DOI:10.25092/baunfbed.707344

J. BAUN Inst. Sci. Technol., 22(2), 403-414, (2020)

Ranks of some subsemigroups of full contraction mappings on a finite chain

Kemal TOKER*

Harran University Faculty of Science and Literature, Department of Mathematics, Osmanbey Campus, Şanlıurfa.

> Geliş Tarihi (Received Date): 28.09.2019 Kabul Tarihi (Accepted Date): 13.03.2020

Abstract

Let Z^+ denotes the set of all positive integers. Let $X_n = \{1, 2, ..., n\}$ be the finite chain for $n \in Z^+$ and let T_n be the full transformation semigroup on X_n . Also let OCT_n and $ORCT_n$ be the semigroup of order-preserving full contraction mappings, and the semigroup of order-preserving or order-reversing full contraction mappings on X_n , respectively. It is well-known that OCT_n and $ORCT_n$ are subsemigroups of T_n . In this paper we obtain ranks of the semigroups OCT_n and $ORCT_n$.

Keywords: Order-preserving/order-reversing contraction mappings, generating set, rank.

Sonlu zincir üzerindeki tam daralma dönüşümlerinin bazı alt yarıgruplarının rankları

Öz

 Z^+ , tüm pozitif tamsayıların kümesi olsun. $n \in Z^+$ için $X_n = \{1, 2, ..., n\}$ sonlu bir zincir ve T_n , X_n üzerindeki tam dönüşümler yarıgrubu olsun. Ayrıca OCT_n ve ORCT_n sırasıyla X_n üzerindeki sıra-koruyan tam daralma dönüşümler yarıgrubu ve sıra-koruyan veya sıra-çeviren tam daralma dönüşüler yarıgrubu olsun. OCT_n ve ORCT_n yarıgruplarının T_n yarıgrubunun altyarıgrupları olduğu bilinmektedir. Bu çalışmada OCT_n ve ORCT_n yarıgruplarının rankları araştırılmıştır.

Anahtar kelimeler: Sıra-koruyan/sıra-çeviren daralma dönüşümleri, doğuray kümeleri, rank.

^{*} Kemal TOKER, ktoker@harran.edu.tr, https://orcid.org/0000-0003-3696-1324

1. Introduction

Let Z^+ denotes the set of all positive integers. Let $X_n = \{1, 2, ..., n\}$ be the finite chain for $n \in Z^+$ and let T_n and S_n be the full transformation semigroup and the symmetric group on X_n , respectively. Also let

$$O_n = \{ \alpha \in T_n | (\forall x, y \in X_n) | x \le y \implies x\alpha \le y\alpha \},$$
(1)

the semigroup of all order-preserving full transformations on X_n . For any $\alpha \in T_n$, if $|x\alpha - y\alpha| \le |x - y|$ for all $x, y \in X_n$ then α is called a full contraction mapping on X_n . Then let CT_n be the set of all full contraction mappings on X_n , say

$$CT_n = \{ \alpha \in T_n | (\forall x, y \in X_n) | x\alpha - y\alpha | \le |x - y| \},$$
(2)

and let OCT_n be the set of all order-preserving full contraction mappings on X_n , say $OCT_n = O_n \cap CT_n$ which are clearly subsemigroups of T_n . Also, let OR_n be the semigroup of all order-preserving or order-reversing transformations on X_n , and let $ORCT_n = OR_n \cap CT_n$, which is clearly a subsemigroup of T_n consisting of all order-preserving or order-reversing full contraction mappings on X_n . Recall that, Garba et al. have presented characterisations of Green's relations on $CT_n \setminus S_n$ and $OCT_n \setminus S_n$ in [1], and that Adeshola and Umar have investigated the cardinalities of some equivalences on OCT_n and $ORCT_n$ in [2] which lead naturally to obtaining the orders of these subsemigroups.

Let S be any semigroup, and let A be any non-empty subset of S. Then the subsemigroup generated by A, that is the smallest subsemigroup of S containing A, is denoted by $\langle A \rangle$. If there exists a finite subset A of a semigroup S with $\langle A \rangle = S$, then S is called a finitely generated semigroup. The rank of a finitely generated semigroup S is defined by

$$\operatorname{rank}(S) = \min\{|A|: \langle A \rangle = S\}.$$
(3)

There are many studies on various generating sets and ranks of any semigroup. Now we give some examples of recent studies. Let $Sing_n = T_n \setminus S_n$, the subsemigroup of all singular mappings. Gomes and Howie proved that $rank(Sing_n) = \frac{n(n-1)}{2}$ in [3] and Ayık et al. found the necessary and sufficient conditions for any set of transformations with n - 1 image in $Sing_n$ to be a (minimal) generating set for $Sing_n$ in [4]. Let I_n be the symmetric inverse semigroup on X_n , and let

$$DP_n = \{ \alpha \in I_n | \forall x, y \in \text{dom}(\alpha), |x\alpha - y\alpha| = |x - y| \}$$
(4)

be the subsemigroup of I_n consisting of all partial isometries on X_n . Also, let

$$ODP_n = \{ \alpha \in DP_n | \forall x, y \in dom(\alpha), \ x \le y \implies x\alpha \le y\alpha \}$$
(5)

be the subsemigroup of DP_n consisting of all order-preserving partial isometries on X_n . Bugay et al. examined the subsemigroups

$$DP_{n,r} = \{ \alpha \in DP_n | | \operatorname{im}(\alpha) | \le r \}$$
(6)

and

$$ODP_{n,r} = \{ \alpha \in ODP_n || \operatorname{im}(\alpha)| \le r \}$$
(7)

for $2 \le r \le n - 1$, and showed that $\operatorname{rank}(DP_{n,r}) = \operatorname{rank}(ODP_{n,r}) = \binom{n}{r}$ in [5]. For any $\emptyset \ne Y \subseteq X_n$, let

$$T_{(X_n,Y)} = \{ \alpha \in T_n | Y\alpha = Y \}.$$
(8)

Clearly $T_{(X_n,Y)}$ is a subsemigroup of T_n . Toker et al. examined the subsemigroups $T_{(n,m)} = \{\alpha \in T_n : X_m \alpha = X_m\}$ and showed that

$$\operatorname{rank}(T_{(n,m)}) = \begin{cases} 2, & \text{if } (n,m) = (2,1) \text{ or } (3,2) \\ 3, & \text{if } (n,m) = (3,1) \text{ or } 4 \le n \text{ and } m = n-1 \\ 4, & \text{if } 4 \le n \text{ and } 1 \le m \le n-2 \end{cases}$$
(9)

in [6]. Now, in this paper we examine OCT_n and $ORCT_n$, and show that

$$\operatorname{rank}\left(OCT_{n}\right) = \begin{cases} 3, & \text{if } n = 2\\ n, & \text{if } n = 1 \text{ or if } n \ge 3. \end{cases}$$
(10)

and

$$\operatorname{rank}\left(ORCT_{n}\right) = \begin{cases} \frac{n+1}{2}, & \text{if } n \text{ is an odd number} \\ \frac{n+2}{2}, & \text{if } n \text{ is an even number}. \end{cases}$$
(11)

2. Preliminaries

The kernel and the image of $\alpha \in T_n$ are defined by

$$\ker(\alpha) = \{(x, y) \in X_n \times X_n : x\alpha = y\alpha\}$$
(12)

$$\operatorname{im}(\alpha) = \{ x\alpha \colon x \in X_n \},\tag{13}$$

respectively. For any $\alpha, \beta \in T_n$ it is well known that $\ker(\alpha) \subseteq \ker(\alpha\beta)$ and $\operatorname{im}(\alpha\beta) \subseteq \operatorname{im}(\beta)$.

Definition 2.1 Let *A* be a non-empty subset of X_n . If $x, y \in A$ and $x \le z \le y \Rightarrow z \in A$ for all $x, y \in A$, then *A* is called a convex subset of X_n .

Recall from [Theorem 2.2 [1]] that if $\alpha \in T_n$ is a contraction mapping then $\operatorname{im}(\alpha)$ is a convex subset of X_n . Thus, if $\alpha \in OCT_n$ or $\alpha \in ORCT_n$ then $\operatorname{im}(\alpha)$ is a convex subset of X_n , that is there exists $1 \le k \le m \le n$ such that $\operatorname{im}(\alpha) = \{k, k + 1, ..., m\}$. If $\alpha \in OCT_n$ then since α is order-preserving, it is easy to see that each equivalence class of

 $\ker(\alpha)$ is a convex subset of X_n , and if $\alpha \in ORCT_n$ then since α is order-preserving or order-reversing, it is easy to see that each equivalence class of $\ker(\alpha)$ is also a convex subset of X_n .

On a semigroup S, $(a, b) \in L^*(S)$ if and only if the elements $a, b \in S$ are related by Green's relation L in some oversemigroup of S. The relation R^* is defined dually. The join of relations L^* and R^* is denoted by D^* and their intersection by H^* . Those relations are called starred Green's relations. Garba et al. have found starred Green's relations semigroups of $CT_n \setminus S_n$ and $OCT_n \setminus S_n$ in [1]. In particular, they proved the following theorem.

Theorem 2.2 [1] Let $S \in \{CT_n \setminus S_n , OCT_n \setminus S_n\}$ and let $\alpha, \beta \in S$. Then

- (i) $(\alpha, \beta) \in L^*(S)$ if and only if $im(\alpha) = im(\beta)$,
- (ii) $(\alpha, \beta) \in R^*(S)$ if and only if ker $(\alpha) = \text{ker}(\beta)$,
- (iii) $(\alpha, \beta) \in H^*(S)$ if and only if $im(\alpha) = im(\beta)$ and $ker(\alpha) = ker(\beta)$,
- (iv) $(\alpha, \beta) \in D^*(S)$ if and only if $|im(\alpha)| = |im(\beta)|$.

In this paper we use the same notations with Howie's book [7].

3. The rank of OCT_n

In this section, we find a minimal generating set of OCT_n and so we obtain the rank of OCT_n . It is clear that $OCT_1 = \{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \}$ and so rank $(OCT_1) = 1$, it is also clear that

$$OCT_{2} = \{ \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix} \}.$$
(14)

If $\{\alpha, \beta\} \in OCT_2$ then we observe that $\langle \alpha, \beta \rangle = \{\alpha, \beta\}$, and so rank $(OCT_2) = 3$. Hence in this paper we consider the case $n \ge 3$. Let

$$D_k^* = \{ \alpha \in OCT_n : |\operatorname{im}(\alpha)| = k \}$$
(15)

for $1 \le k \le n$. Notice that $D_n^* = \{ \epsilon = \begin{pmatrix} 1 & 2 & \dots & n \\ 1 & 2 & \dots & n \end{pmatrix} \}.$

Lemma 3.1 If $\alpha \in D_r^*$ then $\alpha \in D_{r+1}^* > \text{ for each } 1 \le r \le n-2$.

Proof. Let $\alpha \in D_r^*$ for $1 \le r \le n-2$, then there exists a partition $\{A_1, A_2, \dots, A_r\}$ of X_n and there exists $1 \le k \le n-r+1$ such that

$$\alpha = \begin{pmatrix} A_1 & A_2 & \dots & A_i & \dots & A_r \\ k & k+1 & \dots & k-1+i & \dots & k-1+r \end{pmatrix}.$$
 (16)

It is clear that $|A_i| \ge 2$ at least for one $1 \le i \le r$ since $r \le n - 2$. Without loss of generality let $A_i = \{a_1, a_2, ..., a_m\}$ for $m \ge 2$ and let x_i be the maximum element in A_i . If k > 1 and k + r - 1 < n, let

$$\beta = \begin{pmatrix} A_1 \setminus \{x_1\} & \{x_1\} & A_2 & \dots & A_r \\ k & k+1 & k+2 & \dots & k+r \end{pmatrix},$$
(17)

for i = 1, let

$$\beta = \begin{pmatrix} A_1 & A_2 & \dots & A_{r-1} & A_r \setminus \{x_r\} & \{x_r\} \\ k & k+1 & \dots & k+r-2 & k+r-1 & k+r \end{pmatrix},$$
(18)

for i = r, and let

$$\beta = \begin{pmatrix} A_1 & \dots & A_{i-1} & A_i \setminus \{x_i\} & \{x_i\} & A_{i+1} & \dots & A_r \\ k & \dots & k+i-2 & k+i-1 & k+i & k+i+1 & \dots & k+r \end{pmatrix},$$
(19)

for $2 \le i \le r - 1$. Also, let γ be the mapping defined as

$$j\gamma = \begin{cases} k-1; & \text{if } 1 \le j \le k-1 \\ j; & \text{if } k \le j \le k+i-1 \\ j-1; & \text{if } k+i \le j \le k+r \\ k+r-1; & \text{if } j > k+r, \end{cases}$$
(20)

for $1 \le i \le r$. Then $\beta, \gamma \in D^*_{r+1}$ and $\alpha = \beta \gamma$.

If k = 1, let

$$\beta = \begin{pmatrix} A_1 \setminus \{x_1\} & \{x_1\} & A_2 & \dots & A_r \\ 1 & 2 & 3 & \dots & r+1 \end{pmatrix},$$
(21)

for i = 1, let

$$\beta = \begin{pmatrix} A_1 & A_2 & \dots & A_{r-1} & A_r \setminus \{x_r\} & \{x_r\} \\ 1 & 2 & \dots & r-1 & r & r+1 \end{pmatrix},$$
(22)

for i = r, and let

$$\beta = \begin{pmatrix} A_1 & \dots & A_{i-1} & A_i \setminus \{x_i\} & \{x_i\} & A_{i+1} & \dots & A_r \\ 1 & \dots & i-1 & i & i+1 & i+2 & \dots & r+1 \end{pmatrix},$$
(23)

for $2 \le i \le r - 1$. Also, let γ be the mapping defined as

$$j\gamma = \begin{cases} j; & \text{if } j \le i \\ j-1; & \text{if } i+1 \le j \le r+1 \\ r+1; & \text{if } r+2 \le j \le n, \end{cases}$$
(24)

for $1 \le i \le r$. Then, similarly $\beta, \gamma \in D_{r+1}^*$ and $\alpha = \beta \gamma$.

If
$$k + r - 1 = n$$
, let

$$\beta = \begin{pmatrix} A_1 \setminus \{x_1\} & \{x_1\} & A_2 & \dots & A_r \\ k - 1 & k & k + 1 & \dots & n \end{pmatrix},$$
(25)

for i = 1, let

$$\beta = \begin{pmatrix} A_1 & A_2 & \dots & A_{r-1} & A_r \setminus \{x_r\} & \{x_r\} \\ k - 1 & k & \dots & n-2 & n-1 & n \end{pmatrix},$$
(26)

for i = r, and let

$$\beta = \begin{pmatrix} A_1 & \dots & A_{i-1} & A_i \setminus \{x_i\} & \{x_i\} & A_{i+1} & \dots & A_r \\ k-1 & \dots & k+i-3 & k+i-2 & k+i-1 & k+i & \dots & n \end{pmatrix},$$
(27)

for $2 \le i \le r - 1$. Also, let γ be the mapping defined as

$$j\gamma = \begin{cases} k-1; & if \quad 1 \le j \le k-2\\ j+1; & if \quad k-1 \le j \le k+i-2\\ j; & if \quad k+i-1 \le j \le n, \end{cases}$$
(28)

for $1 \le i \le r$. Then, similarly $\beta, \gamma \in D_{r+1}^*$ and $\alpha = \beta \gamma$.

Corollary 3.2 $D_i^* \subseteq \langle D_{n-1}^* \rangle$ for each $1 \leq i \leq n-1$.

Let $OCT_{(n,r)} = \{ \alpha \in OCT_n : | \text{ im } (\alpha) | \le r \}$ for $1 \le r < n$. It is clear that $OCT_{(n,r)}$ is an ideal of OCT_n . Thus we have

$$\langle D_{n-1}^* \rangle = OCT_{(n,n-1)} = OCT_n \backslash S_n = OCT_n \backslash \{\epsilon\}.$$
⁽²⁹⁾

If $\alpha \in D_{n-1}^*$ then im $(\alpha) = \{1, 2, ..., n-1\}$ or im $(\alpha) = \{2, 3, ..., n\}$ since im (α) is a convex subset of X_n . Moreover since kernel classes of α are convex subsets of X_n , there exists $1 \le i \le n-1$ such that

$$\ker(\alpha) = \bigcup_{j=1}^{n} \{(j,j)\} \cup \{(i+1,i), (i,i+1)\}.$$
(30)

In this case, we denote ker(α) by [i, i + 1] instead of $\bigcup_{j=1}^{n} \{(j, j)\} \cup \{(i + 1, i), (i, i + 1)\}$ for convenience.

It is clear that $|D_{n-1}^*| = 2(n-1)$ for $n \ge 3$ and so rank $(OCT_{(n,n-1)}) \le 2n-2$ from Corollary 3.2. Notice that, since $OCT_{(n,n-2)}$ is an ideal of $OCT_{(n,n-1)}$ for $n \ge 3$, $\alpha \in D_{n-1}^*$ can be written as a product of only the elements of D_{n-1}^* . Moreover, since there are n-1 R^* -classes (kernel classes) in D_{n-1}^* , we have rank $(OCT_{(n,n-1)}) \ge n-1$ for $n \ge 3$.

Let $\alpha_{i,i+1} \in D_{n-1}^*$ be the element with im $(\alpha_{i,i+1}) = \{1, 2, \dots, n-1\}$ and ker $(\alpha_{i,i+1}) = [i, i+1]$, that is

$$\alpha_{i,i+1} = \begin{pmatrix} 1 & \dots & i & i+1 & i+2 & \dots & n \\ 1 & \dots & i & i & i+1 & \dots & n-1 \end{pmatrix},$$
(31)

for $1 \le i \le n - 2$, and

$$\alpha_{n-1,n} = \begin{pmatrix} 1 & 2 & \dots & n-1 & n \\ 1 & 2 & \dots & n-1 & n-1 \end{pmatrix}.$$
(32)

Let $\beta_{i,i+1} \in D_{n-1}^*$ be the element with im $(\beta_{i,i+1}) = \{2,3,\ldots,n\}$ with ker $(\beta_{i,i+1}) = [i, i+1]$, that is

$$\beta_{1,2} = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ 2 & 2 & 3 & \dots & n \end{pmatrix}, \tag{33}$$

$$\beta_{i,i+1} = \begin{pmatrix} 1 & 2 & \dots & i & i+1 & \dots & n \\ 2 & 3 & \dots & i+1 & i+1 & \dots & n \end{pmatrix}$$
(34)

for $2 \le i \le n - 1$.

Theorem 3.3 rank $(OCT_{(n,n-1)}) = n - 1$ for $n \ge 3$.

Proof. Let $n \ge 3$ and $W = \{\alpha_{1,2}\} \cup \{\beta_{i,i+1} | 2 \le i \le n-1\}$ where $\alpha_{1,2}, \beta_{i,i+1}$ $(2 \le i \le n-1)$ are the elements defined above. It is clear that |W| = n-1 and so for the proof it is enough to show that W is a generating set of $OCT_{(n,n-1)}$ since rank $(OCT_{(n,n-1)}) \ge n-1$. By using the multiplication it is a routine matter to show $\alpha_{1,2}\beta_{n-1,n} = \beta_{1,2}$ and $\beta_{i,i+1}\alpha_{1,2} = \alpha_{i,i+1}$ for $2 \le i \le n-1$. Thus, $D_{n-1}^* \subseteq \langle W \rangle$ and so $\langle W \rangle = OCT_{(n,n-1)}$ from Corollary 3.2. Therefore, rank $(OCT_{(n,n-1)}) = n-1$ for $n \ge 3$, as required.

Theorem 3.4 rank $(OCT_n) = \begin{cases} 3, & \text{if } n = 2\\ n, & \text{if } n = 1 \text{ or if } n \ge 3. \end{cases}$

Proof. Recall that rank $(OCT_1) = 1$ and rank $(OCT_2) = 3$. For $n \ge 3$, it is clear that $OCT_n = OCT_{(n,n-1)} \cup \{\epsilon\}$ where ϵ is the identity mapping on OCT_n . Since OCT_n is a monoid and $OCT_{(n,n-1)}$ is a finitely generated semigroup, and since $\alpha\beta \neq \epsilon$ for all $\alpha, \beta \in OCT_{(n,n-1)}$, we have rank $(OCT_n) = \operatorname{rank} (OCT_{(n,n-1)}) + 1 = n$ for $n \ge 3$.

4. The rank of **ORCT**_n

In this section, we find a generating set and the rank of $ORCT_n$. It is clear that $ORCT_1 = \{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \}$ and so rank $(ORCT_1) = 1$. It is also clear that

$$ORCT_{2} = \left\{ \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix} \right\}.$$
(35)

Since

$$ORCT_2 = < \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} >$$
(36)

and since $ORCT_2$ is not a commutative semigroup, we have rank $(ORCT_2) = 2$. Now we consider the generating sets of $ORCT_n$ for $n \ge 3$. Let

$$F_k = \{ \alpha \in ORCT_n : | \operatorname{im} (\alpha) | = k \}$$
for $1 \le k \le n$.
(37)

Lemma 4.1 If $\alpha \in F_r$ then $\alpha \in F_{r+1} > \text{ for } 1 \leq r \leq n-2$.

Proof. Let $1 \le r \le n - 2$. If $\alpha \in OCT_n \cap F_r$, then the result follows from Lemma 3.1. Let $\alpha \in ORCT_n \setminus OCT_n$ and $\alpha \in F_r$. Then α is an order-reversing full contraction mappings and so there exists a partition $\{A_1, A_2, ..., A_r\}$ of X_n and there exists $r \le k \le n$ such that

$$\alpha = \begin{pmatrix} A_1 & A_2 & \dots & A_i & \dots & A_r \\ k & k-1 & \dots & k-i+1 & \dots & k-r+1 \end{pmatrix}.$$
(38)

It is clear that $|A_i| \ge 2$ at least for one $1 \le i \le r$ since $r \le n - 2$. Without loss of generality let $A_i = \{a_1, a_2, ..., a_m\}$ for $m \ge 2$, and let x_i be the maximum element in A_i . If k < n and $k - r \ge 1$, let

$$\beta = \begin{pmatrix} A_1 \setminus \{x_1\} & \{x_1\} & A_2 & \dots & A_r \\ k & k-1 & k-2 & \dots & k-r \end{pmatrix},$$
(39)

for i = 1, let

$$\beta = \begin{pmatrix} A_1 & A_2 & \dots & A_{r-1} & A_r \setminus \{x_r\} & \{x_r\} \\ k & k-1 & \dots & k-r+2 & k-r+1 & k-r \end{pmatrix},$$
(40)

for i = r, let

$$\beta = \begin{pmatrix} A_1 & A_2 & \dots & A_{i-1} & A_i \setminus \{x_i\} & \{x_i\} & A_{i+1} & \dots & A_r \\ k & k-1 & \dots & k-i+2 & k-i+1 & k-i & k-i-1 & \dots & k-r \end{pmatrix},$$
(41)

for $2 \le i \le r - 1$. Also, let γ be the mapping defined as

$$j\gamma = \begin{cases} k - r + 1; & \text{if } 1 \le j \le k - r \\ j + 1; & \text{if } k - r + 1 \le j \le k - i \\ j; & \text{if } k - i + 1 \le j \le k \\ k + 1; & \text{if } k + 1 \le j \le n. \end{cases}$$
(42)

Then $\beta, \gamma \in F_{r+1}$ and $\alpha = \beta \gamma$.

If k = n, let

$$\beta = \begin{pmatrix} A_1 \setminus \{x_1\} & \{x_1\} & A_2 & \dots & A_r \\ n & n-1 & n-2 & \dots & n-r \end{pmatrix},$$
(43)

for i = 1, let

$$\beta = \begin{pmatrix} A_1 & A_2 & \dots & A_{r-1} & A_r \setminus \{x_r\} & \{x_r\} \\ n & n-1 & \dots & n-r+2 & n-r+1 & n-r \end{pmatrix},$$
(44)

for i = r, let

$$\beta = \begin{pmatrix} A_1 & A_2 & \dots & A_{i-1} & A_i \setminus \{x_i\} & \{x_i\} & A_{i+1} & \dots & A_r \\ n & n-1 & \dots & n-i+2 & n-i+1 & n-i & n-i-1 & \dots & n-r \end{pmatrix}, \quad (45)$$

for $2 \le i \le r - 1$. Also, let γ be the mapping defined as

$$j\gamma = \begin{cases} n-r; & if \quad 1 \le j \le n-r-1 \\ j+1; & if \quad n-r \le j \le n-i \\ j; & if \quad n-i+1 \le j \le n. \end{cases}$$
(46)

Then $\beta, \gamma \in F_{r+1}$ and $\alpha = \beta \gamma$.

If k = r, let

$$\beta = \begin{pmatrix} A_1 \setminus \{x_1\} & \{x_1\} & A_2 & \dots & A_r \\ r+1 & r & r-1 & \dots & 1 \end{pmatrix},$$
(47)

for i = 1, let

$$\beta = \begin{pmatrix} A_1 & A_2 & \dots & A_{r-1} & A_r \setminus \{x_r\} & \{x_r\} \\ r+1 & r & \dots & 3 & 2 & 1 \end{pmatrix},$$
(48)

for i = r, let

$$\beta = \begin{pmatrix} A_1 & A_2 & \dots & A_{i-1} & A_i \setminus \{x_i\} & \{x_i\} & A_{i+1} & \dots & A_r \\ r+1 & r & \dots & r-i+3 & r-i+2 & r-i+1 & r-i & \dots & 1 \end{pmatrix},$$
(49)

for $2 \le i \le r - 1$. Also, let γ be the mapping defined as

$$j\gamma = \begin{cases} j; & \text{if } 1 \le j \le r - i + 1\\ j - 1; & \text{if } r - i + 2 \le j \le r + 1\\ r + 1; & \text{if } r + 2 \le j \le n. \end{cases}$$
(50)

Then $\beta, \gamma \in F_{r+1}$ and $\alpha = \beta \gamma$.

Corollary 4.2 If $\alpha \in F_i$ for $1 \le i \le n - 1$ then $\alpha \in \langle F_{n-1} \rangle$ for $n \ge 3$.

Let $ORCT_{(n,r)} = \{\alpha \in ORCT_n : | \text{ im } (\alpha)| \le r\}$ for $1 \le r < n$. It is clear that $ORCT_{(n,r)}$ is an ideal of $ORCT_n$. Moreover we have

$$F_n = \{ \epsilon = \begin{pmatrix} 1 & 2 & \dots & n \\ 1 & 2 & \dots & n \end{pmatrix}, \theta = \begin{pmatrix} 1 & 2 & \dots & n \\ n & n-1 & \dots & 1 \end{pmatrix} \},$$
(51)

and notice that

$$\langle F_{n-1} \rangle = ORCT_{(n,n-1)} = ORCT_n \backslash S_n = ORCT_n \backslash \{\epsilon, \theta\}$$
(52)

where ϵ is the identity element of $ORCT_n$ and that $\theta^2 = \epsilon$.

Corollary 4.3 $ORCT_n = \langle F_{n-1} \cup \{\theta\} \rangle$ for $n \ge 3$.

If $\alpha \in F_{n-1}$, since im (α) is a convex subset of X_n , we have im (α) = {1,2, ..., n-1} or im (α) = {2,3, ..., n}. Moreover there are n-1 different kernel classes in F_{n-1} and

there exist 4 elements in F_{n-1} which has the same kernel classes. Thus $|F_{n-1}| = 4(n-1)$ for $n \ge 3$.

Let $\alpha_{i,i+1}$ and $\beta_{i,i+1}$ be the order-preserving full contraction mappings defined before Theorem 3.3 for each $1 \le i \le n-1$. Moreover let $\lambda_{i,i+1} \in F_{n-1}$ be the order-reversing full contraction mappings such that im $(\lambda_{i,i+1}) = \{1, 2, ..., n-1\}$ and ker $(\lambda) = [i, i + 1]$, that is

$$\lambda_{i,i+1} = \begin{pmatrix} 1 & \dots & i & i+1 & i+2 & \dots & n \\ n-1 & \dots & n-i & n-i & n-i-1 & \dots & 1 \end{pmatrix},$$
(53)

for $1 \le i \le n - 2$, and

$$\lambda_{n-1,n} = \begin{pmatrix} 1 & 2 & \dots & n-2 & n-1 & n \\ n-1 & n-2 & \dots & 2 & 1 & 1 \end{pmatrix}.$$
 (54)

Also, let $\mu_{i,i+1} \in F_{n-1}$ be the order-reversing full contraction mappings with im $(\mu_{i,i+1}) = \{2,3,...,n\}$ with ker $(\mu_{i,i+1}) = [i, i+1]$, that is

$$\mu_{1,2} = \begin{pmatrix} 1 & 2 & 3 & \dots & n-1 & n \\ n & n & n-1 & \dots & 3 & 2 \end{pmatrix},$$
(55)

and

$$\mu_{i,i+1} = \begin{pmatrix} 1 & 2 & \dots & i & i+1 & \dots & n \\ n & n-1 & \dots & n-i+1 & n-i+1 & \dots & 2 \end{pmatrix},$$
(56)

for $2 \le i \le n - 1$. Also notice that $F_{n-1} = \{\alpha_{i,i+1}, \beta_{i,i+1}, \lambda_{i,i+1}, \mu_{i,i+1} | 1 \le i \le n - 1\}$. We give some equations in the following lemmas.

Lemma 4.4 For $n \ge 3$ and $1 \le i \le n - 1$,

(i). $\alpha_{i,i+1}\theta = \mu_{i,i+1}$ (ii). $\beta_{i,i+1}\theta = \lambda_{i,i+1}$ (iii). $\lambda_{i,i+1}\theta = \beta_{i,i+1}$ (iv). $\mu_{i,i+1}\theta = \alpha_{i,i+1}$.

Proof. By using the multiplication it is a routine matter to show (i) and (ii). Also, the results (iii) and (iv) follows from the fact $\theta^2 = \epsilon$.

Lemma 4.5 For $n \ge 3$ and $1 \le i \le n - 1$, (i). $\theta \alpha_{i,i+1} = \lambda_{n-i,n-i+1}$ (ii). $\theta \beta_{i,i+1} = \mu_{n-i,n-i+1}$ (iii). $\theta \lambda_{i,i+1} = \alpha_{n-i,n-i+1}$ (iv). $\theta \mu_{i,i+1} = \beta_{n-i,n-i+1}$.

Proof. (i) First notice that $1(\theta \alpha_{i,i+1}) = n\alpha_{i,i+1} = n - 1$ and $n(\theta \alpha_{i,i+1}) = 1\alpha_{i,i+1} = 1$. Thus im $(\theta \alpha_{i,i+1}) = \{1, 2, ..., n - 1\}$ and clearly $\theta \alpha_{i,i+1}$ is an order-reversing full contraction mappings. Moreover

$$(n-i)(\theta\alpha_{i,i+1}) = (i+1)\alpha_{i,i+1} = i\alpha_{i,i+1} = (n-i+1)(\theta\alpha_{i,i+1})$$
(57)

and so we have $\ker(\theta \alpha_{i,i+1}) = [n-i, n-i+1]$. Thus, $\theta \alpha_{i,i+1} = \lambda_{n-i,n-i+1}$, as required.

(ii), (iii) and (iv) can be shown similarly.

Lemma 4.6 For $n \ge 3$ and $1 \le i \le n - 1$ we have $\alpha_{i,i+1}\beta_{n-1,n} = \beta_{i,i+1}$.

Proof. By using the multiplication it is a routine matter to prove the claim.

Proposition 4.7 Let $n \ge 3$ and let *A* be a generating set for $ORCT_n$. If n is an odd number then *A* must include at least $\frac{n-1}{2}$ elements from F_{n-1} , and if n is an even number then A must include at least $\frac{n}{2}$ elements from F_{n-1} .

Proof. Let $n \ge 3$ and let *A* be a generating set for $ORCT_n$. Recall that $F_n = \{\epsilon, \theta\}$ and $\theta^2 = \epsilon$ where ϵ is the identity element of $ORCT_n$. Also $ORCT_{(n,n-2)}$ is an ideal of $ORCT_n$ and there are n-1 different kernel classes in F_{n-1} . Let $\alpha \in F_{n-1}$ then there exists $1 \le k \le n-1$ such that $\ker(\alpha) = [k, k+1]$. Let $m \in Z^+$ and suppose that $\alpha = \alpha_1 \alpha_2 \dots \alpha_m$ where $\alpha_i \in ORCT_n$ for each $1 \le i \le m$. Then every $\alpha_i \in F_{n-1} \cup F_n$ since $ORCT_{(n,n-2)}$ is an ideal of $ORCT_n$. If $\alpha_1 \in F_{n-1}$ then it is clear that $\ker(\alpha_1) = \ker(\alpha)$. If $\alpha_1 \in F_n$ then we can assume that $\alpha_1 = \theta$ since ϵ is the identity element. Then we can assume that $\alpha_2 \in F_{n-1}$ since $\theta^2 = \epsilon$ and so $\ker(\alpha_2) = [n - k, n - k + 1]$ from Lemma 4.5. Thus if *n* is an odd number then *A* must include at least $\frac{n-1}{2}$ elements from F_{n-1} .

For $n \ge 3$ it is clear that $F_n = \{\epsilon, \theta\}$ is a subsemigroup generated by $\{\theta\}$ or $\{\theta, \epsilon\}$, and $ORCT_n \setminus F_n = ORCT_{(n,n-1)}$ is an ideal of $ORCT_n$. Hence every generating set of $ORCT_n$ must include the element θ . Thus, if *n* is an odd number then rank $(ORCT_n) \ge \frac{n+1}{2}$, and if *n* is an even number then rank $(ORCT_n) \ge \frac{n+2}{2}$ from Proposition 4.7.

Theorem 4.8 For $n \ge 1$,

$$rank (ORCT_n) = \begin{cases} \frac{n+1}{2}; & \text{if } n \text{ is an odd number} \\ \\ \frac{n+2}{2}; & \text{if } n \text{ is an even number}. \end{cases}$$

Proof. If n = 1 or n = 2 then the result is clear. Let $n \ge 3$ and n be an odd number. Then we have rank $(ORCT_n) \ge \frac{n+1}{2}$. Let

$$W = \{\theta\} \cup \{\alpha_{i,i+1} | 1 \le i \le \frac{n-1}{2}\},\tag{58}$$

and it is clear that $|W| = \frac{n+1}{2}$. Hence it is enough to show that W is a generating set of $ORCT_n$. For $1 \le k \le \frac{n-1}{2}$ then $\alpha_{k,k+1} \in W$ and so $\alpha_{1,2}\theta = \mu_{1,2}$ and $\theta\mu_{1,2} = \beta_{n-1,n}$. It

follows that $\alpha_{k,k+1}\beta_{n-1,n} = \beta_{k,k+1}$, $\beta_{k,k+1}\theta = \lambda_{k,k+1}$ and $\alpha_{k,k+1}\theta = \mu_{k,k+1}$. Thus if $1 \le k \le \frac{n-1}{2}$ then

 $\{\alpha_{k,k+1}, \beta_{k,k+1}, \lambda_{k,k+1}, \mu_{k,k+1}\} \in < W >.$

Now let $\frac{n-1}{2} < k \le n-1$ and let i = n-k. Then it is clear that $\alpha_{i,i+1} \in W$. Moreover $\theta \alpha_{i,i+1} = \lambda_{n-i,n-i+1} = \lambda_{k,k+1}$ and $\lambda_{k,k+1}\theta = \beta_{k,k+1}$. Since $i \le \frac{n-1}{2}$ we have $\lambda_{i,i+1} \in W$, and so $\theta \lambda_{i,i+1} = \alpha_{n-i,n-i+1} = \alpha_{k,k+1}$ and $\alpha_{k,k+1}\theta = \mu_{k,k+1}$. It follows that

 $\{\alpha_{k,k+1}, \beta_{k,k+1}, \lambda_{k,k+1}, \mu_{k,k+1}\} \in < W >.$

So *W* is a generating set of $ORCT_n$ from Corollary 4.3. Thus if *n* is an odd number then we have rank $(ORCT_n) = \frac{n+1}{2}$. If *n* is an even number similarly it can be shown that $W = \{\theta\} \cup \{\alpha_{i,i+1} | 1 \le i \le \frac{n}{2}\}$ is a generating set of $ORCT_n$ and so rank $(ORCT_n) = \frac{n+2}{2}$, as required.

Acknowledgement

We would like to thank the referees for their valuable comments which helped to improve the manuscript.

References

- [1] Garba, G.U., Ibrahim, M.J. and Imam, A.T., On certain semigroups of full contraction maps of a finite chain, **Turkish Journal of Mathematics**, 41, 3, 500-507, (2017).
- [2] Adeshola, A.D. and Umar, A., Results for certain semigroups of orderpreserving full contraction mappings of a finite chain, Journal of Combinatorial Mathematics and Combinatorial Computing, 106, 37-49, (2018).
- [3] Gomes, G.M.S. and Howie, J.M., On the ranks of certain finite semigroups of transformations, **Mathematical Proceedings of the Cambridge Philosophical Society**, 101, 3, 395-403, (1987).
- [4] Ayık, G., Ayık, H., Bugay, L. and Kelekci, O., Generating sets of finite singular transformation semigroups, **Semigroup Forum**, 86, 1, 59-66, (2013).
- [5] Bugay, L., Yağcı, M. And Ayık, H., The ranks of certain semigroups of partial isometries, **Semigroup Forum**, 97, 2, 214-222, (2018).
- [6] Toker, K. and Ayık, H., On the rank of transformation semigroup $T_{(n,m)}$, **Turkish Journal of Mathematics**, 42, 4, 1970-1977, (2018).
- [7] Howie, J.M., **Fundamentals of Semigroup Theory**, Oxford University Press, USA, (1995).