SUBHARMONIC FUNCTION OF INFINITE ORDER IN THE HALF-PLANE

IRINA I. KOZLOVA

Abstract

In this study, it is proved that if a proper subharmonic function of infinite order have full measure at the finite system of rays in the upper half-plane then its lower order also equals to infinity.

1. Introduction

Let v be a subharmonic function in the complex plane \mathbb{C} and $M(v, r)=\max _{0 \leq \theta \leq 2 \pi} v\left(r e^{i \theta}\right)$. The following values

$$
\beta[\gamma]=\underset{r \rightarrow \infty}{\limsup } \frac{\ln M(v, r)}{\ln r}, \quad \alpha[\gamma]=\liminf _{r \rightarrow \infty} \frac{\ln M(v, r)}{\ln r}
$$

are called an order and lower order of the function v, respectively. An order and lower order of an entire function f are called an order and lower order of subharmonic function $\ln |f|$, respectively.
In [1] the entire functions whose zeros lie on the finite system of rays were considered. In particular, it was proved that if f is an entire function of infinite order with positive zeros then its lower order also equals to infinity. This result is easily generalized to the subharmonic functions in the complex plane: if the measure of Riesz of the subharmonic function in the entire complex plane v of infinite order is located on a positive half-axis then its lower order also equals to infinity. We prove the similar result for functions which are subharmonic in the half-plane.

2. Classes of functions in the upper half-Plane

Let $\mathbb{C}_{+}=\{z: \Im z>0\}$ be the upper half-plane of the complex variable z. We denote the open disc of radius r with center at a by $C(a, r)$ and the intersection of a set Ω with the half-plane \mathbb{C}_{+}by $\Omega_{+}: \Omega_{+}=\Omega \cap \mathbb{C}_{+}$. \bar{G} means closure of a set G. If $0<r_{1}<r_{2}$ then $D_{+}\left(r_{1}, r_{2}\right)=\overline{C_{+}\left(0, r_{2}\right) \backslash C_{+}\left(0, r_{1}\right)}$ means close half-ring.
Let $S K$ be the class of subharmonic functions in \mathbb{C}_{+}processing a positive harmonic majorant in each bounded subdomain of \mathbb{C}_{+}. Functions $v(z)$ in $S K$ have the following properties [2]:

[^0]a) $v(z)$ has non-tangential limits $v(t)$ almost everywhere on the real axis and $v(t) \in$ $L_{l o c}^{1}(-\infty, \infty)$;
b) There exists a measure ν on the real axis such that
$$
\lim _{y \rightarrow+0} \int_{a}^{b} v(t+i y) d t=\nu([a, b])-\frac{1}{2} \nu(\{a\})-\frac{1}{2} \nu(\{b\}) .
$$

The measure ν is called the boundary measure of v;
c) $d \nu(t)=v(t) d t+d \sigma(t)$, where σ is a singular measure with respect to Lebesgue measure.

For a function $v \in S K$, following [2], we define the full measure λ as

$$
\lambda(K)=2 \pi \int_{\mathbb{C}_{+} \cap K} \Im \zeta d \mu(\zeta)-\nu(K)
$$

where μ is the Riesz measure of v.
A subharmonic function v in \mathbb{C}_{+}is called proper subharmonic if $\limsup _{z \rightarrow t} v(z) \leq 0$ for all real numbers $t \in \mathbb{R}$. Denote the class of proper subharmonic functions by $J S$. The full measure of the function $v \in J S$ is a positive measure, which stands for the term "proper subharmonic function".
The class of delta-subharmonic functions $J \delta$ is defined as a difference $J \delta=J S-J S$.
The following statements are true [2]:
Statement 1. $J S \subset S K$.
Statement 2. $J \delta=S K-S K$.
From Statement 2, it follows that $S K \subset J \delta$. So further we may consider the subharmonic functions of the class $J S$ because the functions of the class $S K$ are represented as difference of two proper subharmonic functions.
For function $v \in J \delta$ the following representation in a disc $z \in C_{+}(0, R)$ holds:

$$
\begin{equation*}
v(z)=-\frac{1}{2 \pi} \iint_{\overline{C_{+}(0, R)}} \frac{G(z, \zeta)}{\Im \zeta} d \lambda(\zeta)+\frac{R}{2 \pi} \int_{0}^{\pi} \frac{\partial G\left(z, R e^{i \varphi}\right)}{\partial n} v\left(R e^{i \varphi}\right) d \varphi \tag{1}
\end{equation*}
$$

where $G(z, \zeta)$ is the Green function of the half-disc, $\frac{\partial G}{\partial n}$ means a derivative in the inward normal direction, and the kernel of double integral is extended by continuity to the real axis for $|t| \leq R$.
For the measure λ denote $\lambda(t)=\lambda(\overline{C(0, t)})$. Let $v \in J \delta, v=v_{+}-v_{-}$and λ is the full measure of v. The Jordan decomposition of measure λ is $\lambda=\lambda_{+}-\lambda_{-}$. Let us introduce the following characteristics of the function v :

$$
\begin{gathered}
m(r, v):=\frac{1}{r} \int_{0}^{\pi} v_{+}\left(r e^{i \varphi}\right) \sin \varphi d \varphi, \quad N\left(r, v, r_{0}\right):=\int_{r_{0}}^{r} \frac{\lambda_{-}(t)}{t^{3}} d t \\
T\left(r, v, r_{0}\right):=m(r, v)+N\left(r, v, r_{0}\right)+m\left(r_{0},-v\right), \quad r>r_{0}
\end{gathered}
$$

where r_{0} is an arbitrary fixed positive number (one may as well take $r_{0}=1$). Note that (if it does not cause any misunderstanding) we will write $T(r, v)$ instead of $T\left(r, v, r_{0}\right)$ and so on.

Let $\lambda_{k}(r)=\lambda_{k}(\overline{C(0, r)})$. Recall the Carleman's formula in Grishin's notation:

$$
\frac{1}{r^{k}} \int_{0}^{\pi} v\left(r e^{i \varphi}\right) \sin k \varphi d \varphi=\int_{r_{0}}^{r} \frac{\lambda_{k}(t)}{t^{2 k+1}} d t+\frac{1}{r_{0}^{k}} \int_{0}^{\pi} v\left(r_{0} e^{i \varphi}\right) \sin k \varphi d \varphi
$$

where

$$
d \lambda_{k}\left(\tau e^{i \varphi}\right)=\frac{\sin k \varphi}{\sin \varphi} \tau^{k-1} d \lambda\left(\tau e^{i \varphi}\right)
$$

The function $\sin k \varphi / \sin \varphi$ is defined for $\varphi=0, \pi$. In particular for $k=1$

$$
\begin{equation*}
\frac{1}{r} \int_{0}^{\pi} v\left(r e^{i \varphi}\right) \sin \varphi d \varphi=\int_{r_{0}}^{r} \frac{\lambda(t)}{t^{3}} d t+\frac{1}{r_{0}} \int_{0}^{\pi} v\left(r_{0} e^{i \varphi}\right) \sin \varphi d \varphi \tag{2}
\end{equation*}
$$

The formula (2) can be written as

$$
\begin{equation*}
T(r, v)=T(r,-v) \tag{3}
\end{equation*}
$$

Definition 2.1. A strictly positive continuous increasing unbounded function $\gamma(r)$, which is defined on the half-axis $[0,+\infty)$ is called a growth function.

Definition 2.2. The following values

$$
\beta[\gamma]=\limsup _{r \rightarrow \infty} \frac{\ln \gamma(r)}{\ln r}, \quad \alpha[\gamma]=\liminf _{r \rightarrow \infty} \frac{\ln \gamma(r)}{\ln r}
$$

are called an order and lower order of the growth function γ, respectively.
Definition 2.3. The values $\beta[r T(r, v)]$ and $\alpha[r T(r, v)]$ are called an order and lower order of the function $v \in J \delta$, respectively.

3. Fourier coefficients of delta-Subharmonic functions

The Fourier coefficients of a function $v \in J \delta$ are defined by the formula

$$
c_{k}(r, v)=\frac{2}{\pi} \int_{0}^{\pi} v\left(r e^{i \theta}\right) \sin k \theta d \theta, \quad k \in \mathbb{N} .
$$

Let λ be a full measure of $v \in J \delta$, then

$$
\begin{equation*}
c_{k}(r, v)=\alpha_{k} r^{k}+\frac{2 r^{k}}{\pi} \int_{r_{0}}^{r} \frac{\lambda_{k}(t)}{t^{2 k+1}} d t, \quad k \in \mathbb{N}, \tag{4}
\end{equation*}
$$

where $\alpha_{k}=r_{0}^{-k} c_{k}\left(r_{0}, v\right)$, and

$$
\begin{gather*}
c_{k}(r, v)=\alpha_{k} r^{k}+\frac{r^{k}}{\pi k r_{0}^{2 k}} \iint_{\overline{C_{+}\left(0, r_{0}\right)}} \frac{\sin k \varphi}{\Im \zeta} \tau^{k} d \lambda(\zeta)+ \\
\frac{r^{k}}{\pi k} \iint_{D_{+}\left(r_{0}, r\right)} \frac{\sin k \varphi}{\tau^{k} \Im \zeta} d \lambda(\zeta)-\frac{1}{r^{k} \pi k} \iint_{\overline{C_{+}(0, r)}} \frac{\sin k \varphi}{\Im \zeta} \tau^{k} d \lambda(\zeta), \tag{5}
\end{gather*}
$$

where $\zeta=\tau e^{i \varphi}$ [3]. From definition of $c_{k}(r, v)$, below inequality follows:

$$
\left|c_{k}(r, v)\right| \leq \frac{2 k}{\pi} \int_{0}^{\pi}\left|v\left(r e^{i \varphi}\right)\right| \sin \varphi d \varphi
$$

By this inequality and (3) we obtain

$$
\begin{equation*}
r T(r, v) \geq \frac{\pi}{2 k}\left|c_{k}(r, v)\right|, \quad k=1,2, \ldots \tag{6}
\end{equation*}
$$

4. The functions with the full measure on the finite system of rays

The main result of this paper is the following theorem.
Theorem 4.1. If $v \in S K$ is the subharmonic function in \mathbb{C}_{+}of infinite order with the full measure λ on the finite system of rays $\mathbb{L}_{k}=\left\{z: \arg z=e^{i \theta_{k}}, \theta_{k}=\frac{\pi}{2^{k}}\right\}, k=1, \ldots, q$, then its lower order equals to infinity.

Proof. Let us assume that $0 \notin \operatorname{supp} v$. As λ lies on the finite system of rays that by formulae (5) for Fourier coefficients of the function v we obtain

$$
\begin{gathered}
c_{n}(r, v)=\alpha_{n} r^{n}+\sum_{k=1}^{q} \frac{r^{n}}{\pi n r_{0}^{2 n}} \sin \theta_{k} n \int_{0}^{r_{0}} t^{n-1} d \lambda(t) \\
+\sum_{k=1}^{q} \frac{r^{n} \sin \theta_{k} n}{\pi n} \int_{r_{0}}^{r} \frac{d \lambda(t)}{t^{n+1}}-\sum_{k=1}^{q} \frac{1}{r^{n} \pi n} \sin \theta_{k} n \int_{0}^{r} t^{n-1} d \lambda(t), n=1,2, \ldots
\end{gathered}
$$

Assume r_{0} is so that $C\left(0, r_{0}\right) \notin \operatorname{supp} v$. Then we obtain

$$
\begin{equation*}
c_{n}(r, v)=\alpha_{n} r^{n}+\sum_{k=1}^{q} \frac{1}{\pi n} \sin \theta_{k} n \int_{r_{0}}^{r}\left[\frac{1}{t}\left(\frac{r}{t}\right)^{n}-\frac{1}{t}\left(\frac{t}{r}\right)^{n}\right] d \lambda(t) . \tag{7}
\end{equation*}
$$

Applying integration by parts twice in (7), we get

$$
\begin{gather*}
c_{n}(r, v)=\alpha_{n} r^{n}+\frac{2}{\pi} \tilde{N}(r) \sum_{k=1}^{q} \sin \theta_{k} n+\frac{(n+1) r^{n}}{\pi} \sum_{k=1}^{q} \sin \theta_{k} n \times \tag{8}\\
\int_{r_{0}}^{r} \frac{\tilde{N}(r)}{t^{n+1}} d t-\frac{n-1}{\pi r^{n}} \sum_{k=1}^{q} \sin \theta_{k} n \int_{r_{0}}^{r} t^{n-1} \tilde{N}(r) d t
\end{gather*}
$$

where $\tilde{N}(r)=\int_{r_{0}}^{r} \frac{\lambda(t)}{t^{2}} d t$.
As

$$
\frac{n-1}{\pi r^{n}} \int_{r_{0}}^{r} t^{n-1} \tilde{N}(r) d t \leq \frac{\tilde{N}(r)(n-1)}{\pi r^{n}} \int_{0}^{r} t^{n-1} d t=\frac{\tilde{N}(r)}{\pi}
$$

that from (8) with $n=2^{q-1}+2^{q+1} l, l=1,2, \ldots$, we obtain

$$
\begin{equation*}
\frac{c_{n}(r, v)}{r^{n}} \geq \alpha_{n}+\frac{n+1}{\pi} \int_{r_{0}}^{r} \frac{\tilde{N}(r)}{t^{n+1}} d t+\frac{\tilde{N}(r)}{\pi r^{n}} \tag{9}
\end{equation*}
$$

If the function $\tilde{N}(r)$ has infinite order then the integral which stands in the right part of the last inequality is unlimited as $r \rightarrow \infty$ because

$$
\int_{r}^{\infty} \frac{\tilde{N}(t)}{t^{n+1}} d t \geq \frac{\tilde{N}(r)}{n r^{n}}, \quad n=1,2, \ldots
$$

and right part of this inequality can be made as much as big for a suitable choice of r. By this inequality and (6), from (9) we get the desired statement.
If $\tilde{N}(r)$ have finite order then there exist positive numbers $K>0$ and $\rho>0$ such that $\tilde{N}(r) \leq K r^{\rho}$ for all $r>0$. It is possible to consider that ρ is not an integer. From here it
follows that

$$
K 2^{\rho} r^{\rho} \geq \tilde{N}(2 r) \geq \int_{r}^{2 r} \frac{\lambda(t)}{t^{2}} d t \geq \lambda(r) \int_{r}^{2 r} \frac{d t}{t^{2}}=\frac{\lambda(r)}{2 r}
$$

i.e.

$$
\lambda(r) \leq K 2^{\rho+1} r^{\rho+1}
$$

In this case from the paper [2] it follows that there exists a function $g \in J S$ of order ρ with full measure λ. Then the function $G=v-g \in J \delta$ and $\lambda_{G} \equiv 0$.
Further we need a lemma.
Lemma 4.2. If $G \in J \delta$ and $\lambda_{G} \equiv 0$, then $G(z)=\Im f(z)$, where $f(z)$ is an entire real function.

Proof. Remind that the entire function is called real if $f(\mathbb{R}) \subset \mathbb{R}[4]$.
As the full measure of function G equals to zero then from (1) it follows that for any $R>0$

$$
G(z)=\frac{R}{2 \pi} \int_{0}^{\pi} \frac{\partial G\left(z, R e^{i \varphi}\right)}{\partial n} G\left(R e^{i \varphi}\right) d \varphi, z \in C_{+}(0, R)
$$

The right part is a harmonic function in a half-disc $C_{+}(0, R)$, which is extended to zero on an interval $(-R, R)$ continuously. As R is an arbitrary positive number, then function $G(z)$ is harmonic in a half-plane \mathbb{C}_{+}, which is extended to zero on real axis, continuously. By the principle of symmetry this function is extended as harmonic on the lower half-plane. Then there exists harmonic function $h(z)$ on the complex plane such that $f(\mathbb{R})=0$ and $G(z)=h(z)$ for $\Im z>0$.
Let $-h_{1}(z)$ be a function which is harmoniously conjugated to function $h(z)$. Then $f(z)=$ $h_{1}(z)+i h(z)$ is an entire function, real on a real axis and $h(z)=\Im f(z)$. The lemma is proved.

According to lemma we have $G(z)=\Im f(z)$, where $f(z)$ is an entire real function,

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

If we have $a_{n} \neq 0$ for only finite number, then $f(z)$ is a polynomial, hence G and v have finite orders that contradicts to the condition.
As

$$
c_{n}(r, G)=a_{n} r^{n}, n=1,2, \ldots,
$$

then from the inequality we have

$$
\begin{aligned}
r T(r, v) & \geq r T(r, G)-r T(r, g) \geq \frac{\pi}{2 n}\left|c_{n}(r, G)\right|+O\left(r^{\rho}\right) \geq \\
& \frac{1}{2}\left|a_{n}\right| r^{n}+O\left(r^{\rho}\right), r \rightarrow \infty, n=1,2, \ldots
\end{aligned}
$$

It follows that $\alpha[r T(r, v)]=\infty$. The theorem is proved.
Acknowledgement. The author expresses her gratitude to Prof. Malyutin for his help in defining the problem and management of this study.

References

[1] Miles, J.B., On entire functions of infinite order with radially distributed zeros, Pacif. J. Math. Derg. 81(1) (1979), 131-157.
[2] Grishin, A.F., Continuity and asymptotic continuity of subharmonic functions, Mat. Fiz., Anal., Geom. Derg. 1 (1994), 193-215 (in Russian).
[3] Malyutin, K.G., Fourier series and δ-subharmonic functions of finite γ-type in a half-plane, Mat. Sb. Derg. 192(6) (2001), 51-70 (in Russian); English transl. in Sb.: Math. 192(6) (2001).
[4] Levin, B.Ya., Distribution of Zeros of Entire Functions, English revised edition Amer. Math. Soc, Providence, RI, 523pp. MR 81k:30011.

Irina I. KOZLOVA, Sumy State University, Department of Mathematical Analysis, 2, Rimskogo-Korsakova str., UKR-40007, Sumy, Ukraine, e-mail: angelinarena@yahoo.com

[^0]: Received May 7, 2013.
 2010 Mathematics Subject Classification. Primary Primary: 30D35; Secondary: 30D15.
 Keywords and phrases. Proper subharmonic function, infinite order, lower order, Fourier coefficients, full measure.

