-Based ranging in indoor multipath environments”. IEEE Transactions Vehicle Technologies, 58(3), 1046-1058, 2009.
  • Hämäläinen M, Hovinen V, Latva-aho M. “Survey to Ultra-wide band systems”. European Cooperation in the Field of Scientific and Technical Research–COST 262, Thessaloniki, Greece, 8-9 July 1999.
  • Kopta V, Farserotu J, Enz C. “FM-UWB: Towards a robust, low-power radio for body area networks”. Sensors, 17(5), 1043, 21 pages, 2017.
  • Nasr KM. “Hybrid channel modelling for ultra-wideband portable multimedia application”. IET Microwaves Antennas & Propagation, 2(3), 229-235, 2008.
  • De Santis V, Feliziani M, Maradei F. “Safety assessment of UWB radio systems for body area network by the FD2TD method”. IEEE Transactions on Magnetics, 46(8), 3245-3248, 2010.
  • Fort A, Ryckaert J, Desset C, De Doncker P, Wambacq P, Van Biesen L. “Ultra-wideband channel model for communication around the human body”. IEEE Journal on Selected Areas in Communications, 24(4), 927-933, 2006.
  • Moghtadaiee V, Dempster AG. “Determining the best vector distance measure for use in location fingerprinting”. Pervasive and Mobile Computing, 23, 59-79, 2015.
  • Krulwich B. “Ultra-wide band Poised to Enter Smartphones: A Location Opportunity”. Available online: http://www.gpsbusinessnews.com/Ultra-WidebandPois ed-to-Enter-Smartphones-a-LocationOpportunity_a4969. html (04.03.2017).
  • Rowe NC, Fathy AE, Kuhny MJ, Mahfouzy MR. “UWB transmit-only based scheme for multi-tag support in a millimeter accuracy localization system”. Proceedings of the 2013 IEEE Topical Conference on Wireless Sensors and Sensor Networks, Austin, TX, USA, 20-23 January 2013.
  • Kuhn M, Mahfouz M, Turnmire J, Wang Y, Fathy A. “A multi-tag access scheme for indoor UWB localization systems used in medical environments”. Proceedings of the 2011 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS), Phoenix, AZ, USA, 16-19 January 2011.
  • Mahfouz M, Kuhn M, Wang Y, Turnmire J, Fathy A. “Towards sub-millimeter accuracy in UWB positioning for indoor medical environments”. Proceedings of the 2011 IEEE Topical Conference on BiomedicalWireless Technologies, Networks, and Sensing Systems (BioWireleSS), Phoenix, AZ, USA, 16-19 January 2011.
  • Deissler T, Janson M, Zetik R, Thielecke J. “Infrastructureless indoor mapping using a mobile antenna array”. 19th International Conference on Systems, Signals and Image Processing (IWSSIP), Vienna, Austria, 11-13 April 2012.
  • DecaWave, “TREK1000 User Manual, How to Install, Configure and Evaluate the Decawave Trek1000 Two-Way Ranging (TWR) RTLS IC Evaluation Kit. DecaWave, Version 1.06.2016.” https://www. decawave.com/ support#term7 (22.12.2016).
  • Erol OK, Eksin I. “A new optimization method: Big Bang-Big Crunch”. Advances in Engineering Software, 37(2), 106-11, 2006.
  • Arsan T, Kepez O. “Early steps in automated behavior mapping via indoor sensors”. Sensors, 17(12), 2925, 22 pages, 2017
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makale
Yazarlar

Taner Arsan 0000-0002-4453-3218

Yayımlanma Tarihi 12 Ekim 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 24 Sayı: 5

Kaynak Göster

APA Arsan, T. (2018). Büyük patlama büyük çöküş optimizasyon yöntemi ile ultra geniş band sensörlerinin iç mekân konum belirleme doğruluklarının iyileştirilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(5), 921-928.
AMA Arsan T. Büyük patlama büyük çöküş optimizasyon yöntemi ile ultra geniş band sensörlerinin iç mekân konum belirleme doğruluklarının iyileştirilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Ekim 2018;24(5):921-928.
Chicago Arsan, Taner. “Büyük Patlama büyük çöküş Optimizasyon yöntemi Ile Ultra Geniş Band sensörlerinin Iç mekân Konum Belirleme doğruluklarının iyileştirilmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24, sy. 5 (Ekim 2018): 921-28.
EndNote Arsan T (01 Ekim 2018) Büyük patlama büyük çöküş optimizasyon yöntemi ile ultra geniş band sensörlerinin iç mekân konum belirleme doğruluklarının iyileştirilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24 5 921–928.
IEEE T. Arsan, “Büyük patlama büyük çöküş optimizasyon yöntemi ile ultra geniş band sensörlerinin iç mekân konum belirleme doğruluklarının iyileştirilmesi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 24, sy. 5, ss. 921–928, 2018.
ISNAD Arsan, Taner. “Büyük Patlama büyük çöküş Optimizasyon yöntemi Ile Ultra Geniş Band sensörlerinin Iç mekân Konum Belirleme doğruluklarının iyileştirilmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24/5 (Ekim 2018), 921-928.
JAMA Arsan T. Büyük patlama büyük çöküş optimizasyon yöntemi ile ultra geniş band sensörlerinin iç mekân konum belirleme doğruluklarının iyileştirilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2018;24:921–928.
MLA Arsan, Taner. “Büyük Patlama büyük çöküş Optimizasyon yöntemi Ile Ultra Geniş Band sensörlerinin Iç mekân Konum Belirleme doğruluklarının iyileştirilmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 24, sy. 5, 2018, ss. 921-8.
Vancouver Arsan T. Büyük patlama büyük çöküş optimizasyon yöntemi ile ultra geniş band sensörlerinin iç mekân konum belirleme doğruluklarının iyileştirilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2018;24(5):921-8.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.