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SUBHARMONIC FUNCTION OF INFINITE ORDER IN THE
HALF-PLANE

IRINA I. KOZLOVA

ABSTRACT. In this study, it is proved that if a proper subharmonic function of infinite order
have full measure at the finite system of rays in the upper half-plane then its lower order also
equals to infinity.

1. INTRODUCTION

Let v be a subharmonic function in the complex plane C and M (v, r) = o Jax v(re??). The
SUsam

following values

Blvy] = lim sup M, aly] = liminf In M(v, r)

r—00 Inr r—00 nr

are called an order and lower order of the function v, respectively. An order and lower order
of an entire function f are called an order and lower order of subharmonic function In|f|,
respectively.
In [1] the entire functions whose zeros lie on the finite system of rays were considered.
In particular, it was proved that if f is an entire function of infinite order with positive
zeros then its lower order also equals to infinity. This result is easily generalized to the
subharmonic functions in the complex plane: if the measure of Riesz of the subharmonic
function in the entire complex plane v of infinite order is located on a positive half-axis then
its lower order also equals to infinity. We prove the similar result for functions which are
subharmonic in the half-plane.

2. CLASSES OF FUNCTIONS IN THE UPPER HALF-PLANE

Let C4 = {z : Sz > 0} be the upper half-plane of the complex variable z. We denote the
open disc of radius r with center at a by C(a,r) and the intersection of a set 2 with the
half-plane C; by Q,: 2, = QN C,. G means closure of a set G. If 0 < r; < 75 then
D, (r1,7r2) = C4(0,72)\C+(0,7r1) means close half-ring.

Let SK be the class of subharmonic functions in C processing a positive harmonic majorant
in each bounded subdomain of C,. Functions v(z) in SK have the following properties [2]:
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a) v(z) has non-tangential limits v(¢) almost everywhere on the real axis and v(t) €
Llloc(_oovoo);
b) There exists a measure v on the real axis such that

b

i [ ot i) de = v(lo,b) — Su({a)) - Su({b).

The measure v is called the boundary measure of v;

¢) dv(t) = v(t) dt+do(t), where o is a singular measure with respect to Lebesgue measure.

For a function v € SK, following [2], we define the full measure X as

M) =2n [ 3Cdu(Q) -~ v(ie).
CiNK

where p is the Riesz measure of v.
A subharmonic function v in Cy is called proper subharmonic if limsup,_,, v(z) < 0 for all
real numbers ¢ € R. Denote the class of proper subharmonic functions by JS. The full
measure of the function v € JS is a positive measure, which stands for the term ”proper
subharmonic function”.
The class of delta-subharmonic functions J§ is defined as a difference J§ = JS — JS.
The following statements are true [2]:
Statement 1. JS C SK.
Statement 2. J§ = SK — SK.
From Statement 2, it follows that SK C J§. So further we may consider the subharmonic
functions of the class J.S because the functions of the class SK are represented as difference
of two proper subharmonic functions.
For function v € J§ the following representation in a disc z € C (0, R) holds:
W = [ CED g+t [P IR et g,

C+(0,R)

Com 3¢ 2 Jo on

where G(z,() is the Green function of the half-disc, % means a derivative in the inward
normal direction, and the kernel of double integral is ex‘?ended by continuity to the real axis
for [t| < R.

For the measure A denote A(t) = A(C(0,¢)). Let v € J§, v = vy —v_ and A is the full
measure of v. The Jordan decomposition of measure A is A = Ay — A_. Let us introduce
the following characteristics of the function v:

1 (™ . "L
mir,v) = - / vilre®)sinpdp, N(roor)i= [ -0
0o

T(T,’U,To) = m(r, ’U) + N(T7U7T0) + m(TOa 7”)7 r>To,

dt,

where r( is an arbitrary fixed positive number (one may as well take o = 1). Note that (if
it does not cause any misunderstanding) we will write T'(r,v) instead of T'(r,v,rg) and so

on.
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Let Ai(r) = A (C(0,7)). Recall the Carleman’s formula in Grishin’s notation:

1 g i . " A (t 1 i i .
—k/ v(re'?)sinkpdp = / t%(ﬁ dt + 77@/ v(ree?)sinkpdyp,
0 T0 0 J0

T
where -
d\p(T€'?) = MTkil d\(Te™).
sin

The function sin k¢/ sin ¢ is defined for ¢ = 0, 7. In particular for k =1

1 [T , Tt 1 [ ;
(2) f/ v(re'?)sinpdp = / &dt—&— — | w(ree’?)sinpdp.

™ Jo o t To Jo
The formula (2) can be written as
(3) T(r,v) =T(r,—v).

Definition 2.1. A strictly positive continuous increasing unbounded function ~(r), which
is defined on the half-axis [0, +00) is called a growth function.

Definition 2.2. The following values

51 = timsup B 5]t 20

rosoco Inr r—oo Inr

are called an order and lower order of the growth function +, respectively.

Definition 2.3. The values B[rT(r,v)] and o[rT(r,v)] are called an order and lower order
of the function v € J§, respectively.

3. FOURIER COEFFICIENTS OF DELTA-SUBHARMONIC FUNCTIONS

The Fourier coefficients of a function v € J§ are defined by the formula
2 (7 :
ck(ryv) = f/ v(re?)sinkfdf, keN.
T Jo
Let A be a full measure of v € J§, then

2rk T N (t
! D o fen,

k
(4) c(r,v) = agr” + T/, £2k+1 77
0

where ay, = ro_kck.(ro, v), and

rk sin ko
cr(r,v) = apr® + —— // 8 AN () +
kgt JJerme S¢

rk // sin ke 1 // sin ko
— dN(¢) — —— AN (),
7k J . (rory TFSC O i o 3¢ ©

where ¢ = 7¢'% [3]. From definition of cx(r,v), below inequality follows:

2k [T ;
lek(r, )| < —/ [v(re*?)|sinpde.
T Jo
By this inequality and (3) we obtain
(6) rT(r0) > (o), k=12

(5)
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4. THE FUNCTIONS WITH THE FULL MEASURE ON THE FINITE SYSTEM OF RAYS

The main result of this paper is the following theorem.

Theorem 4.1. If v € SK is the subharmonic function in Cy of infinite order with the full
measure X on the finite system of rays Ly = {z : argz = €% 0 = g b k=1,...,q, then
its lower order equals to infinity.

Proof. Let us assume that 0 ¢ suppv. As A lies on the finite system of rays that by formulae
(5) for Fourier coefficients of the function v we obtain

T
en(r,v) = apr™ +Z sm@kn/ t" LA\ (t)
0

q q r
r™sin Oxn d\(t) 1 / 1
E - g sin 6 " dA(t =1,2,....
+ ™ /ro totl —rhmn SOk o (#), n=12,

k=1

Assume 71 is so that C'(0,79) ¢ suppv. Then we obtain

q T
1 1rr\n 1/t\n
(7 cn(r,v) = apr Jrki“msm kn/m e (s (t)
Applying integration by parts twice in (7), we get

2« (n+1)r
= ay N 0 Ornx
en(r,v) = apr™ +7r Zsm kn + ——— Zsm %0

(8) . k=1
N( /tn IN( )d

tn-{-l
- "t
where N(r) :/ %dt.

As B ~
S YR LIRS PR (L)
0

Trh wrh s

To

that from (8) with n = 2971 + 2971 [ =1,2,..., we obtain

cn(r,v)zan_'_n—l-l N(rl)dt—&—N(r).
T T ro 1T Trn

(9)

If the function N (r) has infinite order then the integral which stands in the right part of
the last inequality is unlimited as 7 — oo because

/mN(t)dt>N(T) n=1,2

tn_j’_l — n/rn ) ) AR

and right part of this inequality can be made as much as big for a suitable choice of r. By
this inequality and (6), from (9) we get the desired statement.

If N(r) have finite order then there exist positive numbers K > 0 and p > 0 such that
N(r) < Kr? for all r > 0. It is possible to consider that p is not an integer. From here it
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follows that

- 2TA(t) dat o Ar)
KQPT"DZN(Q’I“)Z/ tTdtZ)\(T)/r ?Z?’

ie.

Ar) < K2eFtprtl
In this case from the paper [2] it follows that there exists a function g € JS of order p with
full measure A. Then the function G =v — g € J§ and Ag = 0.

Further we need a lemma.

Lemma 4.2. If G € J§ and A\g = 0, then G(z) = Sf(z), where f(2) is an entire real
function.

Proof. Remind that the entire function is called real if f(R) C R [4].
As the full measure of function G equals to zero then from (1) it follows that for any R > 0
_ R /Tr 0G(z, Re'#)

The right part is a harmonic function in a half-disc C'4 (0, R), which is extended to zero on

G(z) G(Re*?)dp,z € Cy(0,R).

an interval (—R, R) continuously. As R is an arbitrary positive number, then function G(z)
is harmonic in a half-plane C4, which is extended to zero on real axis, continuously. By
the principle of symmetry this function is extended as harmonic on the lower half-plane.
Then there exists harmonic function h(z) on the complex plane such that f(R) = 0 and
G(z) = h(z) for Sz > 0.

Let —hy(z) be a function which is harmoniously conjugated to function h(z). Then f(z) =
hi(z) 4+ ih(z) is an entire function, real on a real axis and h(z) = S f(z). The lemma is
proved. O

According to lemma we have G(z) = S f(z), where f(z) is an entire real function,

f(z) = Z anz" .
n=0

If we have a,, # 0 for only finite number, then f(z) is a polynomial, hence G and v have
finite orders that contradicts to the condition.
As

en(r,G)=a,r" ,n=1,2,...,

then from the inequality we have

rT(r,v) > rT(r,G) —rT(r,g) > % len(r,G)| + O(r?) >
1
3 }an|r"+0(rp),r%oo,n: 1,2,....
Tt follows that «[rT(r,v)] = co. The theorem is proved. O

Acknowledgement. The author expresses her gratitude to Prof. Malyutin for his help in
defining the problem and management of this study.



14 IRINA I. KOZLOVA

REFERENCES

[1] Miles, J.B., On entire functions of infinite order with radially distributed zeros, Pacif. J. Math. Derg.
81(1) (1979), 131-157.

[2] Grishin, A.F., Continuity and asymptotic continuity of subharmonic functions, Mat. Fiz., Anal., Geom.
Derg. 1 (1994), 193-215 (in Russian).

[3] Malyutin, K.G., Fourier series and §-subharmonic functions of finite v-type in a half-plane, Mat. Sb.
Derg. 192(6) (2001), 51-70 (in Russian); English transl. in Sb.: Math. 192(6) (2001).

[4] Levin, B.Ya., Distribution of Zeros of Entire Functions, English revised edition Amer. Math. Soc,

Providence, RI, 523pp. MR 81k:30011.

Irina I. KOZLOVA, Sumy State University, Department of Mathematical Analysis, 2, Rimskogo-Korsakova
str., UKR-40007, Sumy, Ukraine, e-mail: angelinarena@yahoo.com



