Ranks of some subsemigroups of full contraction mappings on a finite chain

Kemal TOKER*
Harran University Faculty of Science and Literature, Department of Mathematics, Osmanbey Campus, Şanlurfa.

Geliş Tarihi (Received Date): 28.09.2019
Kabul Tarihi (Accepted Date): 13.03.2020

Abstract

Let Z^{+}denotes the set of all positive integers. Let $X_{n}=\{1,2, \ldots, n\}$ be the finite chain for $n \in Z^{+}$and let T_{n} be the full transformation semigroup on X_{n}. Also let $O C T_{n}$ and $O R C T_{n}$ be the semigroup of order-preserving full contraction mappings, and the semigroup of order-preserving or order-reversing full contraction mappings on X_{n}, respectively. It is well-known that $O C T_{n}$ and $O R C T_{n}$ are subsemigroups of T_{n}. In this paper we obtain ranks of the semigroups $O C T_{n}$ and $O R C T_{n}$.

Keywords: Order-preserving/order-reversing contraction mappings, generating set, rank.

Sonlu zincir üzerindeki tam daralma dönüşümlerinin bazı alt yarıgruplarının rankları

Öz

Z^{+}, tüm pozitif tamsayıların kümesi olsun. $n \in Z^{+}$için $X_{n}=\{1,2, \ldots, n\}$ sonlu bir zincir ve T_{n}, X_{n} üzerindeki tam dönüşümler yarıgrubu olsun. Ayrıca OCT T_{n} ve ORCT T_{n} strasıyla X_{n} üzerindeki sıra-koruyan tam daralma dönüşümler yarıgrubu ve sıra-koruyan veya sıra-çeviren tam daralma dönüşüler yarıgrubu olsun. $O C T_{n}$ ve $O R C T_{n}$ yarıgruplarının T_{n} yarıgrubunun altyarıgrupları olduğu bilinmektedir. Bu çalışmada $O C T_{n}$ ve $O R C T_{n}$ yarıgruplarının rankları araştırılmıştır.

Anahtar kelimeler: Sıra-koruyan/sıra-çeviren daralma dönüşümleri, doğuray kümeleri, rank.

[^0]
1. Introduction

Let Z^{+}denotes the set of all positive integers. Let $X_{n}=\{1,2, \ldots, \mathrm{n}\}$ be the finite chain for $\mathrm{n} \in Z^{+}$and let T_{n} and S_{n} be the full transformation semigroup and the symmetric group on X_{n}, respectively. Also let
$O_{n}=\left\{\alpha \in T_{n} \mid\left(\forall \mathrm{x}, \mathrm{y} \in X_{n}\right) \mathrm{x} \leq \mathrm{y} \Rightarrow \mathrm{x} \alpha \leq \mathrm{y} \alpha\right\}$,
the semigroup of all order-preserving full transformations on X_{n}. For any $\alpha \in T_{n}$, if $|x \alpha-y \alpha| \leq|x-y|$ for all $x, y \in X_{n}$ then α is called a full contraction mapping on X_{n}. Then let $C T_{n}$ be the set of all full contraction mappings on X_{n}, say
$C T_{n}=\left\{\alpha \in T_{n}\left|\left(\forall \mathrm{x}, \mathrm{y} \in X_{n}\right)\right| x \alpha-y \alpha|\leq|x-y|\}\right.$,
and let $O C T_{n}$ be the set of all order-preserving full contraction mappings on X_{n}, say $O C T_{n}=O_{n} \cap C T_{n}$ which are clearly subsemigroups of T_{n}. Also, let $O R_{n}$ be the semigroup of all order-preserving or order-reversing transformations on X_{n}, and let $O R C T_{n}=O R_{n} \cap C T_{n}$, which is clearly a subsemigroup of T_{n} consisting of all orderpreserving or order-reversing full contraction mappings on X_{n}. Recall that, Garba et al. have presented characterisations of Green's relations on $C T_{n} \backslash S_{n}$ and $O C T_{n} \backslash S_{n}$ in [1], and that Adeshola and Umar have investigated the cardinalities of some equivalences on $O C T_{n}$ and $O R C T_{n}$ in [2] which lead naturally to obtaining the orders of these subsemigroups.

Let S be any semigroup, and let A be any non-empty subset of S. Then the subsemigroup generated by A, that is the smallest subsemigroup of S containing A, is denoted by $\langle A\rangle$. If there exists a finite subset A of a semigroup S with $\langle A\rangle=S$, then S is called a finitely generated semigroup. The rank of a finitely generated semigroup S is defined by
$\operatorname{rank}(S)=\min \{|A|:\langle A\rangle=S\}$.
There are many studies on various generating sets and ranks of any semigroup. Now we give some examples of recent studies. Let $\operatorname{Sing}_{n}=T_{n} \backslash S_{n}$, the subsemigroup of all singular mappings. Gomes and Howie proved that $\operatorname{rank}\left(\operatorname{Sing}_{n}\right)=\frac{n(n-1)}{2}$ in [3] and Ayık et al. found the necessary and sufficient conditions for any set of transformations with $n-1$ image in Sing_{n} to be a (minimal) generating set for Sing_{n} in [4]. Let I_{n} be the symmetric inverse semigroup on X_{n}, and let
$D P_{n}=\left\{\alpha \in I_{n}|\forall \mathrm{x}, \mathrm{y} \in \operatorname{dom}(\alpha),|x \alpha-y \alpha|=|x-y|\}\right.$
be the subsemigroup of I_{n} consisting of all partial isometries on X_{n}. Also, let
$O D P_{n}=\left\{\alpha \in D P_{n} \mid \forall \mathrm{x}, \mathrm{y} \in \operatorname{dom}(\alpha), \mathrm{x} \leq \mathrm{y} \Rightarrow \mathrm{x} \alpha \leq \mathrm{y} \alpha\right\}$
be the subsemigroup of $D P_{n}$ consisting of all order-preserving partial isometries on X_{n}. Bugay et al. examined the subsemigroups
$D P_{n, r}=\left\{\alpha \in D P_{n} \| \operatorname{im}(\alpha) \mid \leq \mathrm{r}\right\}$
and
$O D P_{n, r}=\left\{\alpha \in O D P_{n} \| \operatorname{im}(\alpha) \mid \leq \mathrm{r}\right\}$
for $2 \leq r \leq n-1$, and showed that $\operatorname{rank}\left(D P_{n, r}\right)=\operatorname{rank}\left(O D P_{n, r}\right)=\binom{n}{r}$ in [5]. For any $\emptyset \neq Y \subseteq X_{n}$, let
$T_{\left(X_{n}, Y\right)}=\left\{\alpha \in T_{n} \mid \mathrm{Y} \alpha=\mathrm{Y}\right\}$.
Clearly $T_{\left(X_{n}, Y\right)}$ is a subsemigroup of T_{n}. Toker et al. examined the subsemigroups $T_{(n, m)}=\left\{\alpha \in T_{n}: X_{m} \alpha=X_{m}\right\}$ and showed that
$\operatorname{rank}\left(T_{(n, m)}\right)= \begin{cases}2, & \text { if }(n, m)=(2,1) \text { or }(3,2) \\ 3, & \text { if }(n, m)=(3,1) \text { or } 4 \leq n \text { and } m=n-1 \\ 4, & \text { if } 4 \leq n \text { and } 1 \leq m \leq n-2\end{cases}$
in [6]. Now, in this paper we examine $O C T_{n}$ and $O R C T_{n}$, and show that
$\operatorname{rank}\left(O C T_{n}\right)=\left\{\begin{array}{ll}3, & \text { if } n=2 \\ n, & \text { if } n=1\end{array}\right.$ or if $n \geq 3$.
and
$\operatorname{rank}\left(O R C T_{n}\right)= \begin{cases}\frac{n+1}{2}, & \text { if } n \text { is an odd number } \\ \frac{n+2}{2}, & \text { if } n \text { is an even number. }\end{cases}$

2. Preliminaries

The kernel and the image of $\alpha \in T_{n}$ are defined by
$\operatorname{ker}(\alpha)=\left\{(x, y) \in X_{n} \times X_{n}: x \alpha=y \alpha\right\}$
$\operatorname{im}(\alpha)=\left\{x \alpha: x \in X_{n}\right\}$,
respectively. For any $\alpha, \beta \in T_{n}$ it is well known that $\operatorname{ker}(\alpha) \subseteq \operatorname{ker}(\alpha \beta)$ and $\operatorname{im}(\alpha \beta) \subseteq$ $\operatorname{im}(\beta)$.

Definition 2.1 Let A be a non-empty subset of X_{n}. If $x, y \in A$ and $x \leq z \leq y \Rightarrow z \in A$ for all $x, y \in A$, then A is called a convex subset of X_{n}.

Recall from [Theorem 2.2 [1]] that if $\alpha \in T_{n}$ is a contraction mapping then $\operatorname{im}(\alpha)$ is a convex subset of X_{n}. Thus, if $\alpha \in O C T_{n}$ or $\alpha \in O R C T_{n}$ then $\operatorname{im}(\alpha)$ is a convex subset of X_{n}, that is there exists $1 \leq k \leq m \leq n$ such that $\operatorname{im}(\alpha)=\{k, k+1, \ldots, m\}$. If $\alpha \in$ $O C T_{n}$ then since α is order-preserving, it is easy to see that each equivalence class of
$\operatorname{ker}(\alpha)$ is a convex subset of X_{n}, and if $\alpha \in O R C T_{n}$ then since α is order-preserving or order-reversing, it is easy to see that each equivalence class of $\operatorname{ker}(\alpha)$ is also a convex subset of X_{n}.

On a semigroup $S,(a, b) \in L^{*}(S)$ if and only if the elements $a, b \in S$ are related by Green's relation L in some oversemigroup of S. The relation R^{*} is defined dually. The join of relations L^{*} and R^{*} is denoted by D^{*} and their intersection by H^{*}. Those relations are called starred Green's relations. Garba et al. have found starred Green's relations semigroups of $C T_{n} \backslash S_{n}$ and $O C T_{n} \backslash S_{n}$ in [1]. In particular, they proved the following theorem.

Theorem $2.2[1]$ Let $S \in\left\{C T_{n} \backslash S_{n}, O C T_{n} \backslash S_{n}\right\}$ and let $\alpha, \beta \in S$. Then
(i) $\quad(\alpha, \beta) \in L^{*}(S)$ if and only if $\operatorname{im}(\alpha)=\operatorname{im}(\beta)$,
(ii) $\quad(\alpha, \beta) \in R^{*}(S)$ if and only if $\operatorname{ker}(\alpha)=\operatorname{ker}(\beta)$,
(iii) $\quad(\alpha, \beta) \in H^{*}(S)$ if and only if $\operatorname{im}(\alpha)=\operatorname{im}(\beta)$ and $\operatorname{ker}(\alpha)=\operatorname{ker}(\beta)$,
(iv) $\quad(\alpha, \beta) \in D^{*}(S)$ if and only if $|\operatorname{im}(\alpha)|=|\operatorname{im}(\beta)|$.

In this paper we use the same notations with Howie's book [7].

3. The rank of $O C T_{n}$

In this section, we find a minimal generating set of $O C T_{n}$ and so we obtain the rank of $O C T_{n}$. It is clear that $O C T_{1}=\left\{\binom{1}{1}\right\}$ and so rank $\left(O C T_{1}\right)=1$, it is also clear that
$O C T_{2}=\left\{\left(\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right),\left(\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right),\left(\begin{array}{ll}1 & 2 \\ 2 & 2\end{array}\right)\right\}$.
If $\{\alpha, \beta\} \in O C T_{2}$ then we observe that $\langle\alpha, \beta\rangle=\{\alpha, \beta\}$, and so $\operatorname{rank}\left(O C T_{2}\right)=3$. Hence in this paper we consider the case $n \geq 3$. Let
$D_{k}^{*}=\left\{\alpha \in O C T_{n}:|\operatorname{im}(\alpha)|=k\right\}$
for $1 \leq k \leq n$. Notice that $D_{\mathrm{n}}^{*}=\left\{\epsilon=\left(\begin{array}{cccc}1 & 2 & \ldots . & n \\ 1 & 2 & \ldots & n\end{array}\right)\right\}$.
Lemma 3.1 If $\alpha \in D_{r}^{*}$ then $\alpha \in<D_{r+1}^{*}>$ for each $1 \leq \mathrm{r} \leq \mathrm{n}-2$.
Proof. Let $\alpha \in D_{r}^{*}$ for $1 \leq r \leq n-2$, then there exists a partition $\left\{A_{1}, A_{2}, \ldots, A_{r}\right\}$ of X_{n} and there exists $1 \leq k \leq n-r+1$ such that
$\alpha=\left(\begin{array}{cccccc}A_{1} & A_{2} & \ldots & A_{i} & \ldots & A_{r} \\ k & k+1 & \ldots & k-1+i & \ldots & k-1+r\end{array}\right)$.
It is clear that $\left|A_{i}\right| \geq 2$ at least for one $1 \leq i \leq r$ since $r \leq n-2$. Without loss of generality let $A_{i}=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ for $m \geq 2$ and let x_{i} be the maximum element in A_{i}. If $k>1$ and $k+r-1<n$, let
$\beta=\left(\begin{array}{ccccl}A_{1} \backslash\left\{x_{1}\right\} & \left\{x_{1}\right\} & A_{2} & \ldots & A_{r} \\ k & k+1 & k+2 & \ldots & k+r\end{array}\right)$,
for $i=1$, let
$\beta=\left(\begin{array}{cccccc}A_{1} & A_{2} & \ldots & A_{r-1} & A_{r} \backslash\left\{x_{r}\right\} & \left\{x_{r}\right\} \\ k & k+1 & \ldots & k+r-2 & k+r-1 & k+r\end{array}\right)$,
for $i=r$, and let
$\beta=\left(\begin{array}{ccccccc}A_{1} & \ldots & A_{i-1} & A_{i} \backslash\left\{x_{i}\right\} & \left\{x_{i}\right\} & A_{i+1} & \ldots \\ k & \ldots & k+i-2 & k+i-1 & k+i & k+i+1 & \ldots \\ k+r\end{array}\right)$,
for $2 \leq i \leq r-1$. Also, let γ be the mapping defined as
$j \gamma=\left\{\begin{array}{lll}k-1 ; & \text { if } & 1 \leq j \leq k-1 \\ j ; & \text { if } & k \leq j \leq k+i-1 \\ j-1 ; & \text { if } & k+i \leq j \leq k+r \\ k+r-1 ; & \text { if } & j>k+r,\end{array}\right.$
for $1 \leq i \leq r$. Then $\beta, \gamma \in D_{r+1}^{*}$ and $\alpha=\beta \gamma$.
If $k=1$, let
$\beta=\left(\begin{array}{ccccc}A_{1} \backslash\left\{x_{1}\right\} & \left\{x_{1}\right\} & A_{2} & \ldots & A_{r} \\ 1 & 2 & 3 & \ldots & r+1\end{array}\right)$,
for $i=1$, let
$\beta=\left(\begin{array}{cccccc}A_{1} & A_{2} & \ldots & A_{r-1} & A_{r} \backslash\left\{x_{r}\right\} & \left\{x_{r}\right\} \\ 1 & 2 & \ldots & r-1 & r & r+1\end{array}\right)$,
for $i=r$, and let
$\beta=\left(\begin{array}{cccccccc}A_{1} & \ldots & A_{i-1} & A_{i} \backslash\left\{x_{i}\right\} & \left\{x_{i}\right\} & A_{i+1} & \ldots & A_{r} \\ 1 & \ldots & i-1 & i & i+1 & i+2 & \ldots & r+1\end{array}\right)$,
for $2 \leq i \leq r-1$. Also, let γ be the mapping defined as
$j \gamma= \begin{cases}j ; & \text { if } \quad j \leq i \\ j-1 ; & \text { if } i+1 \leq j \leq r+1 \\ r+1 ; & \text { if } r+2 \leq j \leq n,\end{cases}$
for $1 \leq i \leq r$. Then, similarly $\beta, \gamma \in D_{r+1}^{*}$ and $\alpha=\beta \gamma$.
If $k+r-1=n$, let
$\beta=\left(\begin{array}{ccccc}A_{1} \backslash\left\{x_{1}\right\} & \left\{x_{1}\right\} & A_{2} & \ldots & A_{r} \\ k-1 & k & k+1 & \ldots & n\end{array}\right)$,
for $i=1$, let
$\beta=\left(\begin{array}{cccccc}A_{1} & A_{2} & \ldots & A_{r-1} & A_{r} \backslash\left\{x_{r}\right\} & \left\{x_{r}\right\} \\ k-1 & k & \ldots & n-2 & n-1 & n\end{array}\right)$,
for $i=r$, and let
$\beta=\left(\begin{array}{cccccccc}A_{1} & \ldots & A_{i-1} & A_{i} \backslash\left\{x_{i}\right\} & \left\{x_{i}\right\} & A_{i+1} & \ldots & A_{r} \\ k-1 & \ldots & k+i-3 & k+i-2 & k+i-1 & k+i & \ldots & n\end{array}\right)$,
for $2 \leq i \leq r-1$. Also, let γ be the mapping defined as
$j \gamma=\left\{\begin{array}{lll}k-1 ; & \text { if } & 1 \leq j \leq k-2 \\ j+1 ; & \text { if } & k-1 \leq j \leq k+i-2 \\ j ; & \text { if } & k+i-1 \leq j \leq n,\end{array}\right.$
for $1 \leq i \leq r$. Then, similarly $\beta, \gamma \in D_{r+1}^{*}$ and $\alpha=\beta \gamma$.
Corollary 3.2 $D_{i}^{*} \subseteq<D_{n-1}^{*}>$ for each $1 \leq \mathrm{i} \leq \mathrm{n}-1$.
Let $O C T_{(n, r)}=\left\{\alpha \in O C T_{n}:|\operatorname{im}(\alpha)| \leq r\right\}$ for $1 \leq r<n$. It is clear that $O C T_{(n, r)}$ is an ideal of $O C T_{n}$. Thus we have
$<D_{n-1}^{*}>=O C T_{(n, n-1)}=O C T_{n} \backslash S_{n}=O C T_{n} \backslash\{\epsilon\}$.
If $\alpha \in D_{n-1}^{*}$ then im $(\alpha)=\{1,2, \ldots, n-1\}$ or im $(\alpha)=\{2,3, \ldots, n\}$ since im (α) is a convex subset of X_{n}. Moreover since kernel classes of α are convex subsets of X_{n}, there exists $1 \leq i \leq n-1$ such that
$\operatorname{ker}(\alpha)=\bigcup_{j=1}^{n}\{(j, j)\} \cup\{(i+1, i),(i, i+1)\}$.
In this case, we denote $\operatorname{ker}(\alpha)$ by $[i, i+1]$ instead of $\bigcup_{j=1}^{n}\{(j, j)\} \cup\{(i+1, i),(i, i+$ $1)$ for convenience.

It is clear that $\left|D_{n-1}^{*}\right|=2(n-1)$ for $n \geq 3$ and so $\operatorname{rank}\left(O C T_{(n, n-1)}\right) \leq 2 n-2$ from Corollary 3.2. Notice that, since $O C T_{(n, n-2)}$ is an ideal of $O C T_{(n, n-1)}$ for $n \geq 3, \alpha \in$ D_{n-1}^{*} can be written as a product of only the elements of D_{n-1}^{*}. Moreover, since there are $n-1 R^{*}$-classes (kernel classes) in D_{n-1}^{*}, we have $\operatorname{rank}\left(O C T_{(n, n-1)}\right) \geq n-1$ for $n \geq 3$.

Let $\alpha_{i, i+1} \in D_{n-1}^{*}$ be the element with $\operatorname{im}\left(\alpha_{i, i+1}\right)=\{1,2, \ldots, n-1\}$ and $\operatorname{ker}\left(\alpha_{i, i+1}\right)=$ $[i, i+1]$, that is
$\alpha_{i, i+1}=\left(\begin{array}{ccccccc}1 & \ldots & i & i+1 & i+2 & \ldots & n \\ 1 & \ldots & i & i & i+1 & \ldots & n-1\end{array}\right)$,
for $1 \leq i \leq n-2$, and
$\alpha_{n-1, n}=\left(\begin{array}{ccccc}1 & 2 & \ldots & n-1 & n \\ 1 & 2 & \ldots & n-1 & n-1\end{array}\right)$.

Let $\beta_{i, i+1} \in D_{n-1}^{*}$ be the element with $\operatorname{im}\left(\beta_{i, i+1}\right)=\{2,3, \ldots, n\}$ with $\operatorname{ker}\left(\beta_{i, i+1}\right)=$ $[i, i+1]$, that is
$\beta_{1,2}=\left(\begin{array}{lllll}1 & 2 & 3 & \ldots & n \\ 2 & 2 & 3 & \ldots & n\end{array}\right)$,
$\beta_{i, i+1}=\left(\begin{array}{ccccccc}1 & 2 & \ldots & i & i+1 & \ldots & n \\ 2 & 3 & \ldots & i+1 & i+1 & \ldots & n\end{array}\right)$
for $2 \leq i \leq n-1$.
Theorem 3.3 $\operatorname{rank}\left(O C T_{(n, n-1)}\right)=\mathrm{n}-1$ for $\mathrm{n} \geq 3$.
Proof. Let $n \geq 3$ and $W=\left\{\alpha_{1,2}\right\} \cup\left\{\beta_{i, i+1} \mid 2 \leq i \leq n-1\right\}$ where $\alpha_{1,2}, \beta_{i, i+1}(2 \leq i \leq$ $n-1)$ are the elements defined above. It is clear that $|W|=n-1$ and so for the proof it is enough to show that W is a generating set of $O C T_{(n, n-1)}$ since rank $\left(O C T_{(n, n-1)}\right) \geq$ $n-1$. By using the multiplication it is a routine matter to show $\alpha_{1,2} \beta_{n-1, n}=\beta_{1,2}$ and $\beta_{i, i+1} \alpha_{1,2}=\alpha_{i, i+1}$ for $2 \leq i \leq n-1$. Thus, $\left.D_{n-1}^{*} \subseteq<W\right\rangle$ and so $\langle W\rangle=$ $O C T_{(n, n-1)}$ from Corollary 3.2. Therefore, $\operatorname{rank}\left(O C T_{(n, n-1)}\right)=n-1$ for $n \geq 3$, as required.

Theorem 3.4 rank $\left(O C T_{n}\right)= \begin{cases}3, & \text { if } n=2 \\ n, & \text { if } n=1 \text { or if } n \geq 3 .\end{cases}$
Proof. Recall that rank $\left(O C T_{1}\right)=1$ and rank $\left(O C T_{2}\right)=3$. For $n \geq 3$, it is clear that $O C T_{n}=O C T_{(n, n-1)} \cup\{\epsilon\}$ where ϵ is the identity mapping on $O C T_{n}$. Since $O C T_{n}$ is a monoid and $O C T_{(n, n-1)}$ is a finitely generated semigroup, and since $\alpha \beta \neq \epsilon$ for all $\alpha, \beta \in O C T_{(n, n-1)}$, we have rank $\left(O C T_{n}\right)=\operatorname{rank}\left(O C T_{(n, n-1)}\right)+1=n$ for $n \geq 3$.

4. The rank of $O R C T_{n}$

In this section, we find a generating set and the rank of $O R C T_{n}$. It is clear that $O R C T_{1}=$ $\left\{\binom{1}{1}\right\}$ and so rank $\left(O R C T_{1}\right)=1$. It is also clear that
$O R C T_{2}=\left\{\left(\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right),\left(\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right),\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right),\left(\begin{array}{ll}1 & 2 \\ 2 & 2\end{array}\right)\right\}$.
Since

$$
O R C T_{2}=<\left(\begin{array}{ll}
1 & 2 \tag{36}\\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)>
$$

and since $O R C T_{2}$ is not a commutative semigroup, we have rank $\left(O R C T_{2}\right)=2$. Now we consider the generating sets of $O R C T_{n}$ for $n \geq 3$. Let
$F_{k}=\left\{\alpha \in O R C T_{n}:|\operatorname{im}(\alpha)|=k\right\}$
for $1 \leq k \leq n$.

Lemma 4.1 If $\alpha \in F_{r}$ then $\alpha \in<F_{r+1}>$ for $1 \leq \mathrm{r} \leq \mathrm{n}-2$.
Proof. Let $1 \leq r \leq n-2$. If $\alpha \in O C T_{n} \cap F_{r}$, then the result follows from Lemma 3.1. Let $\alpha \in O R C T_{n} \backslash O C T_{n}$ and $\alpha \in F_{r}$. Then α is an order-reversing full contraction mappings and so there exists a partition $\left\{A_{1}, A_{2}, \ldots, A_{r}\right\}$ of X_{n} and there exists $r \leq k \leq$ n such that
$\alpha=\left(\begin{array}{cccccc}A_{1} & A_{2} & \ldots & A_{i} & \ldots & A_{r} \\ k & k-1 & \ldots & k-i+1 & \ldots & k-r+1\end{array}\right)$.
It is clear that $\left|A_{i}\right| \geq 2$ at least for one $1 \leq i \leq r$ since $r \leq n-2$. Without loss of generality let $A_{i}=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ for $m \geq 2$, and let x_{i} be the maximum element in A_{i}. If $k<n$ and $k-r \geq 1$, let
$\beta=\left(\begin{array}{ccccc}A_{1} \backslash\left\{x_{1}\right\} & \left\{x_{1}\right\} & A_{2} & \ldots & A_{r} \\ k & k-1 & k-2 & \ldots & k-r\end{array}\right)$,
for $i=1$, let
$\beta=\left(\begin{array}{cccccl}A_{1} & A_{2} & \ldots & A_{r-1} & A_{r} \backslash\left\{x_{r}\right\} & \left\{x_{r}\right\} \\ k & k-1 & \ldots & k-r+2 & k-r+1 & k-r\end{array}\right)$,
for $i=r$, let
$\beta=\left(\begin{array}{ccccccccc}A_{1} & A_{2} & \ldots & A_{i-1} & A_{i} \backslash\left\{x_{i}\right\} & \left\{x_{i}\right\} & A_{i+1} & \ldots & A_{r} \\ k & k-1 & \ldots & k-i+2 & k-i+1 & k-i & k-i-1 & \ldots & k-r\end{array}\right)$,
for $2 \leq i \leq r-1$. Also, let γ be the mapping defined as
$j \gamma=\left\{\begin{array}{lll}k-r+1 ; & \text { if } & 1 \leq j \leq k-r \\ j+1 ; & \text { if } & k-r+1 \leq j \leq k-i \\ j ; & \text { if } & k-i+1 \leq j \leq k \\ k+1 ; & \text { if } & k+1 \leq j \leq n .\end{array}\right.$
Then $\beta, \gamma \in F_{r+1}$ and $\alpha=\beta \gamma$.
If $k=n$, let
$\beta=\left(\begin{array}{ccccc}A_{1} \backslash\left\{x_{1}\right\} & \left\{x_{1}\right\} & A_{2} & \ldots & A_{r} \\ n & n-1 & n-2 & \ldots & n-r\end{array}\right)$,
for $i=1$, let
$\beta=\left(\begin{array}{cccccc}A_{1} & A_{2} & \ldots & A_{r-1} & A_{r} \backslash\left\{x_{r}\right\} & \left\{x_{r}\right\} \\ n & n-1 & \ldots & n-r+2 & n-r+1 & n-r\end{array}\right)$,
for $i=r$, let
$\beta=\left(\begin{array}{ccccccccc}A_{1} & A_{2} & \ldots & A_{i-1} & A_{i} \backslash\left\{x_{i}\right\} & \left\{x_{i}\right\} & A_{i+1} & \ldots & A_{r} \\ n & n-1 & \ldots & n-i+2 & n-i+1 & n-i & n-i-1 & \ldots & n-r\end{array}\right)$,
for $2 \leq i \leq r-1$. Also, let γ be the mapping defined as
$j \gamma=\left\{\begin{array}{lll}n-r ; & \text { if } & 1 \leq j \leq n-r-1 \\ j+1 ; & \text { if } & n-r \leq j \leq n-i \\ j ; & \text { if } & n-i+1 \leq j \leq n .\end{array}\right.$
Then $\beta, \gamma \in F_{r+1}$ and $\alpha=\beta \gamma$.
If $k=r$, let
$\beta=\left(\begin{array}{ccccc}A_{1} \backslash\left\{x_{1}\right\} & \left\{x_{1}\right\} & A_{2} & \ldots & A_{r} \\ r+1 & r & r-1 & \ldots & 1\end{array}\right)$,
for $i=1$, let
$\beta=\left(\begin{array}{cccccc}A_{1} & A_{2} & \ldots & A_{r-1} & A_{r} \backslash\left\{x_{r}\right\} & \left\{x_{r}\right\} \\ r+1 & r & \ldots & 3 & 2 & 1\end{array}\right)$,
for $i=r$, let
$\beta=\left(\begin{array}{ccccccccc}A_{1} & A_{2} & \ldots & A_{i-1} & A_{i} \backslash\left\{x_{i}\right\} & \left\{x_{i}\right\} & A_{i+1} & \ldots & A_{r} \\ r+1 & r & \ldots & r-i+3 & r-i+2 & r-i+1 & r-i & \ldots & 1\end{array}\right)$,
for $2 \leq i \leq r-1$. Also, let γ be the mapping defined as
$j \gamma=\left\{\begin{array}{lll}j ; & \text { if } & 1 \leq j \leq r-i+1 \\ j-1 ; & \text { if } & r-i+2 \leq j \leq r+1 \\ r+1 ; & \text { if } & r+2 \leq j \leq n .\end{array}\right.$
Then $\beta, \gamma \in F_{r+1}$ and $\alpha=\beta \gamma$.
Corollary 4.2 If $\alpha \in F_{i}$ for $1 \leq \mathrm{i} \leq \mathrm{n}-1$ then $\alpha \in<F_{n-1}>$ for $\mathrm{n} \geq 3$.
Let $O R C T_{(n, r)}=\left\{\alpha \in O R C T_{n}:|\operatorname{im}(\alpha)| \leq r\right\}$ for $1 \leq r<n$. It is clear that $O R C T_{(n, r)}$ is an ideal of $O R C T_{n}$. Moreover we have
$F_{n}=\left\{\epsilon=\left(\begin{array}{cccc}1 & 2 & \ldots & n \\ 1 & 2 & \ldots & n\end{array}\right), \theta=\left(\begin{array}{cccc}1 & 2 & \ldots & n \\ n & n-1 & \ldots & 1\end{array}\right)\right\}$,
and notice that
$<F_{n-1}>=O R C T_{(n, n-1)}=O R C T_{n} \backslash \mathrm{~S}_{\mathrm{n}}=O R C T_{n} \backslash\{\epsilon, \theta\}$
where ϵ is the identity element of $O R C T_{n}$ and that $\theta^{2}=\epsilon$.
Corollary 4.3 $O R C T_{n}=<F_{n-1} \cup\{\theta\}>$ for $\mathrm{n} \geq 3$.
If $\alpha \in F_{n-1}$, since im (α) is a convex subset of X_{n}, we have im $(\alpha)=\{1,2, \ldots, n-1\}$ or $\operatorname{im}(\alpha)=\{2,3, \ldots, n\}$. Moreover there are $n-1$ different kernel classes in F_{n-1} and
there exist 4 elements in F_{n-1} which has the same kernel classes. Thus $\left|F_{n-1}\right|=4(n-$ 1) for $n \geq 3$.

Let $\alpha_{i, i+1}$ and $\beta_{i, i+1}$ be the order-preserving full contraction mappings defined before Theorem 3.3 for each $1 \leq i \leq n-1$. Moreover let $\lambda_{i, i+1} \in F_{n-1}$ be the order-reversing full contraction mappings such that $\operatorname{im}\left(\lambda_{i, i+1}\right)=\{1,2, \ldots, n-1\}$ and $\operatorname{ker}(\lambda)=[i, i+$ 1], that is
$\lambda_{i, i+1}=\left(\begin{array}{cccccc}1 & \ldots & i & i+1 & i+2 & \ldots \\ n-1 & \ldots & n-i & n-i & n-i-1 & \ldots \\ 1\end{array}\right)$,
for $1 \leq i \leq n-2$, and
$\lambda_{n-1, n}=\left(\begin{array}{cccccc}1 & 2 & \ldots & n-2 & n-1 & n \\ n-1 & n-2 & \ldots & 2 & 1 & 1\end{array}\right)$.
Also, let $\mu_{i, i+1} \in F_{n-1}$ be the order-reversing full contraction mappings with $\operatorname{im}\left(\mu_{i, i+1}\right)=\{2,3, \ldots, n\}$ with $\operatorname{ker}\left(\mu_{i, i+1}\right)=[i, i+1]$, that is
$\mu_{1,2}=\left(\begin{array}{cccccc}1 & 2 & 3 & \ldots & n-1 & n \\ n & n & n-1 & \ldots & 3 & 2\end{array}\right)$,
and
$\mu_{i, i+1}=\left(\begin{array}{cccccc}1 & 2 & \ldots & i & i+1 & \ldots \\ n & n-1 & \ldots & n-i+1 & n-i+1 & \ldots \\ 2\end{array}\right)$,
for $2 \leq i \leq n-1$. Also notice that $F_{n-1}=\left\{\alpha_{i, i+1}, \beta_{i, i+1}, \lambda_{i, i+1}, \mu_{i, i+1} \mid 1 \leq i \leq n-1\right\}$. We give some equations in the following lemmas.

Lemma 4.4 For $\mathrm{n} \geq 3$ and $1 \leq \mathrm{i} \leq \mathrm{n}-1$,
(i). $\alpha_{i, i+1} \theta=\mu_{i, i+1}$
(ii). $\beta_{i, i+1} \theta=\lambda_{i, i+1}$
(iii). $\lambda_{i, i+1} \theta=\beta_{i, i+1}$
(iv). $\mu_{i, i+1} \theta=\alpha_{i, i+1}$.

Proof. By using the multiplication it is a routine matter to show (i) and (ii). Also, the results (iii) and (iv) follows from the fact $\theta^{2}=\epsilon$.

Lemma 4.5 For $\mathrm{n} \geq 3$ and $1 \leq \mathrm{i} \leq \mathrm{n}-1$,
(i). $\theta \alpha_{i, i+1}=\lambda_{n-i, n-i+1}$
(ii). $\theta \beta_{i, i+1}=\mu_{n-i, n-i+1}$
(iii). $\theta \lambda_{i, i+1}=\alpha_{n-i, n-i+1}$
(iv). $\theta \mu_{i, i+1}=\beta_{n-i, n-i+1}$.

Proof. (i) First notice that $1\left(\theta \alpha_{i, i+1}\right)=n \alpha_{i, i+1}=n-1$ and $n\left(\theta \alpha_{i, i+1}\right)=1 \alpha_{i, i+1}=1$. Thus $\operatorname{im}\left(\theta \alpha_{i, i+1}\right)=\{1,2, \ldots, n-1\}$ and clearly $\theta \alpha_{i, i+1}$ is an order-reversing full contraction mappings. Moreover

$$
\begin{equation*}
(n-i)\left(\theta \alpha_{i, i+1}\right)=(i+1) \alpha_{i, i+1}=i \alpha_{i, i+1}=(n-i+1)\left(\theta \alpha_{i, i+1}\right) \tag{57}
\end{equation*}
$$

and so we have $\operatorname{ker}\left(\theta \alpha_{i, i+1}\right)=[n-i, n-i+1]$. Thus, $\theta \alpha_{i, i+1}=\lambda_{n-i, n-i+1}$, as required.
(ii), (iii) and (iv) can be shown similarly.

Lemma 4.6 For $\mathrm{n} \geq 3$ and $1 \leq \mathrm{i} \leq \mathrm{n}-1$ we have $\alpha_{i, i+1} \beta_{n-1, n}=\beta_{i, i+1}$.
Proof. By using the multiplication it is a routine matter to prove the claim.
Proposition 4.7 Let $\mathrm{n} \geq 3$ and let A be a generating set for $O R C T_{n}$. If n is an odd number then A must include at least $\frac{\mathrm{n}-1}{2}$ elements from F_{n-1}, and if n is an even number then A must include at least $\frac{\mathrm{n}}{2}$ elements from F_{n-1}.
Proof. Let $n \geq 3$ and let A be a generating set for $O R C T_{n}$. Recall that $F_{n}=\{\epsilon, \theta\}$ and $\theta^{2}=\epsilon$ where ϵ is the identity element of $O R C T_{n}$. Also $O R C T_{(n, n-2)}$ is an ideal of $O R C T_{n}$ and there are $n-1$ different kernel classes in F_{n-1}. Let $\alpha \in F_{n-1}$ then there exists $1 \leq k \leq n-1$ such that $\operatorname{ker}(\alpha)=[k, k+1]$. Let $m \in Z^{+}$and suppose that $\alpha=$ $\alpha_{1} \alpha_{2} \ldots \alpha_{m}$ where $\alpha_{i} \in O R C T_{n}$ for each $1 \leq i \leq m$. Then every $\alpha_{i} \in F_{n-1} \cup F_{n}$ since $O R C T_{(n, n-2)}$ is an ideal of $O R C T_{n}$. If $\alpha_{1} \in F_{n-1}$ then it is clear that $\operatorname{ker}\left(\alpha_{1}\right)=\operatorname{ker}(\alpha)$. If $\alpha_{1} \in F_{n}$ then we can assume that $\alpha_{1}=\theta$ since ϵ is the identity element. Then we can assume that $\alpha_{2} \in F_{n-1}$ since $\theta^{2}=\epsilon$ and so $\operatorname{ker}\left(\alpha_{2}\right)=[n-k, n-k+1]$ from Lemma 4.5. Thus if n is an odd number then A must include at least $\frac{n-1}{2}$ elements from F_{n-1} and if n is an even number then A must include at least $\frac{n}{2}$ elements from F_{n-1}.

For $n \geq 3$ it is clear that $F_{n}=\{\epsilon, \theta\}$ is a subsemigroup generated by $\{\theta\}$ or $\{\theta, \epsilon\}$, and $O R C T_{n} \backslash F_{n}=O R C T_{(n, n-1)}$ is an ideal of $O R C T_{n}$. Hence every generating set of $O R C T_{n}$ must include the element θ. Thus, if n is an odd number then $\operatorname{rank}\left(O R C T_{n}\right) \geq \frac{n+1}{2}$, and if n is an even number then $\operatorname{rank}\left(O R C T_{n}\right) \geq \frac{n+2}{2}$ from Proposition 4.7.

Theorem 4.8 For $\mathrm{n} \geq 1$,
$\operatorname{rank}\left(O R C T_{n}\right)= \begin{cases}\frac{n+1}{2} ; & \text { if } n \text { is an odd number } \\ \frac{n+2}{2} ; & \text { if } n \text { is an even number } .\end{cases}$
Proof. If $n=1$ or $n=2$ then the result is clear. Let $n \geq 3$ and n be an odd number. Then we have rank $\left(O R C T_{n}\right) \geq \frac{n+1}{2}$. Let
$W=\{\theta\} \cup\left\{\alpha_{i, i+1} \left\lvert\, 1 \leq i \leq \frac{n-1}{2}\right.\right\}$,
and it is clear that $|W|=\frac{n+1}{2}$. Hence it is enough to show that W is a generating set of $O R C T_{n}$. For $1 \leq k \leq \frac{n-1}{2}$ then $\alpha_{k, k+1} \in W$ and so $\alpha_{1,2} \theta=\mu_{1,2}$ and $\theta \mu_{1,2}=\beta_{n-1, n}$. It
follows that $\alpha_{k, k+1} \beta_{n-1, n}=\beta_{k, k+1}, \beta_{k, k+1} \theta=\lambda_{k, k+1}$ and $\alpha_{k, k+1} \theta=\mu_{k, k+1}$. Thus if $1 \leq k \leq \frac{n-1}{2}$ then
$\left\{\alpha_{k, k+1}, \beta_{k, k+1}, \lambda_{k, k+1}, \mu_{k, k+1}\right\} \in<W>$.
Now let $\frac{n-1}{2}<k \leq n-1$ and let $i=n-k$. Then it is clear that $\alpha_{i, i+1} \in W$. Moreover $\theta \alpha_{i, i+1}=\lambda_{n-i, n-i+1}=\lambda_{k, k+1}$ and $\lambda_{k, k+1} \theta=\beta_{k, k+1}$. Since $i \leq \frac{n-1}{2}$ we have $\lambda_{i, i+1} \in<$ $W>$, and so $\theta \lambda_{i, i+1}=\alpha_{n-i, n-i+1}=\alpha_{k, k+1}$ and $\alpha_{k, k+1} \theta=\mu_{k, k+1}$. It follows that
$\left\{\alpha_{k, k+1}, \beta_{k, k+1}, \lambda_{k, k+1}, \mu_{k, k+1}\right\} \in<W>$.
So W is a generating set of $O R C T_{n}$ from Corollary 4.3. Thus if n is an odd number then we have rank $\left(O R C T_{n}\right)=\frac{n+1}{2}$. If n is an even number similarly it can be shown that $W=\{\theta\} \cup\left\{\alpha_{i, i+1} \left\lvert\, 1 \leq i \leq \frac{n}{2}\right.\right\}$ is a generating set of $O R C T_{n}$ and so rank $\left(O R C T_{n}\right)=$ $\frac{n+2}{2}$, as required.

Acknowledgement

We would like to thank the referees for their valuable comments which helped to improve the manuscript.

References

[1] Garba, G.U., Ibrahim, M.J. and Imam, A.T., On certain semigroups of full contraction maps of a finite chain, Turkish Journal of Mathematics, 41, 3, 500-507, (2017).
[2] Adeshola, A.D. and Umar, A., Results for certain semigroups of orderpreserving full contraction mappings of a finite chain, Journal of Combinatorial Mathematics and Combinatorial Computing, 106, 37-49, (2018).
[3] Gomes, G.M.S. and Howie, J.M., On the ranks of certain finite semigroups of transformations, Mathematical Proceedings of the Cambridge Philosophical Society, 101, 3, 395-403, (1987).
[4] Ayık, G., Ayık, H., Bugay, L. and Kelekci, O., Generating sets of finite singular transformation semigroups, Semigroup Forum, 86, 1, 59-66, (2013).
[5] Bugay, L., Yağcı, M. And Ayık, H., The ranks of certain semigroups of partial isometries, Semigroup Forum, 97, 2, 214-222, (2018).
[6] Toker, K. and Ayık, H., On the rank of transformation semigroup $T_{(n, m)}$, Turkish Journal of Mathematics, 42, 4, 1970-1977, (2018).
[7] Howie, J.M., Fundamentals of Semigroup Theory, Oxford University Press, USA, (1995).

[^0]: * Kemal TOKER, ktoker@harran.edu.tr, https://orcid.org/0000-0003-3696-1324

