BibTex RIS Kaynak Göster

-

Yıl 2015, Cilt: 10 Sayı: 1, 49 - 53, 27.07.2015

Öz

The generation of high-intensity radiation fields in the accelerators, shield design is made to attenuation permissible levels of radiation dose. For determination of shield material, thicknesses, weight, installation and maintenance costs as well as radiation attenuation properties are taken into consideration such factors. Effective radiation for shielding is neutrons in proton accelerators and shield design is made for neutrons. Concrete, soil and iron are widely used as a shield material

Kaynakça

  • Gencel O., Brostow W., Ozel C., Filiz M., 2010. An Investigation on the concrete properties containing colemanite, International Journal of Physical Sciences, 5 (3): 216-225.
  • Singh V. P., Medhat M. E., Badiger N. M., 2014. Utilization of Geant4 Monte Carlo simulation method for studying attenuation of photons in normal and heavy concretes at high energy values, Journal of Radioanalytical and Nuclear Chemistry, 300: 325-331.
  • Korkut T., Korkut H., Karabulut A., Budak G., 2011. A new radiation shielding material: Amethyst Ore, Annals of Nuclear Energy, 38: 56-59.
  • Ipe N. E., 2010. PTCOG Publications Sub-Committee Task Group on Shielding Design and Radiation Safety of Charged Particle Therapy Facilities, PTCOG Report 1.
  • Biarrotte J., Mueller A. C., Carluec B., 2004. PDS-XADS Preliminary Design Studies of an Experimental.
  • Tesch K., Zazula J. M., 1991. Shielding properties of iron at high energy proton accelerators studied by a Monte Carlo Code, Nuclear Instruments and Methods in Physics Research A, 300: 179-187.
  • Thomas R. H., Casey W. R., Cossairt J. D., O’Brien K., Rohring N., Stapleton G. B., Swanson W. P., Slaback L. A., 2005. Radiation Protection for Particle Accelerator Facilities, NCRP Report No. 144.
  • Battistoni G., et al., 2011. Application of FLUKA Monte Carlo Code for nuclear and accelerator physics, Nuclear Instruments and Methods in Physics Research B, 269: 2850-2856.
  • Sarıyer D., Küçer, R., 2014. Proton hızlandırıcılarında kontrollü alanlar için gerekli olan zırh kalınlıklarının FLUKA Monte Carlo Kodu ile belirlenmesi, SDU Journal of Science (E-Journal), 9 (1): 142-149.
  • Sarıyer D., Küçer R., 2014. 100-250 MeV enerjili proton hızlandırıcıları için beton ve toprak zırh kalınlıklarının FLUKA Monte Carlo Kodu ile belirlenmesi, SDU Journal of Science (E-Journal), 9 (1): 117-124.
  • Magistris M., Silari M., 2005. Shielding Requirements and Induced Radioactivity in the 3.5 GeV, SPL, CERN.
  • Agosteo S., Mereghetti A., Magistris M., Silari M., Zajacova Z., 2008. Shielding data for 100-250 MeV proton accelerators: Attenuation of secondary radiation in thick iron and concrete/iron shields, Nuclear Instruments and Methods in Physics Research B, 266: 3406-3416.
  • Rahmi Küçer e-posta: rkucer@hotmail.com

Farklı Yoğunluktaki Malzemelerin Nötron Zayıflatma Özelliklerinin İncelenmesi

Yıl 2015, Cilt: 10 Sayı: 1, 49 - 53, 27.07.2015

Öz

Özet: Yüksek yoğunluklu radyasyon alanlarının oluştuğu hızlandırıcılarda, radyasyon seviyesini izin verilen doz değerlerine zayıflatmak için zırh tasarımı yapılır. Zırhın belirlenmesinde, radyasyon zayıflatma özellikleriyle birlikte kalınlığı, ağırlığı, kurulum ve bakım maliyeti gibi faktörler de göz önünde bulundurulur. Proton hızlandırıcılarında, zırhlama için etkin olan radyasyon nötronlardır ve zırh tasarımı nötronlara göre yapılır. Zırh maddesi olarak genellikle beton, toprak ve çelik kullanılır.

Bu çalışmada, hızlandırıcı zırh tasarımında gerekli minimum yan duvar zırh kalınlıklarını belirlemek için farklı yoğunluklarda (toprak, standart beton, demir) zırh maddeleri seçildi. Zırh kalınlıkları, FLUKA Monte Carlo kodu ile belirlendi.

Anahtar kelimeler: Proton hızlandırıcı, zırh tasarımı, FLUKA, demir

Investigation of Neutron Attenuation Properties for the Different Density Materials

Abstract: The generation of high-intensity radiation fields in the accelerators, shield design is made to attenuation permissible levels of radiation dose. For determination of shield material, thicknesses, weight, installation and maintenance costs as well as radiation attenuation properties are taken into consideration such factors. Effective radiation for shielding is neutrons in proton accelerators and shield design is made for neutrons. Concrete, soil and iron are widely used as a shield material.

In this paper, the different density of the shielding materials (soil, standard concrete, iron) were selected to determine for the minimum thickness of the side wall for shielding design of proton accelerator. The thickness of the shielding is obtained by a simulation with the Monte Carlo Code FLUKA.

Key words: Proton accelerator, shield design, FLUKA, iron.

Kaynakça

  • Gencel O., Brostow W., Ozel C., Filiz M., 2010. An Investigation on the concrete properties containing colemanite, International Journal of Physical Sciences, 5 (3): 216-225.
  • Singh V. P., Medhat M. E., Badiger N. M., 2014. Utilization of Geant4 Monte Carlo simulation method for studying attenuation of photons in normal and heavy concretes at high energy values, Journal of Radioanalytical and Nuclear Chemistry, 300: 325-331.
  • Korkut T., Korkut H., Karabulut A., Budak G., 2011. A new radiation shielding material: Amethyst Ore, Annals of Nuclear Energy, 38: 56-59.
  • Ipe N. E., 2010. PTCOG Publications Sub-Committee Task Group on Shielding Design and Radiation Safety of Charged Particle Therapy Facilities, PTCOG Report 1.
  • Biarrotte J., Mueller A. C., Carluec B., 2004. PDS-XADS Preliminary Design Studies of an Experimental.
  • Tesch K., Zazula J. M., 1991. Shielding properties of iron at high energy proton accelerators studied by a Monte Carlo Code, Nuclear Instruments and Methods in Physics Research A, 300: 179-187.
  • Thomas R. H., Casey W. R., Cossairt J. D., O’Brien K., Rohring N., Stapleton G. B., Swanson W. P., Slaback L. A., 2005. Radiation Protection for Particle Accelerator Facilities, NCRP Report No. 144.
  • Battistoni G., et al., 2011. Application of FLUKA Monte Carlo Code for nuclear and accelerator physics, Nuclear Instruments and Methods in Physics Research B, 269: 2850-2856.
  • Sarıyer D., Küçer, R., 2014. Proton hızlandırıcılarında kontrollü alanlar için gerekli olan zırh kalınlıklarının FLUKA Monte Carlo Kodu ile belirlenmesi, SDU Journal of Science (E-Journal), 9 (1): 142-149.
  • Sarıyer D., Küçer R., 2014. 100-250 MeV enerjili proton hızlandırıcıları için beton ve toprak zırh kalınlıklarının FLUKA Monte Carlo Kodu ile belirlenmesi, SDU Journal of Science (E-Journal), 9 (1): 117-124.
  • Magistris M., Silari M., 2005. Shielding Requirements and Induced Radioactivity in the 3.5 GeV, SPL, CERN.
  • Agosteo S., Mereghetti A., Magistris M., Silari M., Zajacova Z., 2008. Shielding data for 100-250 MeV proton accelerators: Attenuation of secondary radiation in thick iron and concrete/iron shields, Nuclear Instruments and Methods in Physics Research B, 266: 3406-3416.
  • Rahmi Küçer e-posta: rkucer@hotmail.com
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil tur
Bölüm Makaleler
Yazarlar

Demet Sarıyer Bu kişi benim

Rahmi Küçer Bu kişi benim

Yayımlanma Tarihi 27 Temmuz 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 10 Sayı: 1

Kaynak Göster

IEEE D. Sarıyer ve R. Küçer, “-”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, c. 10, sy. 1, ss. 49–53, 2015, doi: 10.29233/sdufeffd.134818.