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Abstract 

 

In the present study, the bearing capacities of coarse graded soils beneath shallow strip foundations at the 

surface (Df=0) were calculated by means of analytical and numerical methods. First, all necessary 

geotechnical properties of the soil were achieved at seven different relative density values of the soil in 

terms of correlations between friction angle (ϕ) and dry density (γd). Second, 56 bearing capacity analyses 

of shallow strip foundation systems at surface were conducted by changing the soil parameters and the 

width of the foundations with analytical and finite element methods (FEM). The Mohr-Coulomb, elastic-

plastic, model was chosen for this research. Although explicit analytic solutions were obtained without 

any difficulty, FEM provided only the load-deformation response at the base of the footing from the 

models. Because of that, some prediction methods were used to evaluate and find the bearing capacity of 

the soils beneath the foundation from the load-deformation responses. The results of analytic and 

numerical analyses of the shallow strip foundation laying on loose soil models gave very similar values. 

Although, very similar bearing capacity values of the foundations laying on dense soil models were 

calculated using analytical methods, the results of numerical methods were very divergent and scattered at 

the same conditions. The reason for this is due to some limitations of the elastic-plastic model and 

prediction methods. 
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1. Introduction 

 

Shallow foundations are usually requested due to their 

ability to transmit the loads of the structures to be 

designed. For this purpose, the bearing capacity of the 

foundation soil needs to be determined. To find the 

bearing capacity of the soil beneath a shallow 

foundation system, real-size test systems are required. 

In addition, it is necessary to continue the loading to 

exceed the bearing capacity of the foundation soil. This 

process is a formidable task and very expensive. 

Because of those difficulties, Limit equilibrium methods 

used widely in applications are the general bearing 

capacity equations created by Terzaghi [1] Meyerhof 

[2], Vesic [3] and Eurocode 7 [4,5], etc. All of these 

analytical methods give comparable values of the 

bearing capacity of the foundation soils based on both 

the width of the footing (B), the embedment depth of 

the footing (Df), cohesion (cu), internal friction angle 

(ϕ), and unit weight (γ) of the soil. The parameters  

 

 

of the foundation soil are found by in-situ and 

laboratory tests. 

 

Currently, with the development of computer and 

simulation technologies, numerical methods and 

applications of engineering designs are increasing 

progressively. With the help of data obtained from 

experimental studies conducted in the field and 

laboratory in geotechnical engineering, the use of 

numerical methods has become a necessity in designs 

that require a lot of load calculations. Therefore, the 

options given to the users according to the number of 

computer software offered to be used in the solution of 

basic and soil mechanics problems and the scope of the 

problems are increasing gradually.  

 

Numerical models are convergent approaches, although 

they attempt to represent actual ground behavior. Many 

factors, such as analysis accuracy, number of nodes of 

selected finite elements and limits of solution functions, 
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affect the results. Therefore, the results obtained must 

be interpreted correctly [6-10].  

 

The finite element method (FEM) has been widely used 

for the simulation of geotechnical problems all around 

the world. The bearing capacity of footings on graded 

soils has been researched so far with software using 

FEM by several authors [6-14].  

 

In this study, the bearing capacity analysis of strip 

foundations at surface (Df=0) on sandy soils was carried 

out both analytically and numerically. The load-

deformation relationship of the numerical modeling is 

examined by the finite element method. The load-

displacement curves in the literature have been re-

examined with numerical estimation methods and the 

bearing capacity has tried to be predicted, and the 

similarities and differences have been discussed by 

comparing the bearing capacity values obtained via 

numerical and analytical methods. 

 

2. Analytical Methods 

 

The first study related with the bearing capacity of 

shallow foundations was performed by Terzaghi [1] 

associated with Prandtl’s theory. The foundation was 

homogeneous and isotropic and only has internal 

friction angle (ϕ) and cohesion (c). It was assumed that 

there is no volumetric change during the deformation. 

Following this approach, many theories and solutions 

have been developed for bearing capacity calculations 

under different soil, foundation and load conditions. 

Terzaghi [1], Meyerhof [2] and Vesic [3] were the most 

commonly used theories. However, the shallow 

foundation approach called Eurocode 7 has been used in 

European Union countries and Turkey since 2010 [4,5]. 

 

2.1. Terzaghi Bearing Capacity Theory 

 

Terzaghi [1] developed a theory related with the bearing 

capacity of rigid, strip and shallow foundations resting 

on homogeneous soils. There is no shape, depth, 

compression, inclined load, inclined soil and inclined 

foundation factors in the bearing capacity equation. 

Terzaghi [1] suggests the following equation for the 

strip foundations as the following: 

 

𝑞𝑢 = 𝑐𝑁𝑐 + 𝑞𝑁𝑞 + 0.5𝛾𝐵𝑁𝛾  (2.1) 

 

where Nc, Nq and Nγ are the bearing capacity factors, q 

is the surcharge load per unit area (γDf). γ and Df are the 

unit weight of the foundation soil and the depth of the 

footing, respectively. B is the width of the footing.  In 

this study, since strip foundations are located on the 

surface, q becomes zero and the second term of the 

equation 2.1 is eliminated. Terzaghi’s [1] bearing 

capacity factors are calculated according to formulas 

given in Table 1.  

 

In Table 1, Kpγ is a coefficient depending on the internal 

friction angle (ϕ) and Terzaghi [1,15] gave the values of 

Kpγ only for certain ϕ angles. In this study, the values 

were generated by using the following curve fitting 

equation. ϕ must be used in degree in the equation [10] 

as follows: 

 
𝐾𝑝𝛾 = 8.4868 + 2.3427𝑒0.0971𝜙 + 0.0000208𝑒0.343𝜙  (2.2) 

 

2.2. Meyerhof Bearing Capacity Theory 

 

Meyerhof [2] included the part of shearing surface 

remaining on the foundation base for the calculation of 

the bearing capacity unlike Terzaghi’s [1] theory. In 

Terzaghi’s [1] bearing capacity method, the angle of the 

wedge with the horizontal axis is ϕ while it is equal to 

45+ϕ/2. The foundation base is very frictional in 

Meyerhof’s bearing capacity method like Terzaghi’s 

[1]. Meyerhof [2], obtained equation 2.3 by developing 

Terzaghi’s [1] equations with shape (Fcs, Fγs), depth (Fcd, 

Fγd) and inclined load (Fci, Fγi) factors. In this study, the 

second term of the equations of 2.3, 2.4 and 2.5 were 

removed since there is no depth for this study meaning 

qNq=0 as follows: 

 

𝑞𝑢 = 𝑐𝑁𝑐𝐹𝑐𝑠𝐹𝑐𝑑𝐹𝑐𝑖 + 0.5𝛾𝐵𝑁𝛾𝐹𝛾𝑠𝐹𝛾𝑑𝐹𝛾𝑖 (2.3) 

 

Table 1. Equations of the bearing capacity factors for 

some researchers [1, 2, 3, 4, 5,10] 
 

Researcher Nc Nq Nγ 

Terzaghi cot 𝜑 (𝑁𝑞 − 1) 𝑒2(
3𝜋
4
−
𝜑
2
) tan𝜑

2cos2 (45 +
𝜑
2)

 

1

2
(
𝐾𝑝𝛾

cos2𝜑
− 1) tan𝜑 

Meyerhof cot 𝜑 (𝑁𝑞 − 1) tan2 (45 +
𝜑

2
) 𝑒𝜋 tan𝜑 (𝑁𝑞 − 1) tan 1.4𝜑 

Vesic cot 𝜑 (𝑁𝑞 − 1) tan2 (45 +
𝜑

2
) 𝑒𝜋 tan𝜑 2(𝑁𝑞 + 1) tan𝜑 

Eurocode cot 𝜑 (𝑁𝑞 − 1) tan2 (45 +
𝜑

2
) 𝑒𝜋 tan𝜑 2(𝑁𝑞 − 1) tan𝜑 

 

2.3. Vesic Bearing Capacity Theory 

 

Vesic [3] proposed a theory related with the bearing 

capacity of shallow foundations. This theory is almost 

the same with the hypothesis accepted in Meyerhof’s [2] 

bearing capacity theory, just the bearing capacity factor 

called Nγ has a different approach. Vesic developed 

Meyerhof’s [2] bearing capacity equation by adding the 

inclined soil (Fcg, Fγg), inclined base (Fcb, Fγb) and 

compressibility (Fcc, Fγc) factors. Vesic’s extended 

bearing capacity equation (2.4) is given below as: 

 

𝑞𝑢 = 𝑐𝑁𝑐𝐹𝑐𝑠𝐹𝑐𝑑𝐹𝑐𝑖𝐹𝑐𝑐𝐹𝑐𝑔𝐹𝑐𝑏 

+0.5𝛾𝐵𝑁𝛾𝐹𝛾𝑠𝐹𝛾𝑑𝐹𝛾𝑖𝐹𝛾𝑐𝐹𝛾𝑔𝐹𝛾𝑏(2.4) 

 

In the equations of 2.3, 2.4 and 2.5, factors of shape, 

depth, inclined load, compressibility, inclined soil and 

inclined base were calculated as 1.0 in terms of 

foundation and load types along with soil parameters. In 

Eurocode, no depth factors are given. They may be 
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chosen by European countries and added in their Annex 

of Eurocode.   

 

2.4. Eurocode Bearing Capacity Theory 

 

The Eurocode [4,5] bearing capacity method has been 

used compulsorily among the member states of the 

European Union since 2010. Assumptions of the 

Eurocode [4] bearing capacity theory are the same as 

Meyerhof’s [2] and Vesic’s bearing capacity method. 

The Eurocode [4] bearing capacity equation does not 

have inclined soil, depth and compression factors unlike 

Vesic’s [3] bearing capacity equation. Equation 2.5 is 

used to calculate the Eurocode [4] bearing capacity as 

shown below: 

 

𝑞𝑢 = 𝑐𝑁𝑐𝐹𝑐𝑠𝐹𝑐𝑖𝐹𝑐𝑏 + 0.5𝛾𝐵𝑁𝛾𝐹𝛾𝑠𝐹𝛾𝑖𝐹𝛾𝑏 (2.5) 

 

In the equations of 2.3, 2.4 and 2.5, factors of shape, 

depth, inclined load, compressibility, inclined soil and 

inclined base were calculated as 1.0 in terms of 

foundation and load types along with soil parameters. In 

Eurocode, no depth factors are given. They may be 

chosen by European countries and added in their Annex 

of Eurocode.   

 

3. Analytical Methods 

 

Geostudio 2012 [16] software utilizing the finite 

element method was used in order to evaluate the 

bearing capacity of a shallow foundation resting on soil. 

Displacement boundary conditions were specified 

between 0.0025 m/sec and 0.005 mm/sec under the 

along with footings in order to pushing into the soil and 

then equivalent vertical forces were computed. As a 

result of analysis, load-deformation graphs were 

derived.   

 

The bearing capacity and deformation were calculated 

separately in analytic bearing capacity calculations. 

Thus, it is not possible to obtain a load-deformation 

graph. This graph can be created only in full-scale in-

situ and laboratory tests. Experimental work is not only 

expensive but also difficult to apply on site conditions 

having huge foundation dimensions. Thankfully, 

numerical methods like the finite element method, it 

becomes easy to get load-deformation graphs [17]. 

However, ultimate bearing load/pressure is not achieved 

easily in both experimental works and numerical 

modelling. Therefore, some prediction methods shortly 

explained below were developed in order to get the 

ultimate load [18,19,20,21,22]. 

 

3.1. Brinch Hansen Method 

 

According to the Brinch Hansen [18] method, in the 

load-displacement curve plotted experimentally or 

numerically, a stress value is first estimated from the 

plastic region (q1=qcap) and the corresponding 

displacement value (s1) is determined. Then the s1 value 

is taken half (s2=0.5s1) and the corresponding stress 

value (q2) is determined. If q2 is 90% of the initial stress 

value (q1=qcap), qcap gives the bearing strength of the 

relevant foundation. This situation shows that the 

assumed qcap value is an iteration process that should 

continue until it meets these conditions [7]. 

 

 
 

Figure 1. Presentation of Brinch Hansen’s method for 

ϕ=28 and B=1 m [10]. 

 

In Figure 1, there is a sample of Brinch Hansen’s [8] 

method having 1 m of foundation width (B) and an 

internal friction of 28. Deformation-load curve 

obtained from Geostudio [16] software of Sigma/W 

module were transformed to a deformation-stress curve. 

Then the best-fit curve was obtained from the data of 

deformation and stress values. In the solver application 

of MS Excel program, the value that makes q2/q1 =0.9 

were found while s2 = 0.088 m. According to this 

method, ultimate bearing pressure was found to be 

148.71 kPa. 

 

3.2. De Beer Method 

 

In the De Beer [19] method, stress increases are 

calculated by dividing the load values into the 

foundation area. The load-displacement(s) graph is 

plotted on a logarithmic scale as seen in Figure 2. 

According to the De Beer [19] method, the tangent of 

the first linear portion of the elastic region and the 

tangent of the second linear portion of the plastic region 

are drawn. Two lines are extended till they intersect 

each other. The point of intersection read on the y-axis 

is found to be the ultimate bearing pressure of the soil 

model under the strip foundation.  

 

In Figure 2, a sample of De Beer’s [19] method having a 

foundation width of 1 m and an internal friction angle of 

28 applied on this study was shown. The linear portion 

of the first region and the second region were 

determined. Then the trend line of each linear regions 

was extended until they intersected. The y-axis value of 

the point of intersection indicated that the ultimate 

bearing capacity of this example is 139.83 kPa. 
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Figure 2. Presentation of De Beer’s method for ϕ=28 

and B=1 m [10]. 

 

3.3. Chin Transformed Axes Method 

 

According to Chin [20] transformed axes method, the 

bearing capacity is calculated by the relationship 

between pseudo deformation (εs=s/B) and the ratio of 

pseudo deformation and stress (εs/q) as: 

 

𝑞 =
𝜀𝑠

1

𝑘𝑖
+

𝜀𝑠
𝑞𝑢𝑙𝑡

    (2.6) 

or 
𝜀𝑠

𝑞
=

1

𝑞𝑢𝑙𝑡
+

1

𝑘𝑖
    (2.7) 

 

where qult = ultimate bearing pressure, ki = initial 

stiffness when s=0.  

 

 
Figure 3. Presentation of the Chin Transformed Axes 

method for ϕ=28 and B=1 m [10]. 

 

One of the samples (B=1 m and ϕ=28) for Chin’s [20] 

transformed axes method is seen in Figure 3. Pseudo 

deformation is equal to s/B which means that εs=s while 

B=1m. Therefore, the values for the x-axis of the graph 

is similar with other methods (De Beer [19], s/B= 10% 

[21] and Brinch Hansen [18]). In the graph of Figure 3, 

a y-axis was created by dividing pseudo deformation 

into stress. The linear regression curve is applied on the 

obtained curve. The inverse of the slope of the linearly 

obtained equation gives the bearing capacity value. In 

this example, bearing capacity was found to be 171.26 

kPa. 

3.4. s/B Method 
 

According to this criterion, the bearing capacity of 

vertically loaded foundations is defined as the stress at 

the time when the vertical displacement occurring on 

the soil is equal to 10% of the foundation width [21]. 

According to the method used, the load-displacement 

curve obtained from numerical analysis is transformed 

into the stress-displacement curve according to its 

foundation area. The bearing capacity is the stress value 

corresponds to 10% of the foundation width. 
 

 

Figure 4. Presentation of s/B method for ϕ=28 and 

B=1 m. 

 

In this example, the s/B= 10 method was applied for 

B=1 m and ϕ=28. According to calculations with this 

method as seen in Figure 4, the bearing capacity value 

was found to be 145.70 kPa. 

 

 
Figure 5. Presentation of the Decourt zero stiffness 

method for ϕ=28 and B=1 m. 
 

3.5. Decourt Zero Stiffness Method 

 

Decourt [22] developed a method related with the 

relationship between secant stiffness (Ks=q/s) and stress 

(q). In this method, stress and secant stiffness values are 

determined and a linear regression line should be 

applied. Stress that secant stiffness is equal to zero is 

defined as the bearing capacity of the foundation.  There 

is a simple example of the Decourt [10] zero stiffness 

method for ϕ=28 and B=1 m as shown in Figure 5. In 
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this example, the bearing capacity calculated with this 

method is found as 175.75 kPa [10]. 

 

4. Numerical Analysis 
 

As mentioned before, no depth factors are given in 

Eurocode. In order to make a comparison between the 

analytical methods, in this study, shallow strip footings 

rested on surface were used in the analysis (Df=0). 

Therefore, the second term of bearing capacity 

equations (2.1,2.3,2.4,2.5) became zero. In addition, 

there are two procedures applied to obtain the bearing 

capacity of shallow foundations which are settlement 

control and graphical approaches for the numerical 

methods (Brinch-Hansen, De Beer, Chin, s/B, and 

Decourt zero stiffness). This makes it easy to compare 

analytical and numerical methods. The bearing capacity 

of the shallow strip foundation on a homogeneous 

isotropic sandy soil was calculated. A total of 56 

analyzes were carried out by changing the foundation 

width (B) between 1 m and 3 m (except 1.25 m) in 25 

cm intervals for the soil having internal friction angles 

of 28, 30, 32, 34, 36, 38 and 40 degrees. The Mohr-

Coulomb material model was chosen in order to make a 

comparison between analytical bearing capacity 

approaches. Soil parameters used in the analyzes are 

presented in Table 2. 
 

Table 2. Parameters of soils used in analysis [10] 

c γ ϕ ψ E υ 

kN/m2 kN/m3   kN/m2  

0.5 18.6 28 0 12500 0.351 

0.5 19.0 30 0 17500 0.333 

0.5 19.6 32 2 22500 0.320 

0.5 20.1 34 4 27500 0.306 

0.5 20.5 36 6 35000 0.291 

0.5 20.8 38 8 45000 0.278 

0.5 21.0 40 10 55000 0.263 
* E= modulus of elasticity, c = cohesion, ϕ = angle of internal friction, υ =Poisson’s 

ratio, ψ = angle of dilatation  

Cohesion was used as 0.5 kPa since selecting cohesion 

as “0” in order to abstain from some trouble with 

numerical modelling and material matrices. Unit weight 

and internal friction angles used in the analysis were 

selected in the recommended graph of Navfac (1986) 

[23] for well-graded sandy soil. The dilatation angle (ψ) 

in the analysis is calculated as “ϕ-30” as given in the 

Bolton (1986) [24] equation widely used in the 

literature. Poisson’s ratio is calculated with Equation 2.6 

given below: 
 

𝜈 =
1−sin𝜙

2−sin𝜙
    (2.6) 

 

The modulus of elasticity is ranged between 10-20 MPa 

for loose sand [25]. In order to find out the effect of 

elasticity modulus on the bearing capacity were 

determined with a simple analysis in the program. For 

this purpose, numerical models having B=1 m and 

ϕ=30 were used. Elasticity modulus values were 

selected as 10000, 15000, 17500 and 20000 kPa. 

As seen in Table 3, selecting E as 15000, 17500 or 

20000 kPa has no significant effect (the difference is 

smaller than 3%) on bearing capacity. Therefore, 17500 

kPa was used in the analysis when ϕ=30. 
 

Table 3. The effect of elasticity modulus on the ultimate 

bearing capacity of B=1 m and ϕ=30. 

E BH  DB DZS SB CH 

kPa kPa kPa kPa kPa kPa 

10000 184.74 178.09 249.32 179.57 242.91 

15000 192.68 177.22 237.57 196.02 225.38 

17500 190.15 180.61 234.85 194.39 223.56 

20000 193.64 177.24 233.74 191.20 226.88 
* E= modulus of elasticity, BH = Brinch Hansen, DB= De Beer, DZS=Decourt Zero 

Stiffness, SB=s/B, CH= Chin Transformed Axes 

 

In granular soils, bearing capacity failure occurs at 

displacements around 5% and 15% of the foundation 

width [3]. In some cases, failure may occur at a 25% 

displacement of the foundation width. Therefore, 

displacement was selected as 25% of the foundation 

width in order to execute safer analysis. Analyses were 

done to determine the displacement velocity applied for 

the foundation. For this purpose, 0.002, 0.0025, 0.003, 

0.0035 and 0.004 m displacement velocity values were 

selected for the analysis having a foundation width (B) 

of 1 m and internal friction angle (ϕ) of 28. As seen in 

Figure 6, the velocity of displacement has no significant 

effect on displacement-stress. 

 

 
Figure 6. The effect of displacement velocity on the 

stress-displacement curve for B=1 m and ϕ=28. 

 

 
 

Figure 7. a) Finite element mesh (b) deformation 

results after analysis.  
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Figure 7a shows the application of the finite element 

mesh for the model and Figure 7b. shows the vector 

orientations of the deformations because of the analysis. 

a) 
 

b) 

c) d) 

e) f) 

g) h)  

Figure 8. Stress-deformation graph obtained after numerical analysis for different foundation widths a) B=1 m b) 

B=1.5 m c) B=1.75 m d) B=2 m e) B=2.25 m f) B=2.5m g) B=2.75 m h) B=3.0 m 
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In the analyzes, unit deformation was given to the points 

corresponding to the foundation. Deformation values 

were increased step by step wisely and boundary forces 

corresponding to the points of the unit deformation were 

found. Loading ranges were selected between 0.0025 

and 0.005 mm according to the base width [17]. In 

addition, the rough foundation system was modeled by 

keeping the points under the foundation in the x 

direction. 

 

In the analyzes, 8-noded isoparametric quadrilateral 

elements were used. For the finite element mesh, the 

same element but different element sizes are used for 12 

regions in the model. In the regions close to the 

foundation, the finite element network is compacted and 

the element size is made smaller than the other regions. 

As distance increased from the foundation, the element 

size was increased 

 

 

 

 

 

 

5. Results and Discussions 

 

In this study, the bearing capacity of the strip 

foundations resting on sandy soils with different internal 

friction angles was determined by analytical and 

numerical methods. Figure 8 gives the results of 

numerical analysis. When the load-deformation graphs 

are examined for different foundation dimensions of the 

loose soil (ϕ = 28) model, elastic and rigid plastic 

deformations can be easily distinguished from each 

other, especially in cases where the foundation width is 

small. However, when the foundation width increases, it 

becomes difficult to distinguish between the elastic 

region and the transition region of the plastic region. 

Therefore, it is necessary to find the ultimate load value 

using estimation methods. In dense soil (ϕ = 40) 

models as seen in Figure 8, oscillations occur as the 

base width increases in the load-deformation graph in 

the plastic region. This oscillation phenomenon was also 

observed by other researchers [6,7,9,10,13], especially 

in the Mohr-Coulomb model, and it was reported that 

the magnitude of oscillation was increased by the 

internal friction angle and the finite element mesh 

structure [9]. The finite element mesh must be 

optimized for each foundation width

  

a) b) 

 

 

 

c) 

Figure 9. Comparison of numerical and analytical methods with different foundation widths a) ϕ=280 

b) ϕ=340 c) ϕ=400 
  

Figure 9a shows the bearing capacity results obtained by 

both analytical and numerical methods for different 

foundation widths on a loose soil with an internal 

friction angle ϕ=28°. Among the analytical methods, the 

maximum bearing capacity values were obtained from 

Vesic’s [3] method. The Meyerhof bearing capacity 

values were lower than all bearing capacity methods. 

The biggest differences in bearing capacity values are 

between Vesic’s [3] bearing capacity and the Meyerhof 

bearing capacity methods, with a difference of 44% for 
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a foundation width of 1 m and 47% for a foundation 

width of 3 m. The bearing capacity values obtained by 

numerical approaches fall between Vesic’s [3] bearing 

capacity and the Meyerhof [2] bearing capacity in the 

loose soil model. The bearing capacity results obtained 

by the Chin [20] estimation method give the highest 

values compared to other methods. There is a 5% 

difference between the largest and smallest value for 

B=1 m. Nevertheless, as the width of the foundation 

increases, the difference between them increases to 35 

%. Although the differences reach to 35%, numerical 

methods except the Decourt [22] zero stiffness still fall 

in the region between Vesic [3] and Meyerhof methods 

which means that numerical methods and analytical 

methods are incompatible with each other for this 

example. 

 

Figure 9b gives the results of the analysis when ϕ=34. 

In the analytical methods, the Meyerhof [2] bearing 

capacity value is the lowest one according to the other 

methods. The biggest differences in the analytical 

methods are obtained with the Vesic [3] and Meyerhof 

[2] methods. These differences are 29.84 % for 1 m of 

foundation width and 31.15 % for 3m foundation width. 

In the numerical prediction methods, the Decourt [22] 

zero stiffness method gives the highest bearing capacity 

values. The lowest bearing capacity values calculated 

for 1, 1.5, 1.75 and 2 m of foundation width were 

obtained from s/B method. For other foundation widths, 

the De Beer [19] method gives the lowest values. The 

biggest differences in the numerical method are 25.64 % 

for 1 m of foundation width and 84 % for 3m 

foundation width. The lowest bearing capacity values 

are obtained from different methods while comparing 

numerical and analytical methods. The De Beer [19] 

method gives the lowest value for B=1.75 m, the 

Meyerhof method gives the lowest values for 1, 1.5 and 

2 m. For other foundation widths, s/B method has the 

lowest value. The biggest differences in both analytical 

and numerical methods are 31.58 % for 1 m of 

foundation width and 58.48 % for 3m foundation width. 

In Figure 9b, s/B and Chin [20] transformed axes 

methods started to move away from the colored region 

when B=2.25 m while the Decourt [22] zero stiffness 

method does not fall into the region after B=1 m. On the 

contrary, the De Beer [19] and Brinch Hansen [18] 

methods seem to be inside of the region for all 

foundation widths. 

 

In Figure 9c, the results of the bearing capacity with 

numerical and analytical methods for strip foundations 

having different foundation width and 40 of internal 

friction angle are shown. Similar results are given in 

Figure 9a and Figure 9b, Vesic [3] gives the highest and 

Meyerhof [2] gives the lowest bearing capacity value. 

The Eurocode [4] bearing capacity is 4.84% larger than 

Terzaghi [1] for 2 m of B and 5.03% larger for 3 m of 

B. The biggest differences in bearing capacity values 

calculated with analytical methods are obtained as 

16.16% for B=1 m and 16.57% for B=3 m. In the 

numerical method, the biggest differences for B=1 m is 

44.63% while it is 172.26% for B=3m. The biggest 

bearing capacity values were obtained from the Decourt 

[22] zero stiffness method for all foundation widths. 

The method of s/B gave the lowest qu (bearing capacity) 

values for all foundation widths except B=1 m. The De 

Beer method gives the lowest qu (bearing capacity) for 

1 m. When comparing analytical and numerical methods 

together, the biggest differences among numerical and 

analytical methods are 34.23% for B=1 m and 86.79% 

for B=3m. Differences between numerical methods in 

the strict soil model are quite large and do not fall 

between the results of analytical methods. In particular, 

the Chin [20] estimation method gives much larger 

values than other analytical method results. Another 

observed result in Figure 7 is that the s/B approach 

gives lower values compared to other methods with an 

increasing base width. As seen in Figure 8, in both types 

of soil models, as the foundation width increases, the 

transition region from the elastic region to the plastic 

region is in a wider range. Therefore, the s/B method 

offers smaller values as a result in large foundation 

systems. The main reason for this is assumed to be the 

oscillations in the load-deformation graphs as the base 

width increases. 

 

 
Figure 10. Iteration count-time relationship for a) 

ϕ=28 B=1m b) ϕ=40 B=3m 

 

In Figure 10, iteration count-time relations obtained 

after analysis are shown. Figure 10a is an example of 

loose sand having ϕ=28 and Figure 10b is an example 

of dense sand (ϕ=40). In Figure 10a, approximately 

1300-1400 iteration is enough to determine the stress 

values while 7000 iteration is needed to evaluate the 

stress value at some mesh elements. The main reason of 

oscillations that were seen in Figure 8 when ϕ=40 can 

be clearly understood in Figure 10. When the soil is 

getting denser, it becomes harder to evaluate the failure 

stress. 

 

Figure 11 gives the results of both numerical and 

analytical analysis. The average analytical (theoretical) 
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bearing capacity values have been used for comparison 

of the analytical and numerical methods. 

 

 
Figure 11. Summary of all analyses. 

 

X axis indicates the average bearing capacity of all 

analytical methods for different foundation widths while 

y axis shows the bearing capacity of whole methods 

alone. The red dashed-line indicates the average bearing 

capacity values. As known, it is not possible to break 

the system completely in a finite element method. 

However, it can converge to the fracture value, so it is 

expected to be slightly smaller than the results of 

analytical methods. 

 

6. Conclusion 

 

It is clearly seen that the bearing capacity values 

obtained from analytical and numerical methods begin 

to diverge from each other as ϕ and B increases. The De 

Beer method seems to be closer to the results of the 

analytical methods compared to other numerical 

methods.  Method of s/B is coherent up to average 

theoretical bearing capacity (qult) value reaches 2000 

kPa as seen in Figure 11.  after average qult is higher 

than 2000 kPa, this method seems to be not suited since 

the qult value is almost unchanged. Decourt [17] 

stiffness and Chin [20] transformed axes methods are 

the worst ones compared to the others. 

 

In conclusion, numerical methods give more coherent 

results for loose sandy soils compared to dense soils. 

These results are apparently due to two reasons. First, 

although the Mohr–Coulomb Failure Criterion is mostly 

used for granular soils, it has some limitations to 

express stress-strain finite element modelling. As seen 

in Figure 10, when the soil is getting denser, it becomes 

harder to numerically evaluate the failure stress. 

Second, the displacement values corresponding to the 

bearing capacity calculated by each of the numerical 

methods (De-Beer, Chin, s/B, Decourt) is different.  

 

In addition, this study showed that when calculating the 

bearing capacity of a shallow foundation, the soil 

parameters obtained in the field and in the laboratory 

and the foundation dimensions to be constructed should 

be carefully calculated for each project. Since the 

calculation methods give different bearing capacity 

values, these bearing capacity calculations should be 

obtained in several to check for the safety of the 

foundation. 
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