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GENERALIZED FUZZY SUBHYPERSPACES BASED ON FUZZY
POINTS

O. R. DEHGHAN AND M. NOROUZI

Abstract. We define (∈,∈ ∨qδ)-fuzzy subhyperspaces and (∈,∈ ∨qδk)-fuzzy
subhyperspaces, as a generalization of fuzzy subhyperspaces, (∈,∈ ∨q)-fuzzy
subhyperspaces and (∈,∈ ∨qk)-fuzzy subhyperspaces. In this way, we show
that (∈,∈ ∨qδk)-fuzzy subhyperspaces are the largest family of generalized
fuzzy subhyperspaces based on concepts of belongingness and quasi-coincidence.
Moreover, we study some properties and investigate the difference of general-
ized fuzzy subhyperspaces, supported by examples.

1. Introduction

The theory of fuzzy set was initiated by Zadeh [23] in 1965. It was extended to
algebra by Rosenfeld [17] with defining fuzzy subgroups. Then other fuzzy algebraic
structures have been investigated, such as fuzzy semigroups, fuzzy ideals, fuzzy
vector spaces and so on. For more information about fuzzy algebraic structures
refer to [15] and [16].
Algebraic hyperstructures was introduced by Marty [14] in 1934, when he defined

hypergroups. Similarly fuzzy algebraic hyperstructures were investigated in many
branches ([8]). Ameri [1] introduced fuzzy subhyperspaces of hypervector spaces in
the sense of Scafatti-Tallini [18]. Fuzzy subhyperspaces were studied more in [2],
[3] and [13].
After defining the concept of (∈,∈ ∨q)-fuzzy subgroups by Bhakat and Das [4] as

an important generalization of Rosenfeld’s fuzzy subgroups, this notion and its an-
other type, (∈,∈ ∨qk)-fuzzy subgroups, were studied on many algebraic structures
(see [9]). In context of hyperstructures theory, as an extension of fuzzy subhy-
perstructures, Davvaz and Corsini defined (∈,∈ ∨q)-fuzzy subhyperquasigroups in
[5]. Furthermore, semihypergroups were characterized by (∈,∈ ∨qk)-fuzzy hyper-
ideals and (∈γ ,∈γ ∨qδ)-fuzzy hyperideals in [19] and [20], respectively. Moreover,
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(∈,∈ ∨q)-fuzzy n-ary subhypergroups in [12] and [22], (∈,∈ ∨q)-fuzzy and (∈,∈∨q)-
fuzzy n-ary subpolygroups in [11] and (∈γ ,∈γ ∨qδ)-fuzzy n-ary subhypergroups in
[21], had been studied. Also, this concept and related topics were investigated on
Hv-rings in [6], hypermodules in [24] and (m,n)-ary hypermodules in [7].
A new generalization of (∈,∈ ∨q)-fuzzy subgroups was defined by Jun et al.

([10]) which called (∈,∈ ∨qδ)-fuzzy subgroups. Now, in this paper, we introduce
new generalizations of a fuzzy subhyperspace. In this regards, (∈,∈ ∨qδ)-fuzzy
subhyperspaces and (∈,∈ ∨qδk)-fuzzy subhyperspaces as generalizations of fuzzy
subhyperspaces, (∈,∈ ∨q)-fuzzy subhyperspaces and also (∈,∈ ∨qk)-fuzzy subhy-
perspaces are defined. It is shown that these notions construct a bigger family
for generalized fuzzy subhyperspaces and also indicated that subhyperspaces are
characterized by them. Moreover, connections and differences of them are studied,
supported by illustrative examples.

2. Preliminaries

In this section we present some definitions and properties of hypervector spaces
and fuzzy subhyperspaces that we shall use in later.

Definition 1. [18] Let K be a field, (V,+) be an Abelian group and P∗(V ) be the
set of all non-empty subsets of V . We define a hypervector space over K to be the
quadruplet (V,+, ◦,K), where “ ◦ ” is an external hyperoperation

◦ : K × V −→ P∗(V ),

such that for all a, b ∈ K and x, y ∈ V the following conditions hold:

(H1) a ◦ (x+ y) ⊆ a ◦ x+ a ◦ y, right distributive law,
(H2) (a+ b) ◦ x ⊆ a ◦ x+ b ◦ x, left distributive law,
(H3) a ◦ (b ◦ x) = (ab) ◦ x,
(H4) a ◦ (−x) = (−a) ◦ x = −(a ◦ x),
(H5) x ∈ 1 ◦ x,

where in (H1), a ◦ x+ a ◦ y = {p+ q : p ∈ a ◦ x, q ∈ a ◦ y}. Similarly it is in (H2).
Also in (H3), a ◦ (b ◦ x) =

⋃
t∈b◦x

a ◦ t.

V is called strongly right distributive, if we have equality in (H1). In a similar
way we define the strongly left distributive hypervector spaces. V is called strongly
distributive, if it is strongly right and left distributive.
A non-empty subset W of V is called a subhyperspace of V if W is itself a

hypervector space with the external hyperoperation on V , i.e. for all a ∈ K and
x, y ∈W , x− y ∈W and a ◦ x ⊆W .

In the sequel of this paper, V denotes a hypervector space over the field K,
unless otherwise is specified.
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Example 2. [2] In classical vector space (R3,+, .,R) we define:{
◦ : R × R3 −→ P∗(R3)

a ◦ (x0, y0, z0) = L,

where L is a line with the parametric equations:

L :

 x = ax0,
y = ay0,
z = t.

Then V = (R3,+, ◦,R) is a strongly left distributive hypervector space.

Definition 3. [1] A fuzzy subset µ of V is called a fuzzy subhyperspace of V , if for
all a ∈ K and x, y ∈ V , the following conditions are satisfied:

1) µ(x− y) ≥ µ(x) ∧ µ(y),
2)

∧
t∈a◦x

µ(t) ≥ µ(x).

Example 4. (modified example 2.16, of [3]) Consider the hypervector space V =
(R3,+, ◦,R) in Example 2. Define a fuzzy subset µ of V by the following:

µ(x, y, z) =

 t3 (x, y, z) ∈ {0} × {0} × R,
t2 (x, y, z) ∈ R× {0} × R\{0} × {0} × R,
t1 otherwise,

where 0 ≤ t1 < t2 < t3 ≤ 1. Then µ is a fuzzy subhyperspace of V .

3. (α, β)-Fuzzy Subhyperspaces

A fuzzy subset µ of a hypervector space V defined by

µ(y) =

{
t (6= 0), if y = x
0, if y 6= x

is said to be a fuzzy point with the support x and the value t and is denoted by xt.
For a fuzzy point xt and the fuzzy subset µ we write
(1) xt ∈ µ⇔ µ(x) ≥ t.
(2) xtqµ⇔ µ(x) + t > 1.
(3) xtqkµ⇔ µ(x) + t+ k > 1, for k ∈ [0, 1).
(4) xtq

δµ⇔ µ(x) + t > δ, for δ ∈ (0, 1].
(5) xtq

δ
kµ⇔ µ(x) + t+ k > δ, for (k, δ) ∈ [0, 1)× (0, 1].

In case (1) we say that xt is belong to µ and in (2) xt is quasi-coincident with the
fuzzy subset µ. For a fuzzy point xt, we write xt ∈ ∨qµ (xt ∈ ∧qµ) if xt ∈ µ or
xtqµ (xt ∈ µ and xtqµ). Similarly, we have xt ∈ ∨qkµ and xt ∈ ∧qkµ. Also, for
α ∈ {∈, q, qk,∈ ∨q,∈ ∧q, . . .}, the notation xtαµ means that xtαµ does not hold.

Definition 5. A fuzzy subset µ of V is called an (∈,∈ ∨qδk)-fuzzy subhyperspace of
V , if for all t, r ∈ [0, 1), x, y ∈ V and a ∈ K:
kδ1) xt ∈ µ and yr ∈ µ imply that (x− y)t∧r ∈ ∨qδkµ;
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kδ2) xt ∈ µ implies that zt ∈ ∨qδkµ, for all z ∈ a ◦ x.
µ is called an (∈,∈ ∨q)-fuzzy subhyperspace of V , if δ = 1 and k = 0. It is called

an (∈,∈ ∨qk)-fuzzy subhyperspace of V , if δ = 1. Also, µ is called an (∈,∈ ∨qδ)-
fuzzy subhyperspace of V , if k = 0.

Theorem 6. A fuzzy subset µ of V is an (∈,∈ ∨qδk)-fuzzy subhyperspace of V if
and only if for all x, y ∈ V and a ∈ K the following conditions hold:

´kδ1) µ(x− y) ≥ µ(x) ∧ µ(y) ∧ δ−k
2 ;

´kδ2)
∧

z∈a◦x
µ(z) ≥ µ(x) ∧ δ−k

2 .

Proof. Let µ be an (∈,∈ ∨qδk)-fuzzy subhyperspace of V . Assume that ´(kδ1) is
not valid, i.e. there exist x, y ∈ V such that µ(x − y) < µ(x) ∧ µ(y) ∧ δ−k

2 .
Then µ(x − y) < t ≤ µ(x) ∧ µ(y) ∧ δ−k

2 , for some t ∈ (0, 1]. Thus t ≤ µ(x) and
t ≤ µ(y), and so xt, yt ∈ µ. Hence (x − y)t ∈ ∨qδkµ. But µ(x − y) < t and also
µ(x − y) + t < t + t ≤ δ−k

2 + δ−k
2 = δ − k. It follows that µ(x − y) + t + k ≤ δ.

Therefore, (x− y)t∈ ∨qδkµ, which is a contradiction. Consequently, ´(kδ1) is valid.
Now if there exist some x, z ∈ V and a ∈ K, such that z ∈ a ◦ x and µ(z) <

µ(x) ∧ δ−k
2 , then µ(z) < t ≤ µ(x) ∧ δ−k

2 , for some t ∈ (0, 1]. Thus t ≤ µ(x) and so
xt ∈ µ. Hence zt ∈ ∨qδkµ. But µ(z) < t and also µ(z)+t < t+t ≤ δ−k

2 + δ−k
2 = δ−k.

Thus µ(z)+ t+k ≤ δ. Therefore zt∈ ∨qδkµ, which is a contradiction. Consequently,
´(kδ2) is valid.
Conversely, let xt ∈ µ and yr ∈ µ. Then µ(x) ≥ t and µ(y) ≥ r. Thus by ´(kδ1),

µ(x− y) ≥ t ∧ r ∧ δ−k
2 . If t ∧ r ≤

δ−k
2 , then µ(x− y) ≥ t ∧ r and so (x− y)t∧r ∈ µ.

If t ∧ r > δ−k
2 , then µ(x − y) ≥ δ−k

2 and µ(x − y) + (t ∧ r) > δ−k
2 + δ−k

2 = δ − k.
Thus µ(x− y) + (t∧ r) + k > δ. Hence (x− y)t∧rq

δ
kµ. Therefore (x− y)t∧r ∈ ∨qδkµ.

Similarly, ´(kδ2) implies (kδ2). �
Corollary 7. Let µ ∈ FS(V ), i.e. µ is a fuzzy subset of V . Then µ is

1) an (∈,∈ ∨q)-fuzzy subhyperspace of V if and only if for all x, y ∈ V and
a ∈ K, µ(x− y) ≥ µ(x) ∧ µ(y) ∧ 0.5 and

∧
z∈a◦x

µ(z) ≥ µ(x) ∧ 0.5;

2) an (∈,∈ ∨qk)-fuzzy subhyperspace of V if and only if for all x, y ∈ V and
a ∈ K, µ(x− y) ≥ µ(x) ∧ µ(y) ∧ 1−k

2 and
∧

z∈a◦x
µ(z) ≥ µ(x) ∧ 1−k

2 ;

3) an (∈,∈ ∨qδ)-fuzzy subhyperspace of V if and only if for all x, y ∈ V and
a ∈ K, µ(x− y) ≥ µ(x) ∧ µ(y) ∧ δ

2 and
∧

z∈a◦x
µ(z) ≥ µ(x) ∧ δ

2 .

Example 8. Consider the hypervector space V = (R3,+, ◦,R) in Example 2. De-
fine a fuzzy subset µ of V by the following:

µ(x, y, z) =


1
2 (x, y, z) = (0, 0, 0),
1
3 (x, y, z) ∈ R× {0} × {0} \(0, 0, 0),
1
5 o.w.
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Then µ is an (∈,∈ ∨q0.70.5)-fuzzy subhyperspace of V , but it is not an (∈,∈ ∨q0.80.3)-
fuzzy subhyperspace of V , since the condition ´(kδ2) is not valid (if x = (0, 0, 0)
and z = (0, 0, 2), then for all a ∈ R, z ∈ a ◦ x, so µ(x) = 1

2 , µ(z) = 1
5 and

µ(z) � µ(x) ∧ δ−k
2 ).

In the next example one can see that an (∈,∈ ∨qδk)-fuzzy subhyperspace is not
an (∈,∈ ∨q)-fuzzy subhyperspace or (∈,∈ ∨qk)-fuzzy subhyperspace or (∈,∈ ∨qδ)-
fuzzy subhyperspace of V , in general.

Example 9. Consider the (∈,∈ ∨q0.70.5)-fuzzy subhyperspace µ of V = (R3,+, ◦,R)
in Example 8. Then by Corollary 7, it follows that:

1) µ is not an (∈,∈ ∨q)-fuzzy subhyperspace of V , because if x = (0, 0, 0) and
z = (0, 0, 3), then for all a ∈ R and z ∈ a ◦ x, µ(x) = 1

2 , µ(z) = 1
5 and

µ(z) � µ(x) ∧ 0.5;
2) µ is not an (∈,∈ ∨q0.5)-fuzzy subhyperspace of V , because if x = (0, 0, 0)
and z = (0, 0, 2), then for all a ∈ R and z ∈ a ◦ x, µ(x) = 1

2 , µ(z) = 1
5 and

µ(z) � µ(x) ∧ 1−k
2 ;

3) µ is not an (∈,∈ ∨q0.7)-fuzzy subhyperspace of V , because if x = (1, 0, 0),
a = 2 and z = (2, 0, 5), then z ∈ a ◦ x, µ(x) = 1

3 , µ(z) = 1
5 and µ(z) �

µ(x) ∧ δ
2 .

Theorem 10. Let µ ∈ FS(V ), δ ∈ (0, 1] and k ∈ [0, 1). Then µ is an (∈,∈ ∨qδk)-
fuzzy subhyperspace of V if and only if µt(6= ∅) is a subhyperspace of V , for all
t ∈ (0, δ−k2 ].

Proof. Suppose µ is an (∈,∈ ∨qδk)-fuzzy subhyperspace of V , t ∈ (0, δ−k2 ] and
x, y ∈ µt. Then by Theorem 6,

µ(x− y) ≥ µ(x) ∧ µ(y) ∧ δ − k
2
≥ t ∧ t ∧ δ − k

2
= t.

Thus x − y ∈ µt. Moreover, for all a ∈ K, z ∈ a ◦ x and x ∈ µt, we have
µ(z) ≥ µ(x) ∧ δ−k

2 ≥ t, which means that a ◦ x ⊆ µt. Hence µt is a subhyperspace
of V , for all t ∈ (0, δ−k2 ].

Conversely, let µt be a subhyperspace of V , for all t ∈ (0, δ−k2 ] and let ( ´kδ1) is
not valid. Then there exist x, y ∈ V and t ∈ (0, 1) such that

µ(x− y) < t < µ(x) ∧ µ(y) ∧ δ − k
2

.

Thus x, y ∈ µt for some 0 < t ≤ δ−k
2 , but x − y /∈ µt, which is a contradiction.

Hence ( ´kδ1) is valid. Similarly, we can show ( ´kδ2) is valid. Therefore, by Theorem
6, µ is an (∈,∈ ∨qδk)-fuzzy subhyperspace of V . �
Corollary 11. Let µ ∈ FS(V ). Then µ is

1) an (∈,∈ ∨q)-fuzzy subhyperspace of V if and only if µt( 6= ∅) is a subhyper-
space of V , for all t ∈ (0, 0.5];
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2) an (∈,∈ ∨qk)-fuzzy subhyperspace of V if and only if µt(6= ∅) is a subhy-
perspace of V , for all t ∈ (0, 1−k2 ];

3) an (∈,∈ ∨qδ)-fuzzy subhyperspace of V if and only if µt(6= ∅) is a subhy-
perspace of V , for all t ∈ (0, δ2 ].

Theorem 12. Let µ ∈ FS(V ). Then µt(6= ∅) is a subhyperspace of V , for all
t ∈ ( δ−k2 , 1], if and only if

(i) µ(x− y) ∨ δ−k
2 ≥ µ(x) ∧ µ(y), for all x, y ∈ V ;

(ii)
∧

z∈a◦x
µ(z) ∨ δ−k

2 ≥ µ(x), for all x ∈ V and a ∈ K.

Proof. Let µt(6= ∅) be a subhyperspace of V , for all t ∈ ( δ−k2 , 1]. If there exist
x, y ∈ V such that

µ(x− y) ∨ δ − k
2

< µ(x) ∧ µ(y),

then t0 = µ(x)∧µ(y) ∈ ( δ−k2 , 1] and x, y ∈ µt0 . Thus x−y ∈ µt0 and so µ(x−y) ≥ t0,
which is a contradiction with µ(x − y) ∨ δ−k

2 < t0. Hence (i) holds. Similarly,
condition (ii) will be obtained.
Conversely, assume that t ∈ ( δ−k2 , 1] and x, y ∈ µt. Then

µ(x− y) ∨ δ − k
2

< µ(x) ∧ µ(y) ≥ t > δ − k
2

.

Thus µ(x− y) ≥ t and so x− y ∈ µt. Now let a ∈ K, x ∈ µt and z ∈ a ◦ x. Then

µ(z) ∨ δ − k
2
≥

∧
z∈a◦x

µ(z) ∨ δ − k
2
≥ µ(x) ≥ t,

which implies that µ(z) ≥ t, for all z ∈ a ◦ x. Hence a ◦ x ⊆ µt, for all t ∈ ( δ−k2 , 1].
Therefore, µt is a subhyperspace of V . �

Corollary 13. Let µ ∈ FS(V ). Then

1) µt(6= ∅) is a subhyperspace of V for all t ∈ (0.5, 1] if and only if for all
x, y ∈ V and a ∈ K, µ(x−y)∨0.5 ≥ µ(x)∧µ(y) and

∧
z∈a◦x

µ(z)∨0.5 ≥ µ(x);

2) µt(6= ∅) is a subhyperspace of V for all t ∈ ( 1−k2 , 1] if and only if for all
x, y ∈ V and a ∈ K, µ(x− y) ∨ 1−k

2 ≥ µ(x) ∧ µ(y) and
∧

z∈a◦x
µ(z) ∨ 1−k

2 ≥

µ(x);
3) µt(6= ∅) is a subhyperspace of V for all t ∈ ( δ2 , 1] if and only if for all

x, y ∈ V and a ∈ K, µ(x− y)∨ δ
2 ≥ µ(x)∧ µ(y) and

∧
z∈a◦x

µ(z)∨ δ
2 ≥ µ(x).

Theorem 14. A non-empty subset S of V is a subhyperspace of V if and only if
χS is an (∈,∈ ∨qδk)-fuzzy subhyperspace of V .
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Proof. Let S be a subhyperspace of V and t ∈ (0, δ−k2 ]. If x, y ∈ χSt , then
χS(x), χS(y) ≥ t. Thus χS(x) = χS(y) = 1 and so x − y ∈ S. Hence χS(x − y) =
1 ≥ t, i.e. x − y ∈ χSt . Similarly, a ◦ x ⊆ χSt , for all a ∈ K and x ∈ χSt . Conse-
quently, χSt is a subhyperspace of V , for all t ∈ (0, δ−k2 ]. Therefore, by Theorem
10, χS is an (∈,∈ ∨qδk)-fuzzy subhyperspace of V .
Conversely, let χS be an (∈,∈ ∨qδk)-fuzzy subhyperspace of V , a ∈ K and x ∈ S.

Then by Theorem 6, for all z ∈ a ◦ x,
∧

z∈a◦x
χS(z) ≥ χS(x) ∧ δ−k

2 = 1 ∧ δ−k
2 = δ−k

2 .

Since δ ∈ (0, 1] and k ∈ [0, 1), so χS(z) = 1, for all z ∈ a ◦ x. Thus a ◦ x ⊆ S.
Similarly, x+ y ∈ S, for all x, y ∈ S. Therefore, S is a subhyperspace of V . �
It is well-known that the characterization function of any subhyperspace is a

fuzzy subhyperspace. Hence the following corollary is obtained from Theorem 14:

Corollary 15. A non-empty subset S of V is a subhyperspace of V if and only if
χS is an (∈,∈ ∨q)-fuzzy subhyperspace of V if and only if χS is an (∈,∈ ∨qk)-fuzzy
subhyperspace of V if and only if χS is an (∈,∈ ∨qδ)-fuzzy subhyperspace of V .
Proposition 16. Let δ ∈ (0, 1], k ∈ [0, 1). Then

1) Every (∈,∈ ∨qk)-fuzzy subhyperspace of V is an (∈,∈ ∨qδ)-fuzzy subhyper-
space of V , if δ + k < 1;

2) Every (∈,∈ ∨qδ)-fuzzy subhyperspace of V is an (∈,∈ ∨qk)-fuzzy subhyper-
space of V , if δ + k > 1;

3) For δ+ k = 1, µ is an (∈,∈ ∨qδ)-fuzzy subhyperspace of V if and only if it
is an (∈,∈ ∨qk)-fuzzy subhyperspace of V ;

4) Every (∈,∈ ∨qδk)-fuzzy subhyperspace of V is an (∈,∈ ∨q)-fuzzy subhyper-
space of V , if δ = k + 1;

5) Every (∈,∈ ∨qδk)-fuzzy subhyperspace of V is a fuzzy subhyperspace of V ,
if δ = k.

Proof. 1) Let µ be an (∈,∈ ∨qk)-fuzzy subhyperspace of V . Then by Corollary
7(2), for all x, y ∈ V and a ∈ K, it follows that:

µ(x− y) ≥ µ(x) ∧ µ(y) ∧ 1− k
2
≥ µ(x) ∧ µ(y) ∧ δ

2
,

and ∧
z∈a◦x

µ(z) ≥ µ(x) ∧ 1− k
2
≥ µ(x) ∧ δ

2
.

Thus by Corollary 7(3), µ is an (∈,∈ ∨qδ)-fuzzy subhyperspace of V .
2) The proof is completed by Corollary 7, similarly.
3) One can conclude by Corollary 7(2) and Corollary 7(3).
4) It is straightforward by Theorem 6 and Corollary 7(1).
5) The proof is obtained by Theorem 6 and Definition 3. �
The following example shows that the converse of assertions (1) and (2) of Propo-

sition 16 are not generally true.
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Example 17. Consider the fuzzy subset µ of V = (R3,+, ◦,R) in Example 8. Then
by Corollary 7, it follows that:

1) µ is an (∈,∈ ∨q0.2)-fuzzy subhyperspace of V , but it is not an (∈,∈ ∨q0.4)-
fuzzy subhyperspace of V , because if x = (2, 0, 0), a = 4 and z = (8, 0, 3),
then z ∈ a◦x, µ(x) = 1

3 , µ(z) = 1
5 and µ(z) � µ(x)∧ 1−k2 (δ = 0.2, k = 0.4).

2) µ is an (∈,∈ ∨q0.7)-fuzzy subhyperspace of V , but it is not an (∈,∈ ∨q0.5)-
fuzzy subhyperspace of V , because if x = (3, 0, 0), a = 1 and z = (3, 0, 2),
then z ∈ a ◦ x, µ(x) = 1

3 , µ(z) = 1
5 and µ(z) � µ(x)∧ δ

2 (δ = 0.5, k = 0.7).

Theorem 18. If µ is an (∈,∈ ∨qδk)-fuzzy subhyperspace of V , such that µ(x) ≤
δ−k
2 , for all x ∈ V , then µ is a fuzzy subhyperspace of V .

Proof. By Theorem 6, for all x, y ∈ V and a ∈ K, µ(x− y) ≥ µ(x) ∧ µ(y) ∧ δ−k
2 =

µ(x) ∧ µ(y) and
∧

z∈a◦x
µ(z) ≥ µ(x) ∧ δ−k

2 = µ(x). So µ is a fuzzy subhyperspace of

V . �
Note that in the (∈,∈ ∨q0.70.5)-fuzzy subhyperspace µ of V = (R3,+, ◦,R) in

Example 8, µ(x) � δ−k
2 , for some x ∈ V and µ is not a fuzzy subhyperspace of V .

Corollary 19. Let µ ∈ FS(V ). Then
1) If µ is an (∈,∈ ∨q)-fuzzy subhyperspace of V , such that µ(x) < 0.5, for all

x ∈ V , then µ is a fuzzy subhyperspace of V ;
2) If µ is an (∈,∈ ∨qk)-fuzzy subhyperspace of V , such that µ(x) < 1−k

2 , for
all x ∈ V , then µ is a fuzzy subhyperspace of V ;

3) If µ is an (∈,∈ ∨qδ)-fuzzy subhyperspace of V , such that µ(x) < δ
2 , for all

x ∈ V , then µ is a fuzzy subhyperspace of V .
Proposition 20. Let 0 < δ2 ≤ δ1 ≤ 1 and µ ∈ FS(V ). If µ is an (∈,∈ ∨qδ1k )-fuzzy
subhyperspace of V , then it is an (∈,∈ ∨qδ2k )-fuzzy subhyperspace of V .

Proof. By Theorem 6, µ(x− y) ≥ µ(x) ∧ µ(y) ∧ δ1−k
2 and µ(z) ≥ µ(x) ∧ δ1−k

2 , for
all x, y ∈ V , a ∈ K and z ∈ a◦x. Since δ1 ≥ δ2, thus µ(x− y) ≥ µ(x)∧µ(y)∧ δ2−k

2

and µ(z) ≥ µ(x) ∧ δ2−k
2 . Hence the proof is completed by Theorem 6. �

In the following example it can be seen that the converse of Proposition 20, is
not generally valid.

Example 21. Consider the fuzzy subset µ of the hypervector space V = (R3,+, ◦,R),
in Example 8. Then µ is an (∈,∈ ∨q0.80.5)-fuzzy subhyperspace of V and µ is not an
(∈,∈ ∨q0.950.5 )-fuzzy subhyperspace of V , while δ2 = 0.8 ≤ δ1 = 0.95.

Corollary 22. Let 0 < δ2 ≤ δ1 ≤ 1 and µ ∈ FS(V ). If µ is an (∈,∈ ∨qδ1)-fuzzy
subhyperspace of V , then it is an (∈,∈ ∨qδ2)-fuzzy subhyperspace of V .
Proof. It is straightforward by Corollary 7 and Proposition 20. �
Next example shows that the converse of Corollary 22, is not valid, in general.
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Example 23. Consider the fuzzy subset µ of the hypervector space V = (R3,+, ◦,R),
in Example 8. Then µ is an (∈,∈ ∨q0.3)-fuzzy subhyperspace of V and µ is not an
(∈,∈ ∨q0.5)-fuzzy subhyperspace of V , while δ2 = 0.3 ≤ δ1 = 0.5.

Proposition 24. Let 0 ≤ k1 ≤ k2 < 1 and µ ∈ FS(V ). If µ is an (∈,∈ ∨qδk1)-fuzzy
subhyperspace of V , then it is an (∈,∈ ∨qδk2)-fuzzy subhyperspace of V .

Proof. It is completed by a similar manner of the proof of Proposition 20. �

The converse of Proposition 24, is not valid in general. See the following example:

Example 25. Consider the fuzzy subset µ of the hypervector space V = (R3,+, ◦,R),
in Example 8. Then µ is an (∈,∈ ∨q0.70.4)-fuzzy subhyperspace of V and µ is not an
(∈,∈ ∨q0.70.2)-fuzzy subhyperspace of V , while k1 = 0.2 ≤ k2 = 0.4.

The following corollary is immediately concluded by Corollary 7 and Proposition
24.

Corollary 26. Let 0 ≤ k1 ≤ k2 < 1 and µ ∈ FS(V ). If µ is an (∈,∈ ∨qk1)-fuzzy
subhyperspace of V , then it is an (∈,∈ ∨qk2)-fuzzy subhyperspace of V .

The converse of Corollary 26, is not valid in general. See the next example:

Example 27. Consider the fuzzy subset µ of the hypervector space V = (R3,+, ◦,R),
in Example 8. Then µ is an (∈,∈ ∨q0.7)-fuzzy subhyperspace of V and µ is not an
(∈,∈ ∨q0.5)-fuzzy subhyperspace of V , while k1 = 0.5 ≤ k2 = 0.7.

Theorem 28. Let S be a subhyperspace of V . Then for every t ∈ (0, δ−k2 ], there
exists an (∈,∈ ∨qδk)-fuzzy subhyperspace µ of V such that µt = S.

Proof. Let t ∈ (0, δ−k2 ] and define a fuzzy subset µ of V as

µ(x) =

{
t if x ∈ S
0 otherwise

Clearly, µt = S. Now if there exist x, y ∈ V such that µ(x−y) < µ(x)∧µ(y)∧ δ−k
2 ,

then µ(x− y) = 0 and µ(x) = µ(y) = t, which is a contradiction. Thus µ(x− y) ≥
µ(x)∧µ(y)∧ δ−k2 , for all x, y ∈ V . Similarly,

∧
z∈a◦x

µ(z) ≥ µ(x)∧ δ−k2 , for all a ∈ K.

Hence µ is an (∈,∈ ∨qδk)-fuzzy subhyperspace of V , by Theorem 6. �

Corollary 29. Let S be a subhyperspace of V . Then
1) For every t ∈ (0, 0.5], there exists an (∈,∈ ∨q)-fuzzy subhyperspace µ of V ,
such that µt = S;

2) For every t ∈ (0, 1−k2 ], there exists an (∈,∈ ∨qk)-fuzzy subhyperspace µ of
V , such that µt = S;

3) For every t ∈ (0, δ2 ], there exists an (∈,∈ ∨qδ)-fuzzy subhyperspace µ of V ,
such that µt = S.
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Theorem 30. If µi is an (∈,∈ ∨qδk)-fuzzy subhyperspace of V , for all i ∈ I, then
µ = ∩i∈Iµi is an (∈,∈ ∨qδk)-fuzzy subhyperspace of V .

Proof. Let xt, yr ∈ µ, for x, y ∈ V and t, r ∈ (0, 1) and (x − y)t∧r ∈ ∨qδkµ. Then
µ(x − y) < t ∧ r and µ(x − y) + t ∧ r ≤ δ − k, which imply that µ(x − y) < δ−k

2 .
Now, put I1 = {i ∈ I | (x− y)t∧r ∈ µi} and I2 = {i ∈ I | (x− y)t∧rq

δ
kµi} ∩ {j ∈ I |

(x− y)t∧r∈µj}. Then I = I1 ∪ I2 and I1 ∩ I2 = ∅. If I2 = ∅, then (x− y)t∧r ∈ µi,
for all i ∈ I, which implies that µ(x − y) ≥ t ∧ r, that is a contradiction. Hence
I2 6= ∅, and so for every i ∈ I2, µi(x− y) < t∧ r and µi(x− y) + t∧ r > δ− k, that
is t ∧ r > δ−k

2 . Thus from xt, yr ∈ µ, we can obtain µi(x) ∧ µi(y) > µ(x) ∧ µ(y) >

t ∧ r > δ−k
2 . Now, set α = µi(x − y) < δ−k

2 and take α < β < δ−k
2 . Then

xα, yβ ∈ µi but µi(x − y) = α < β and µi(x − y) + β < δ − k. This contradicts
that µi is an (∈,∈ ∨qδk)-fuzzy subhyperspace of V . Thus µi(x − y) ≥ δ−k

2 , which
is a contradiction. Hence (x− y)t∧r ∈ ∨qδkµ. Similarly, the condition (kδ2) will be
proven. Therefore, µ = ∩i∈Iµi is an (∈,∈ ∨qδk)-fuzzy subhyperspace of V . �

For any fuzzy set µ of V and t ∈ (0, 1] , we denote

(µ)t = {x ∈ V | xt qδk µ} and [µ]t = {x ∈ V | xt ∈ ∨qδk µ}.
Obviously, [µ]t = µt ∪ (µ)t.

Theorem 31. Let µ ∈ FS(V ). Then µ is an (∈,∈ ∨qδk)-fuzzy subhyperspace of V
if and only if [µ]t is a subhyperspace of V , for all t ∈ (0, 1].

Proof. let µ be an (∈,∈ ∨qδk)-fuzzy subhyperspace of V and x, y ∈ [µ]t, for t ∈ (0, 1].
Then µ(x) ≥ t or µ(x)+ t > δ−k, and µ(y) ≥ t or µ(y)+ t > δ−k. Using Theorem
6,
1) for µ(x), µ(y) ≥ t, µ(x − y) ≥ t ∧ δ−k

2 . If t >
δ−k
2 , then µ(x − y) + t >

δ−k
2 + δ−k

2 = δ − k, and so (x − y)tq
δ
kµ. If t ≤ δ−k

2 , then µ(x − y) ≥ t and so
(x− y)t ∈ µ. Thus x− y ∈ [µ]t. Similarly, we can show a ◦ x ⊆ [µ]t, for all a ∈ K,
in this case.
2) for µ(x) ≥ t and µ(y) + t > δ − k, µ(x− y) ≥ t ∧ δ − k − t ∧ δ−k

2 . If t >
δ−k
2 ,

then µ(x− y) > δ− k− t, and so (x− y)tq
δ
kµ. If t ≤ δ−k

2 , then µ(x− y) ≥ t and so
(x− y)t ∈ µ. Thus x− y ∈ [µ]t. Similarly, we can show a ◦ x ⊆ [µ]t, for all a ∈ K,
in this case.
3) for µ(x) + t > δ − k and µ(y) ≥ t, we can prove similar to the case (2).
4) for µ(x) + t > δ−k and µ(y) + t > δ−k, if t > δ−k

2 , then µ(x−y) > δ−k− t,
and if t ≤ δ−k

2 , then µ(x − y) ≥ t. Thus (x − y)t ∈ ∨qδkµ and so x − y ∈ [µ]t.
Similarly, a ◦ x ⊆ [µ]t, for all a ∈ K.
Therefore, [µ]t is a subhyperspace of V .
Conversely, let µ be a fuzzy subset of V and there exist x, y ∈ V such that

µ(x − y) < µ(x) ∧ µ(y) ∧ δ−k
2 , for δ ∈ (0, 1] and k ∈ [0, 1). Then µ(x − y) < t ≥

µ(x) ∧ µ(y) ∧ δ−k
2 , for some t ∈ (0, 1). Thus x, y ∈ [µ]t and so x − y ∈ [µ]t. But
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µ(x − y) < t and µ(x − y) + t ≥ δ − k, which is a contradiction. Hence (1) of
Theorem 6, and similarly the assertion (2) of Theorem 6, are valid. Therefore, µ is
an (∈,∈ ∨qδk)-fuzzy subhyperspace of V . �

4. Conclusion

We define λ(x) + t > δ and λ(x) + t + k > δ as new connections between a
fuzzy point and a fuzzy subset on a hypervector space to generalize the concept of
fuzzy subhyperspaces. These new connections help us to find new generalizations
for fuzzy subhyperspaces and specially the largest family of them based on the
concepts of belongingness and quasi-coincidence. This study can be extended to
other algebraic structures and hyperstructures, in future. The following figure
shows how we extend the family of generalized fuzzy subhyperspaces:

Figure 1. Generalizations of fuzzy subhyperspces
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