BibTex RIS Kaynak Göster

Applying of Modified Constant Rate of Supply Model to Lake Sediments in <sup>210</sup>Pb Dating and Assessment of Some Heavy Metals

Yıl 2018, Cilt: 22 Sayı: 2, 598 - 607, 15.08.2018

Öz

In present study, Lead-210 (Polonium-210) activity concentrations were indirectly obtained by utilizing alpha spectrometry. Sediment chronology was determined by using modified CRS model. Average sediment accumulation rates are 0.351, 0.324, 0.222 g cm-2 y-1 in S-1, S-2, S-3 stations respectively. With reference to atmospheric 210Pb flux (29 mBq cm-2 y-1) Lake Karagöl has extra outer 210Pb input (soil erosion) from the catchment area. In terms of Enrichment Factor (EF), heavy metal concentrations are lower than the anthropogenic values. So it can be said that the elements except Au originate from the continental supply. Au has unexpectedly too high level EF value (58.22) in northern station (S-1) of the Lake Karagöl. It corresponds to time interval from 2004 to nowadays. However Pollution Load Index (PLI) says different consequences from the EF values. PLI value has only baseline levels of pollutants in northern part of the Lake Karagöl as it shows progressive deterioration of the site for southern part of the Lake Karagöl.

Kaynakça

  • [1] Tateda, Y., Carvalho, F. P., Fowler, S. F., Miquel, J. C. 2003. Fractation of 210Po and 210Pb in coastal waters of the NW Mediterranean continental margin. Continental Shelf Research 23, 295-316.
  • [2] Zuo, Z., Eisma, D., Gieles, R., Beks, J. 1997. Accumulation rates and sediment deposition in the Northwestern Mediterranean. Deep-Sea Research II 44, 597-609.
  • [3] Radakovitch, O., Cherry, R. D., Heyraud, M., Heussner, S. 1997. Unusual 210Po/210Pb ratios in the surfacewater of the Gulf of Lions. Oceanologica Acta 21, 459-468.
  • [4] Goldberg, E. D., 1963. Geochronology with Pb-210. Proceedings of a symposium of Radioactive Dating. International Atomic Energy Agency, 1963, Vienna, 121-131.
  • [5] Krishnaswami, L. D., Martin, J. M., Meybeck, M. 1971. Geochronology of lake sediments. Earth Planet Sci. Lett, 11, 407-414.
  • [6] Koide, M., Soutar, A., Goldberg, E. D. 1972. Marine geochronology with 210Pb. Earth Planet Sc Lett., 14, 442-446.
  • [7] Robbins, J. A., Krezosky, J. R., Mozley, S. C. 1977. Radioactivity in sediments of the Great Lakes: Post-depositional redistribution by deposit-feeding organisms. Earth Planet Sc Lett., 36, 325-333.
  • [8] Appleby, P. G., Oldfield, F. 1978. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena, 5, 1-8.
  • [9] Oldfield, F., Appleby, P. G., Battarbee, R. W. 1978. Alternative 210Pb dating: results from the New Guinea Highlands and Lough Erne. Nature, 271, 339-342.
  • [10] Liu, J., Carroll, J. L., Lerche, I. 1991. A technique for disentangling temporal source and sediment variations from radioactive isotope measurements with depth. Nucl. Geophys., 5, 31-45.
  • [11] Appleby, P. G. 2001. Chronostratigraphic techniques in recent sediments. ss 171-203. Last, W. M., Smol, J. P., ed. 2001. Tracking Environmental Change Using Lake Sediments 1. E-Publishing Inc., Springer, Nedherlands, 548s.
  • [12] Benoit, G., Rozan, T. F. 2001. 210Pb and 137Cs dating methods in lakes: a retrospective study. J. Peleolimnol., 25, 455-465.
  • [13] Walling, D. E., He, Q., Appleby, P. G. 2003. Conversion Models for Use in Soil-Erosion, Soil-Redistribution and Sedimentation Investigations. ss 111-164. Zapata, F., ed. 2003. Handbook for the Assessment of Soil Erosion and Sedimentation Using Environmental Radionuclides. Springer Netherlands, 219s.
  • [14] Tylmann, W. 2005. Lithological and geochemical record of antropogenic changes in recent sediments of a small and shallow lake (Lake Pusty Staw, northern Poland). J Paleolimnol., 33, 313-325.
  • [15] Lubis, A. A. 2006. Constant rate of supply (CRS) model for determination the sediment accumulation rates in the coastal area using 210Pb. J. Coast. Develop., 10 (1), 9-18.
  • [16] Zaborska, A., Carroll, J., Papucci, C., Pempkowiak, J. 2007. Intercomparison of alpha and gamma spectrometry techniques used in 210Pb geochronology. J. Environ. Radioact., 93, 38-50.
  • [17] Applby, P. G. 2008. Three decades of dating recent sediments by fallout radionuclides: a review. The Holocene, 18, 83-93.
  • [18] Kircher, G. 2011. 210Pb as a tool for establishing sediment chronologies: examples of potentials and limitations of conventional dating models. J. Environ. Radioact., 102, 490-494.
  • [19] Pittauerová, D., Hettwig, B., Fischer, H. W. 2011. Pb-210 sediment chronology: focused on supported lead. Radioprotection, 46 (6), 277-288.
  • [20] Gui, Z., Xue, B., Yao, S., Zhang, F., Yi, S. 2012. Catchment erosion and trophic status changes over the past century as recorded in sediments from Wudalianchi Lake, the northernmost volcanic lake in China. Quatern Int., 282, 163-170.
  • [21] Sanches-cabeza, J. A., Ruiz-fernandez, A. C. 2012. 210Pb sediment chronology: an integrated formulation and classification of dating models. Geochim. Cosmochim. Acta, 82, 183-200.
  • [22] O’Reilly, J., Vintró, L. L., Mitchell, P. I., Donohue, I., Leira, M., Hobbs, W., Irvine, K. 2011. 210Pb-dating of a lake sediment core from Lough Carra (Co. Mayo, western Ireland): use of paleolimnological data for chronology validation below the 210Pb dating horizon. Journal of Environmental Radioactivity, 102, 495-499.
  • [23] Diaz-asencio, M., Alonso-Hernández, C. M., Balanos-Álvarez, Y., Gómez-Batista, M., Pinto, V., Morabito, R., Hernández-Albernas, J. I., Eriksson, M., Sanchez-Cabeza, J. A. 2009. One century sedimentary record of Hg and Pb pollution in the Sagua estuary (Cuba) derived from 210Pb and 137Cs chronology. Mar. Pollut. Bull., 59, 108-115.
  • [24] Ridgway, J., Breward, N., Langston, W. J., Lister, R., Rees, J. G., Rowlatt, S. M. 2003. Distinguishing between natural and anthropogenic sources of metals entering the Irish Sea. Applied Geochemistry, 18, 283-309.
  • [25] Salomons, W., Kertlik, H., van Pagee, H., Klomp, R., Schreur, A. 1988. Behaviour and impact assessment of heavy metals in estuary and coastal zones. ss 157-198. Seeliger, U., de Lacerda, L. D., Patchineelam, S. R., ed. 1988. Metals in Coastal Environments of Latin America. Springer, Berlin, Heidelberg, 297s.
  • [26] Nieboer, E., Richardson, D. H. S. 1980. The replacement of the nondescript term ‘heavy metals’ by a biologically and chemically significant classification of metal ions. Environ Pollut B, 1, 3-26.
  • [27] Bryan, G. W. 1979. Bioaccumulation of marine pollutants. Philos Trans R Soc Lond Ser B, 286, 483-505.
  • [28] Sert, I., Eftelioglu, M., Ozel, F. E. 2017. Historical Evalution of Heavy Metal Pollution and Recent Records in Lake Karagöl Sediment Cores Using Lead-210 Models, Western Turkey. J Radioanal. Nucl. Chem., 314, 2155-2169.
  • [29] Flynn, W. W. 1968. The determination of low levels of Polonium-210 in environmental materials. Anal. Chim. Acta, 43, 221-227.
  • [30] Boisson, F., Miquel, J. C., Cotret, O., Fowler, S. W. 2001. 210Po and 210Pb cycling in an hydrothermal vent zone in the coastal Aegean Sea. The Sci. Total Environ, 281, 111-119.
  • [31] Sert, I., Yener, G., Ozel, E., Pekcetinoz, B., Eftelioglu, M., Gorgun, A. U. 2012. Estimation of sediment accumulation rates using naturally occuring 210Pb models in Gulbahce Bay, Aegean Sea, Turkey. Journal of Environmental Radioactivity, 107, 1-12.
  • [32] Bateman, H. 1910. Solution of a system of differential equations occurring in the theory of radioactive transformations. Proc. Cambridge Philos. Soc., 15, 423-427.
  • [33] McDonald, C. P., Urban, N. R. 2007. Sediment radioisotope dating across a stratigraphic discontinuity in a mining-impacted lake. Journal of Environmental Radioactivity, 92, 80-95.
  • [34] Parsons, M. J., Long, D. T., Yohn, S. S. 2010. Assessing the natural recovery of a lake contaminated with Hg using estimated recovery rates determined by sediment chronologies. Applied Geochemistry, 25, 1676–1687.
  • [35] Chatterjee, M., Silva, F. E. V., Sarkar, S. K. 2007. Distribution and possible source of trace elements in the sediment cores of a tropical macrotidal estuary and their ecotoxicological significance. Environ Int., 33, 346-356.
  • [36] Zakir, H. M., Shikazono, N., Otomo, K. 2008. Geochemical distribution of trace metals and assessment of anthropogenic pollution in sediments of Old Nakagawa River. Tokyo Jpn. Am. J. Environ. Sci., 4 (6), 661-672.
  • [37] Cobelo-Garcia, A., Prego, R. 2003. Land inputs, behavior and contamination levels of copper in a ria estuary (NW Spain). Marine Environmental Research, 56 (3), 403-422.
  • [38] Liu, W. H., Zhao, J. Z., Quyang, Z. Y. 2005. Impact of sewage irrigation on heavy metal distribution and contamination in Beijing. China. Environ. Pol., 31, 805-812.
  • [39] Ip, C. C. M., Li, X. D., Zhang, G., Wai, O. W. H., Li, Y. S. 2007. Trace metal distribution in sediments of the Pearl River Estuary and surrounding coastal area South China. Environ. Pollut., 14, 311-323.
  • [40] Goher, M. E., Farhat, H. I., Abdo, M. H., Salem, S. G. 2014. Metal pollution assessment in the surface sediment of Lake Nasser, Egypt. Egyptian Journal of Aquatic Research, 40, 213-224.
  • [41] Guo, W., Huo, S., Xi, B., Zhang, J., Wu, F. 2015. Heavy metal contamination in sediments from typical lakes in the five geographic regions of China: Distribution, bioavailability, and risk. Ecological Engineering, 81, 243-255.
  • [42] El-Amier, Y. A., Elnaggar, A. A., El-Alfy, M. A. 2016. Evaluation and mapping spatial distribution of bottom sediment heavy metal contamination in Burullus Lake, Egypt. Egyptian Journal of Basic and Applied Sciences, 4 (1), 55-66.
  • [43] Din, Z.B. 1992. Use of aluminium to normalize heavy-metal data from estuarine and coastal sediments of Straits of Melaka. Marine Pollution Bulletin, 24 (10), 484-491.
  • [44] Rubio, B., Nombela, M., Vilas, F. 2000. Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain): an assessment of metal pollution. Mar. Pollut. Bull., 40, 968-980.
  • [45] Shi, Q., Leipe, T., Rueckert, P., Zhou, D., Harff, J. 2010. Geochemical sources, deposition and enrichment of heavy metals in short sediment cores from the Pearl River Estuary, Southern China. Journal of Marine Systems, 82 (Supp 1), 28-42.
  • [46] Darwish, M.A.G. 2013. Geochemistry of the High Dam Lake sediments, south Egypt: implications for environmental significance. International Journal of Sediment Research, 28, 544-559.
  • [47] Qi, S., Leipe, T., Rueckert, P., Di, Z. 2010. Geochemical sources, deposition and enrichment of heavy metals in short sediment cores from the Pearl River Estuary. Southern China Journal of Marine Systems, 82, 28-42.
  • [48] Szefer, P., Szefer, K., Glaspy, G.P., Pempkowiak, J., Kaliszan, R. 1996. Heavy-metal pollution in surfical sediments from the southern Baltic Sea off Poland. J Environ Sci Health. Part A: Environ Sci Eng Toxic Hazard Subst Control, 31 (10), 2723-2754.
  • [49] Szefer, P., Glasby, G.P., Kunzendorf, H., Görlich, E.A., Latka, K., Ikuta, K., Ali, A. 1998. The distribution of rare earth and other elements and the mineralogy of the iron oxyhydroxide phase in marine ferromanganese concretions from within Slupsk Furrow in the southern Baltic. Applied Geochemistry, 13 (3), 305-312.
  • [50] Nolting, R.F., Ramkema, A., Everaats, J.M. 1999. The geochemistry of Cu, Cd, Zn, Ni and Pb in sediment cores from the continental slope of the Banc d’Arguin (Mauritania). Continental Shelf Research, 19, 665-691.
  • [51] Sutherland, R.A. 2000. Bed sediment-associated trace metals in an urban stream. Oahu. Hawaii. Environ. Geol., 39, 611-627.
  • [52] Shumilin, E.N., Carriquiry, J.D., Camacho-Ibar, V.F., Sapozhnikov, D., Kalmykov, S., Sánchez, A., Aguı́ñiga-Garcı́a, S., Sapozhnikov, Y.A. 2002. Spatial and vertical distributions of elements in sediments of the Colorado river delta and upper Gulf of California. Mar Chem., 79, 113-131.
  • [53] Liaghati, T., Preda, M., Cox, M. 2003. Heavy metal distribution and controlling factors within coastal plain sediments, bells creek catchments, Southeast Queensland, Australia. Environment International, 29, 935-948.
  • [54] Glasby, G.P., Szefer, P., Geldon, J., Warzocha, J. 2004. Heavy-metal pollution of sediments from Szczecin Lagoon and the Gdansk Basin, Poland. Sci. Total Environ., 330, 249-269.
  • [55] Hakanson, L. 1980. An ecological risk index for aquatic pollution control: a sedimentological approach. Water Res., 14, 975-1001.
  • [56] Tomlinson, D.C., Wilson, J.G., Harris, C.R., Jeffrey, D.W. 1980. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoland Mar. Res., 33, 566-575.
  • [57] Krishnaswami, S., Lal, D. 1978. Radionuclide limnochronology. ss 153-177. Lerman A ed. Lakes-chemistry geology physics. 1978. Springer-Verlag, New York.
  • [58] Appleby, P.G., Oldfield, F. 1983. The assessment of 210Pb data from sites with varying sediment accumulation rates. Hydrobiologia, 103, 29-35.
  • [59] Garcia-Orellana, J., Sanchez-Cabeza, J.A., Masque, P., Àvilla, A., Costa, E., Loÿe-Pilot, M.D., Bruach-Menchén, J.M. 2006. Atmospheric fluxes of 210Pb to the western Mediterranean Sea and Saharan dust influence. Journal of Geophysical Research, 111 (D15305), 1-9.
  • [60] Wan, G., Chen, J., Xu, S., Wu, F., Santschi, P.H. 2005. Sudden enhancement of sedimentation flux of 210Pbex as an indicator of lake productivity as exemplified by Lake Chenghai. Science in China Ser. D Earth Sciences, 48 (4), 484-495.
  • [61] Al-Masri, M.S., Mamish, S., Budeir, Y. 2002. The impact of phosphate loading activities on near marine environment: the Syrian coast. J. Environ. Radioact, 58, 35–44.
  • [62] Ribeiro Guevara, S., Meili, M., Rizzo, A., Daga, R., Arribére, M. 2010. Sediment records of highly variable mercury input to mountain lakes in Patagonia during the past millennium. Atmos. Chem. Phys., 10, 3443-3453.
  • [63] Huh, C-A., Chu, K-S., Wei, C-L., Liew, P-M. 1996. Lead-210 and plutonium fallout in Taiwan as recorded at a subalpine lake. Journal of Southeast Asian Earth Science, 14, 373-376.
  • [64] Schettler, G., Mingram, J., Negendank, J.F.W., Jiaqi, L. 2006. Palaeovariations in the East-Asian monsoon regime geochemically recorded in varved sediments of Lake Sihailongwan (Northeast China, Jilin province). Part 2: a 200-year record of atmospheric lead-210 flux variations and its palaeoclimatic implications. Journal of Paleolimnology, 35, 271-288.
  • [65] Begy, R.Cs., Kovacs, T., Veres, D., Simon, H. 2016. Atmospheric flux, transport and mass balance of 210Pb and 137Cs radiotracers in different regions of Romania. Applied Radiation and Isotopes, 111, 31-39.
  • [66] Atgin, R.S, El-Agha, O., Zararsiz, A., Kocatas, A., Parlak, H., Tuncel, G. 2000. Investigation of the sediment pollution in Izmir Bay: trace elements. Spectrochim. Acta B, 55 (7), 1151-1164.
  • [67] Zhang, L.P, Liu, C.L. 2002. Riverine composition and estuarine geochemistry of particulate metals in China-Weathering features, anthropogenic impact and chemical fluxes. Estuary. Coast. Shelf Sci., 54 (6), 1051-1070.
  • [68] Karaoglu, O. 2014. Tectonic controls on the Yamanlar volcano and Yuntdağı volcanic region, western Turkey: implications for an incremental deformation. J. Volcanol. Geoth. Res., 274, 16–33.
Toplam 68 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

İlker Sert

Yayımlanma Tarihi 15 Ağustos 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 22 Sayı: 2

Kaynak Göster

APA Sert, İ. (2018). Applying of Modified Constant Rate of Supply Model to Lake Sediments in 210Pb Dating and Assessment of Some Heavy Metals. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(2), 598-607.
AMA Sert İ. Applying of Modified Constant Rate of Supply Model to Lake Sediments in 210Pb Dating and Assessment of Some Heavy Metals. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. Ağustos 2018;22(2):598-607.
Chicago Sert, İlker. “Applying of Modified Constant Rate of Supply Model to Lake Sediments in 210Pb Dating and Assessment of Some Heavy Metals”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22, sy. 2 (Ağustos 2018): 598-607.
EndNote Sert İ (01 Ağustos 2018) Applying of Modified Constant Rate of Supply Model to Lake Sediments in 210Pb Dating and Assessment of Some Heavy Metals. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 2 598–607.
IEEE İ. Sert, “Applying of Modified Constant Rate of Supply Model to Lake Sediments in 210Pb Dating and Assessment of Some Heavy Metals”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 22, sy. 2, ss. 598–607, 2018.
ISNAD Sert, İlker. “Applying of Modified Constant Rate of Supply Model to Lake Sediments in 210Pb Dating and Assessment of Some Heavy Metals”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22/2 (Ağustos 2018), 598-607.
JAMA Sert İ. Applying of Modified Constant Rate of Supply Model to Lake Sediments in 210Pb Dating and Assessment of Some Heavy Metals. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2018;22:598–607.
MLA Sert, İlker. “Applying of Modified Constant Rate of Supply Model to Lake Sediments in 210Pb Dating and Assessment of Some Heavy Metals”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 22, sy. 2, 2018, ss. 598-07.
Vancouver Sert İ. Applying of Modified Constant Rate of Supply Model to Lake Sediments in 210Pb Dating and Assessment of Some Heavy Metals. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2018;22(2):598-607.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.