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Abstract 

 

Let 𝑍+denotes the set of all positive integers. Let 𝑋𝑛 = {1,2, … , 𝑛} be the finite chain for 

𝑛 ∈ 𝑍+  and let 𝑇𝑛  be the full transformation semigroup on 𝑋𝑛 . Also let 𝑂𝐶𝑇𝑛  and 

𝑂𝑅𝐶𝑇𝑛  be the semigroup of order-preserving full contraction mappings, and the 

semigroup of order-preserving or order-reversing full contraction mappings on 𝑋𝑛 , 

respectively. It is well-known that  𝑂𝐶𝑇𝑛 and 𝑂𝑅𝐶𝑇𝑛 are subsemigroups of 𝑇𝑛. In this 

paper we obtain ranks of the semigroups 𝑂𝐶𝑇𝑛 and 𝑂𝑅𝐶𝑇𝑛. 

 

Keywords: Order-preserving/order-reversing contraction mappings, generating set, 

rank. 

 

 

Sonlu zincir üzerindeki tam daralma dönüşümlerinin bazı alt 

yarıgruplarının rankları 
 

 

Öz 

 

𝑍+, tüm pozitif tamsayıların kümesi olsun. 𝑛 ∈ 𝑍+ için 𝑋𝑛 = {1,2, … , 𝑛} sonlu bir zincir 

ve 𝑇𝑛, 𝑋𝑛 üzerindeki tam dönüşümler yarıgrubu olsun. Ayrıca 𝑂𝐶𝑇𝑛 ve 𝑂𝑅𝐶𝑇𝑛 sırasıyla 

𝑋𝑛 üzerindeki sıra-koruyan tam daralma dönüşümler yarıgrubu ve sıra-koruyan veya 

sıra-çeviren tam daralma dönüşüler yarıgrubu olsun.𝑂𝐶𝑇𝑛  ve 𝑂𝑅𝐶𝑇𝑛  yarıgruplarının 

𝑇𝑛  yarıgrubunun altyarıgrupları olduğu bilinmektedir. Bu çalışmada 𝑂𝐶𝑇𝑛  ve 𝑂𝑅𝐶𝑇𝑛 

yarıgruplarının rankları araştırılmıştır. 

 

Anahtar kelimeler: Sıra-koruyan/sıra-çeviren daralma dönüşümleri, doğuray kümeleri, 

rank. 

 

 
* Kemal TOKER, ktoker@harran.edu.tr,  https://orcid.org/0000-0003-3696-1324 

https://orcid.org/0000-0003-3696-1324


TOKER K. 

404 

1. Introduction 
 

Let 𝑍+denotes the set of all positive integers. Let 𝑋𝑛 = {1,2, … , n} be the finite chain 

for n ∈ 𝑍+ and let 𝑇𝑛 and 𝑆𝑛 be the full transformation semigroup and the symmetric 

group on 𝑋𝑛, respectively. Also let  

 

𝑂𝑛 = {𝛼 ∈ 𝑇𝑛|(∀x, y ∈ 𝑋𝑛) x ≤ y ⟹ xα ≤ yα } ,                                                         (1) 

 

the semigroup of all order-preserving full transformations on 𝑋𝑛. For any 𝛼 ∈ 𝑇𝑛 , if 
|𝑥𝛼 − 𝑦𝛼| ≤ |𝑥 − 𝑦| for all 𝑥, 𝑦 ∈ 𝑋𝑛 then 𝛼 is called a full contraction mapping on 𝑋𝑛. 

Then let 𝐶𝑇𝑛 be the set of all full contraction mappings on 𝑋𝑛, say  

 

𝐶𝑇𝑛 = {𝛼 ∈ 𝑇𝑛|(∀x, y ∈ 𝑋𝑛) |𝑥𝛼 − 𝑦𝛼| ≤ |𝑥 − 𝑦|} ,                                                     (2) 

 

and let 𝑂𝐶𝑇𝑛 be the set of all order-preserving full contraction mappings on 𝑋𝑛, say 

𝑂𝐶𝑇𝑛 = 𝑂𝑛 ∩ 𝐶𝑇𝑛  which are clearly subsemigroups of 𝑇𝑛 . Also, let 𝑂𝑅𝑛  be the 

semigroup of all order-preserving or order-reversing transformations on 𝑋𝑛 , and let 

𝑂𝑅𝐶𝑇𝑛 = 𝑂𝑅𝑛 ∩ 𝐶𝑇𝑛 , which is clearly a subsemigroup of 𝑇𝑛  consisting of all order-

preserving or order-reversing full contraction mappings on 𝑋𝑛. Recall that, Garba et al. 

have presented characterisations of Green’s relations on 𝐶𝑇𝑛\𝑆𝑛  and 𝑂𝐶𝑇𝑛\𝑆𝑛 in [1], 

and that Adeshola and Umar have investigated the cardinalities of some equivalences on 

𝑂𝐶𝑇𝑛  and 𝑂𝑅𝐶𝑇𝑛  in [2] which lead naturally to obtaining the orders of these 

subsemigroups.  

 

Let 𝑆  be any semigroup, and let 𝐴  be any non-empty subset of 𝑆 . Then the 

subsemigroup generated by 𝐴, that is the smallest subsemigroup of 𝑆 containing 𝐴, is 

denoted by 〈𝐴〉. If there exists a finite subset 𝐴 of a semigroup 𝑆 with 〈𝐴〉 = 𝑆, then 𝑆 is 

called a finitely generated semigroup. The rank of a finitely generated semigroup 𝑆 is 

defined by  

 

rank(𝑆) = min{|𝐴|: 〈𝐴〉 = 𝑆}.                                                                                      (3) 

 

There are many studies on various generating sets and ranks of any semigroup. Now we 

give some examples of recent studies. Let 𝑆𝑖𝑛𝑔𝑛 = 𝑇𝑛\𝑆𝑛 , the subsemigroup of all 

singular mappings. Gomes and Howie proved that rank(𝑆𝑖𝑛𝑔𝑛) =
𝑛(𝑛−1)

2
 in [3] and 

Ayık et al. found the necessary and sufficient conditions for any set of transformations 

with 𝑛 − 1 image in 𝑆𝑖𝑛𝑔𝑛 to be a (minimal) generating set for 𝑆𝑖𝑛𝑔𝑛 in [4]. Let 𝐼𝑛 be 

the symmetric inverse semigroup on 𝑋𝑛, and let  

 

𝐷𝑃𝑛 = {𝛼 ∈ 𝐼𝑛| ∀x, y ∈ dom(𝛼), |𝑥𝛼 − 𝑦𝛼| = |𝑥 − 𝑦|}                                               (4) 

 

be the subsemigroup of 𝐼𝑛 consisting of all partial isometries on 𝑋𝑛. Also, let   

 

𝑂𝐷𝑃𝑛 = {𝛼 ∈ 𝐷𝑃𝑛|∀x, y ∈ dom(𝛼), x ≤ y ⟹ xα ≤ yα}                                            (5) 

 

be the subsemigroup of 𝐷𝑃𝑛 consisting of all order-preserving partial isometries on 𝑋𝑛. 

Bugay et al. examined the subsemigroups  

 

𝐷𝑃𝑛,𝑟 = {𝛼 ∈ 𝐷𝑃𝑛||im(α)| ≤ r}                                                                                     (6) 
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and 

 

𝑂𝐷𝑃𝑛,𝑟 = {𝛼 ∈ 𝑂𝐷𝑃𝑛||im(α)| ≤ r}                                                                               (7) 

  

for 2 ≤ 𝑟 ≤ 𝑛 − 1, and showed that rank(𝐷𝑃𝑛,𝑟) = rank(𝑂𝐷𝑃𝑛,𝑟) = (𝑛
𝑟
) in [5]. For any 

∅ ≠ 𝑌 ⊆ 𝑋𝑛, let 

 

𝑇(𝑋𝑛,𝑌) = { 𝛼 ∈ 𝑇𝑛| Yα = Y}.                                                                                         (8) 

 

Clearly 𝑇(𝑋𝑛,𝑌)  is a subsemigroup of 𝑇𝑛 . Toker et al. examined the subsemigroups 

𝑇(𝑛,𝑚) = {𝛼 ∈ 𝑇𝑛: 𝑋𝑚𝛼 = 𝑋𝑚} and showed that  

 

rank(𝑇(𝑛,𝑚)) = {
2,          if (𝑛,𝑚) = (2,1) or (3,2)                                    
3,          if (𝑛,𝑚) = (3,1) or 4 ≤ 𝑛 and 𝑚 = 𝑛 − 1     
4,          if 4 ≤ 𝑛 and 1 ≤ 𝑚 ≤ 𝑛 − 2                              

                      (9) 

 

in [6]. Now, in this paper we examine 𝑂𝐶𝑇𝑛 and 𝑂𝑅𝐶𝑇𝑛, and show that  

 

 

rank (𝑂𝐶𝑇𝑛) = {
3,           if   𝑛 = 2                                                                   
n,           if   𝑛 = 1   or  if   𝑛 ≥ 3.                                        

                    (10) 

 

and                                     

 

rank (𝑂𝑅𝐶𝑇𝑛) =

{
 
 

 
 
𝑛+1

2
,    if     𝑛   is  an  odd  number   

𝑛+2

2
,    if     𝑛   is  an  even  number .

                                  (11) 

 

 

2. Preliminaries 

 

The kernel and the image of 𝛼 ∈ 𝑇𝑛 are defined by 

 

ker(𝛼) = {(𝑥, 𝑦) ∈ 𝑋𝑛 × 𝑋𝑛: 𝑥𝛼 = 𝑦𝛼}                                                                       (12) 

 

im(𝛼) = {𝑥𝛼: 𝑥 ∈ 𝑋𝑛},                                                                                                 (13) 

 

respectively. For any 𝛼, 𝛽 ∈ 𝑇𝑛 it is well known that ker(𝛼) ⊆ ker(𝛼𝛽) and im(𝛼𝛽) ⊆
im(𝛽). 
 

Definition 2.1 Let 𝐴 be a non-empty subset of 𝑋𝑛. If 𝑥, 𝑦 ∈ 𝐴 and 𝑥 ≤ 𝑧 ≤ 𝑦 ⇒ 𝑧 ∈ 𝐴 

for all 𝑥, 𝑦 ∈ 𝐴, then 𝐴 is called a convex subset of 𝑋𝑛.  

  

Recall from [Theorem 2.2 [1]] that if 𝛼 ∈ 𝑇𝑛 is a contraction mapping then im(𝛼) is a 

convex subset of 𝑋𝑛. Thus, if 𝛼 ∈ 𝑂𝐶𝑇𝑛 or 𝛼 ∈ 𝑂𝑅𝐶𝑇𝑛 then im(𝛼) is a convex subset of 

𝑋𝑛 , that is there exists 1 ≤ 𝑘 ≤ 𝑚 ≤ 𝑛  such that im(𝛼) = {𝑘, 𝑘 + 1, … ,𝑚} . If 𝛼 ∈
𝑂𝐶𝑇𝑛 then since 𝛼 is order-preserving, it is easy to see that each equivalence class of 
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ker(𝛼) is a convex subset of 𝑋𝑛, and if 𝛼 ∈ 𝑂𝑅𝐶𝑇𝑛 then since 𝛼 is order-preserving or 

order-reversing, it is easy to see that each equivalence class of ker(𝛼) is also a convex 

subset of 𝑋𝑛. 

 

On a semigroup 𝑆, (𝑎, 𝑏) ∈ 𝐿∗(𝑆) if and only if the elements 𝑎, 𝑏 ∈ 𝑆 are related by 

Green’s relation 𝐿 in some oversemigroup of 𝑆. The relation 𝑅∗ is defined dually. The 

join of relations 𝐿∗ and 𝑅∗ is denoted by 𝐷∗ and their intersection by 𝐻∗. Those relations 

are called starred Green’s relations. Garba et al. have found starred Green’s relations 

semigroups of 𝐶𝑇𝑛\𝑆𝑛  and 𝑂𝐶𝑇𝑛\𝑆𝑛  in [1]. In particular, they proved the following 

theorem. 

 

Theorem 2.2 [1] Let 𝑆 ∈ {𝐶𝑇𝑛\𝑆𝑛 , 𝑂𝐶𝑇𝑛\𝑆𝑛} and let 𝛼, 𝛽 ∈ 𝑆. Then  

(i) (𝛼, 𝛽) ∈ 𝐿∗(𝑆) if and only if im(𝛼) = im(𝛽), 
(ii) (𝛼, 𝛽) ∈ 𝑅∗(𝑆) if and only if ker(𝛼) = ker(𝛽), 
(iii) (𝛼, 𝛽) ∈ 𝐻∗(𝑆) if and only if im(𝛼) = im(𝛽) and ker(𝛼) = ker(𝛽), 
(iv) (𝛼, 𝛽) ∈ 𝐷∗(𝑆) if and only if |im(𝛼)| = |im(𝛽)|. 

 

In this paper we use the same notations with Howie’s book [7]. 

 

 

3. The rank of 𝑶𝑪𝑻𝒏 

 

In this section, we find a minimal generating set of 𝑂𝐶𝑇𝑛 and so we obtain the rank of 

𝑂𝐶𝑇𝑛. It is clear that 𝑂𝐶𝑇1 = {(
1
1
)} and so rank (𝑂𝐶𝑇1) = 1, it is also clear that  

 

𝑂𝐶𝑇2 = {(
1 2
1 1

) , (
1 2
1 2

) , (
1 2
2 2

)}.                                                                           (14) 

 

If {𝛼, 𝛽} ∈ 𝑂𝐶𝑇2  then we observe that < 𝛼, 𝛽 >= {𝛼, 𝛽} , and so rank (𝑂𝐶𝑇2) = 3 . 

Hence in this paper we consider the case 𝑛 ≥ 3. Let  

 

𝐷𝑘
∗ = {𝛼 ∈ 𝑂𝐶𝑇𝑛 ∶ | im (𝛼)| = 𝑘}                                                                                (15) 

 

for 1 ≤ 𝑘 ≤ 𝑛. Notice that Dn
∗ = {𝜖 = (

1 2 … 𝑛
1 2 … 𝑛

)}. 

 

Lemma 3.1  If α ∈ 𝐷𝑟
∗ then α ∈< 𝐷𝑟+1

∗ > for each 1 ≤ r ≤ n − 2.  

 

Proof.  Let 𝛼 ∈ 𝐷𝑟
∗  for 1 ≤ 𝑟 ≤ 𝑛 − 2, then there exists a partition {𝐴1, 𝐴2, … , 𝐴𝑟} of 

𝑋𝑛 and there exists 1 ≤ 𝑘 ≤ 𝑛 − 𝑟 + 1 such that  

 

𝛼 = (
𝐴1    𝐴2 …       𝐴𝑖 …       𝐴𝑟
𝑘 𝑘 + 1 … 𝑘 − 1 + 𝑖 … 𝑘 − 1 + 𝑟

).                                                   (16) 

 

It is clear that |𝐴𝑖| ≥ 2  at least for one 1 ≤ 𝑖 ≤ 𝑟  since 𝑟 ≤ 𝑛 − 2 . Without loss of 

generality let 𝐴𝑖 = {𝑎1, 𝑎2, … , 𝑎𝑚} for 𝑚 ≥ 2 and let 𝑥𝑖 be the maximum element in 𝐴𝑖. 
If 𝑘 > 1 and 𝑘 + 𝑟 − 1 < 𝑛, let  

 

𝛽 = (
𝐴1\{𝑥1}   {𝑥1}    𝐴2 … 𝐴𝑟
    𝑘 𝑘 + 1 𝑘 + 2 … 𝑘 + 𝑟

),                                                              (17) 
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for 𝑖 = 1, let  

 

𝛽 = (
𝐴1   𝐴2 …    𝐴𝑟−1  𝐴𝑟\{𝑥𝑟} {𝑥𝑟}
𝑘 𝑘 + 1 … 𝑘 + 𝑟 − 2 𝑘 + 𝑟 − 1 𝑘 + 𝑟

),                                            (18) 

 

for 𝑖 = 𝑟, and let  

 

𝛽 = (
𝐴1 …     𝐴𝑖−1  𝐴𝑖\{𝑥𝑖}  {𝑥𝑖}    𝐴𝑖+1 …    𝐴𝑟
𝑘 … 𝑘 + 𝑖 − 2 𝑘 + 𝑖 − 1 𝑘 + 𝑖 𝑘 + 𝑖 + 1 … 𝑘 + 𝑟

),                    (19) 

 

for 2 ≤ 𝑖 ≤ 𝑟 − 1. Also, let 𝛾 be the mapping defined as 

 

𝑗𝛾 =

{
 

 
𝑘 − 1;    𝑖𝑓     1 ≤ 𝑗 ≤ 𝑘 − 1

𝑗;    𝑖𝑓     𝑘 ≤ 𝑗 ≤ 𝑘 + 𝑖 − 1

𝑗 − 1;    𝑖𝑓     𝑘 + 𝑖 ≤ 𝑗 ≤ 𝑘 + 𝑟

𝑘 + 𝑟 − 1;    𝑖𝑓     𝑗 > 𝑘 + 𝑟,

                                              (20) 

 

for 1 ≤ 𝑖 ≤ 𝑟. Then 𝛽, 𝛾 ∈ 𝐷𝑟+1
∗  and 𝛼 = 𝛽𝛾. 

 

If 𝑘 = 1, let  

 

𝛽 = (
𝐴1\{𝑥1} {𝑥1} 𝐴2 …   𝐴𝑟
     1   2 3 … 𝑟 + 1

),                                                                      (21) 

 

for 𝑖 = 1, let  

 

𝛽 = (
𝐴1 𝐴2 … 𝐴𝑟−1 𝐴𝑟\{𝑥𝑟}  {𝑥𝑟}
1 2 … 𝑟 − 1      𝑟 𝑟 + 1

),                                                           (22) 

 

for 𝑖 = 𝑟, and let  

 

𝛽 = (
𝐴1 … 𝐴𝑖−1 𝐴𝑖\{𝑥𝑖}  {𝑥𝑖} 𝐴𝑖+1 …   𝐴𝑟
1 … 𝑖 − 1       𝑖 𝑖 + 1 𝑖 + 2 … 𝑟 + 1

),                                      (23) 

 

for 2 ≤ 𝑖 ≤ 𝑟 − 1. Also, let 𝛾 be the mapping defined as  

 

𝑗𝛾 = {

𝑗;    𝑖𝑓     𝑗 ≤ 𝑖

𝑗 − 1;    𝑖𝑓     𝑖 + 1 ≤ 𝑗 ≤ 𝑟 + 1

𝑟 + 1;    𝑖𝑓   𝑟 + 2 ≤ 𝑗 ≤ 𝑛,

                                                              (24) 

 

for 1 ≤ 𝑖 ≤ 𝑟. Then, similarly 𝛽, 𝛾 ∈ 𝐷𝑟+1
∗  and 𝛼 = 𝛽𝛾. 

 

If 𝑘 + 𝑟 − 1 = 𝑛, let  

 

𝛽 = (
𝐴1\{𝑥1}  {𝑥1}   𝐴2 … 𝐴𝑟
  𝑘 − 1    𝑘 𝑘 + 1 … 𝑛

),                                                                     (25) 

 

for 𝑖 = 1, let  
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𝛽 = (
   𝐴1 𝐴2 …  𝐴𝑟−1 𝐴𝑟\{𝑥𝑟} {𝑥𝑟}
𝑘 − 1 𝑘 … 𝑛 − 2   𝑛 − 1   𝑛

),                                                        (26) 

 

for 𝑖 = 𝑟, and let  

 

𝛽 = (
   𝐴1 …     𝐴𝑖−1    𝐴𝑖\{𝑥𝑖}     {𝑥𝑖} 𝐴𝑖+1 … 𝐴𝑟
𝑘 − 1 … 𝑘 + 𝑖 − 3 𝑘 + 𝑖 − 2 𝑘 + 𝑖 − 1 𝑘 + 𝑖 … 𝑛

),                    (27) 

 

for 2 ≤ 𝑖 ≤ 𝑟 − 1. Also, let 𝛾 be the mapping defined as  

 

𝑗𝛾 = {

𝑘 − 1;    𝑖𝑓     1 ≤ 𝑗 ≤ 𝑘 − 2

𝑗 + 1;    𝑖𝑓     𝑘 − 1 ≤ 𝑗 ≤ 𝑘 + 𝑖 − 2

𝑗;    𝑖𝑓     𝑘 + 𝑖 − 1 ≤ 𝑗 ≤ 𝑛,

                                                      (28) 

 

for 1 ≤ 𝑖 ≤ 𝑟. Then, similarly 𝛽, 𝛾 ∈ 𝐷𝑟+1
∗  and 𝛼 = 𝛽𝛾. 

 

Corollary 3.2  𝐷𝑖
∗ ⊆< 𝐷𝑛−1

∗ > for each 1 ≤ i ≤ n − 1. 

 

Let 𝑂𝐶𝑇(𝑛,𝑟) = {𝛼 ∈ 𝑂𝐶𝑇𝑛: | im (𝛼)| ≤ 𝑟} for 1 ≤ 𝑟 < 𝑛. It is clear that 𝑂𝐶𝑇(𝑛,𝑟) is an 

ideal of 𝑂𝐶𝑇𝑛. Thus we have  

 

< 𝐷𝑛−1
∗ >= 𝑂𝐶T(𝑛,𝑛−1) = 𝑂𝐶𝑇𝑛\𝑆𝑛 = 𝑂𝐶𝑇𝑛\{𝜖}.                                                      (29) 

 

If 𝛼 ∈ 𝐷𝑛−1
∗  then  im (𝛼) = {1,2, … , 𝑛 − 1}  or  im (𝛼) = {2,3, … , 𝑛} since  im (𝛼)  is a 

convex subset of 𝑋𝑛. Moreover since kernel classes of 𝛼 are convex subsets of 𝑋𝑛, there 

exists 1 ≤ 𝑖 ≤ 𝑛 − 1 such that  

 

ker(𝛼) = ⋃𝑛𝑗=1 {(𝑗, 𝑗)} ∪ {(𝑖 + 1, 𝑖), (𝑖, 𝑖 + 1)}.                                                          (30) 

 

In this case, we denote ker(𝛼) by [𝑖, 𝑖 + 1] instead of ⋃𝑛𝑗=1 {(𝑗, 𝑗)} ∪ {(𝑖 + 1, 𝑖), (𝑖, 𝑖 +

1)} for convenience. 

 

It is clear that |𝐷𝑛−1
∗ | = 2(𝑛 − 1) for 𝑛 ≥ 3 and so rank (𝑂𝐶𝑇(𝑛,𝑛−1)) ≤ 2𝑛 − 2 from 

Corollary 3.2. Notice that, since 𝑂𝐶𝑇(𝑛,𝑛−2)  is an ideal of 𝑂𝐶𝑇(𝑛,𝑛−1)  for 𝑛 ≥ 3, 𝛼 ∈

𝐷𝑛−1
∗  can be written as a product of only the elements of 𝐷𝑛−1

∗ . Moreover, since there 

are 𝑛 − 1 𝑅∗-classes (kernel classes) in 𝐷𝑛−1
∗ , we have rank (𝑂𝐶𝑇(𝑛,𝑛−1)) ≥ 𝑛 − 1 for 

𝑛 ≥ 3. 

 

Let 𝛼𝑖,𝑖+1 ∈ 𝐷𝑛−1
∗  be the element with  im (𝛼𝑖,𝑖+1) = {1,2, … , 𝑛 − 1} and ker(𝛼𝑖,𝑖+1) =

[𝑖, 𝑖 + 1], that is  

 

𝛼𝑖,𝑖+1 = (
1 … 𝑖 𝑖 + 1 𝑖 + 2 …    𝑛
1 … 𝑖    𝑖 𝑖 + 1 … 𝑛 − 1

),                                                        (31) 

 

for 1 ≤ 𝑖 ≤ 𝑛 − 2, and  

 

𝛼𝑛−1,𝑛 = (
1 2 … 𝑛 − 1    𝑛
1 2 … 𝑛 − 1 𝑛 − 1

).                                                                        (32) 
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Let 𝛽𝑖,𝑖+1 ∈ 𝐷𝑛−1
∗  be the element with  im (𝛽𝑖,𝑖+1) = {2,3, … , 𝑛}  with ker(𝛽𝑖,𝑖+1) =

[𝑖, 𝑖 + 1], that is  

 

𝛽1,2 = (
1 2 3 … 𝑛
2 2 3 … 𝑛

),                                                                                          (33) 

 

𝛽𝑖,𝑖+1 = (
1 2 …     𝑖 𝑖 + 1 … 𝑛
2 3 … 𝑖 + 1 𝑖 + 1 … 𝑛

)                                                               (34) 

 

for 2 ≤ 𝑖 ≤ 𝑛 − 1. 

 

Theorem 3.3  rank (𝑂𝐶𝑇(𝑛,𝑛−1)) = n − 1 for n ≥ 3.  

 

Proof. Let 𝑛 ≥ 3 and 𝑊 = {𝛼1,2} ∪ {𝛽𝑖,𝑖+1|2 ≤ 𝑖 ≤ 𝑛 − 1} where 𝛼1,2, 𝛽𝑖,𝑖+1  (2 ≤ 𝑖 ≤
𝑛 − 1) are the elements defined above. It is clear that |𝑊| = 𝑛 − 1 and so for the proof 

it is enough to show that 𝑊 is a generating set of 𝑂𝐶𝑇(𝑛,𝑛−1) since rank (𝑂𝐶𝑇(𝑛,𝑛−1)) ≥

𝑛 − 1. By using the multiplication it is a routine matter to show 𝛼1,2𝛽𝑛−1,𝑛 = 𝛽1,2 and 

𝛽𝑖,𝑖+1𝛼1,2 = 𝛼𝑖,𝑖+1  for 2 ≤ 𝑖 ≤ 𝑛 − 1 . Thus, 𝐷𝑛−1
∗ ⊆< 𝑊 >  and so < 𝑊 >=

𝑂𝐶T(𝑛,𝑛−1)  from Corollary 3.2. Therefore, rank (𝑂𝐶𝑇(𝑛,𝑛−1)) = 𝑛 − 1  for 𝑛 ≥ 3 , as 

required. 

 

Theorem 3.4 rank (𝑂𝐶𝑇𝑛) = {
3,          if  𝑛 = 2                                                                  
n,          if   n = 1   or  if   n ≥ 3.                                       

 

 

Proof. Recall that rank (𝑂𝐶𝑇1) = 1 and rank (𝑂𝐶𝑇2) = 3. For 𝑛 ≥ 3, it is clear that 

𝑂𝐶𝑇𝑛 = 𝑂𝐶𝑇(𝑛,𝑛−1) ∪ {𝜖} where 𝜖 is the identity mapping on 𝑂𝐶𝑇𝑛 . Since 𝑂𝐶𝑇𝑛  is a 

monoid and 𝑂𝐶𝑇(𝑛,𝑛−1)  is a finitely generated semigroup, and since 𝛼𝛽 ≠ 𝜖  for all 

𝛼, 𝛽 ∈ 𝑂𝐶𝑇(𝑛,𝑛−1), we have rank (𝑂𝐶𝑇𝑛) = rank (𝑂𝐶𝑇(𝑛,𝑛−1) ) + 1 = 𝑛 for 𝑛 ≥ 3. 

 

 

4. The rank of 𝑶𝑹𝑪𝑻𝒏 

 

In this section, we find a generating set and the rank of 𝑂𝑅𝐶𝑇𝑛. It is clear that 𝑂𝑅𝐶𝑇1 =

{(
1
1
)} and so rank (𝑂𝑅𝐶𝑇1) = 1. It is also clear that  

 

𝑂𝑅𝐶𝑇2 = {(
1 2
1 1

) , (
1 2
1 2

) , (
1 2
2 1

) , (
1 2
2 2

)}.                                                          (35) 

 

Since  

 

𝑂𝑅𝐶𝑇2 =< (
1 2
1 1

) , (
1 2
2 1

) >                                                                                    (36) 

 

and since 𝑂𝑅𝐶𝑇2 is not a commutative semigroup, we have rank (𝑂𝑅𝐶𝑇2) = 2. Now 

we consider the generating sets of 𝑂𝑅𝐶𝑇𝑛 for 𝑛 ≥ 3. Let  

 

𝐹𝑘 = {𝛼 ∈ 𝑂𝑅𝐶𝑇𝑛: | im (𝛼)| = 𝑘}                                                                                (37) 

 

for 1 ≤ 𝑘 ≤ 𝑛. 
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Lemma 4.1  If α ∈ 𝐹𝑟 then α ∈< 𝐹𝑟+1 > for 1 ≤ r ≤ n − 2.  

 

Proof. Let 1 ≤ 𝑟 ≤ 𝑛 − 2. If 𝛼 ∈ 𝑂𝐶𝑇𝑛 ∩ 𝐹𝑟, then the result follows from Lemma 3.1. 

Let 𝛼 ∈ 𝑂𝑅𝐶𝑇𝑛\𝑂𝐶𝑇𝑛  and 𝛼 ∈ 𝐹𝑟 . Then 𝛼  is an order-reversing full contraction 

mappings and so there exists a partition {𝐴1, 𝐴2, … , 𝐴𝑟} of 𝑋𝑛 and there exists 𝑟 ≤ 𝑘 ≤
𝑛  such that  

 

𝛼 = (
𝐴1    𝐴2 …       𝐴𝑖 …       𝐴𝑟
𝑘 𝑘 − 1 … 𝑘 − 𝑖 + 1 … 𝑘 − 𝑟 + 1

).                                                   (38) 

 

It is clear that |𝐴𝑖| ≥ 2  at least for one 1 ≤ 𝑖 ≤ 𝑟  since 𝑟 ≤ 𝑛 − 2 . Without loss of 

generality let 𝐴𝑖 = {𝑎1, 𝑎2, … , 𝑎𝑚} for 𝑚 ≥ 2, and let 𝑥𝑖 be the maximum element in 𝐴𝑖. 
If 𝑘 < 𝑛 and 𝑘 − 𝑟 ≥ 1, let  

 

𝛽 = (
𝐴1\{𝑥1}   {𝑥1}    𝐴2 …   𝐴𝑟
     𝑘 𝑘 − 1 𝑘 − 2 … 𝑘 − 𝑟

),                                                              (39) 

 

for 𝑖 = 1, let  

 

𝛽 = (
𝐴1    𝐴2 …     𝐴𝑟−1   𝐴𝑟\{𝑥𝑟} {𝑥𝑟}
 𝑘 𝑘 − 1 … 𝑘 − 𝑟 + 2 𝑘 − 𝑟 + 1 𝑘 − 𝑟

),                                            (40) 

 

for 𝑖 = 𝑟, let  

 

𝛽 = (
𝐴1    𝐴2 …    𝐴𝑖−1  𝐴𝑖\{𝑥𝑖}  {𝑥𝑖}     𝐴𝑖+1 …   𝐴𝑟
𝑘 𝑘 − 1 … 𝑘 − 𝑖 + 2 𝑘 − 𝑖 + 1 𝑘 − 𝑖 𝑘 − 𝑖 − 1 … 𝑘 − 𝑟

),       (41) 

 

for 2 ≤ 𝑖 ≤ 𝑟 − 1. Also, let 𝛾 be the mapping defined as  

 

𝑗𝛾 =

{
 

 
𝑘 − 𝑟 + 1;    𝑖𝑓     1 ≤ 𝑗 ≤ 𝑘 − 𝑟

𝑗 + 1;    𝑖𝑓     𝑘 − 𝑟 + 1 ≤ 𝑗 ≤ 𝑘 − 𝑖

𝑗;    𝑖𝑓     𝑘 − 𝑖 + 1 ≤ 𝑗 ≤ 𝑘

𝑘 + 1;    𝑖𝑓     𝑘 + 1 ≤ 𝑗 ≤ 𝑛.

                                       (42) 

 

Then 𝛽, 𝛾 ∈ 𝐹𝑟+1 and 𝛼 = 𝛽𝛾. 

 

If 𝑘 = 𝑛, let  

 

𝛽 = (
𝐴1\{𝑥1} {𝑥1}    𝐴2 …   𝐴𝑟
     𝑛 𝑛 − 1 𝑛 − 2 … 𝑛 − 𝑟

),                                                              (43) 

 

for 𝑖 = 1, let  

 

𝛽 = (
𝐴1   𝐴2 …     𝐴𝑟−1  𝐴𝑟\{𝑥𝑟}  {𝑥𝑟}
𝑛 𝑛 − 1 … 𝑛 − 𝑟 + 2 𝑛 − 𝑟 + 1 𝑛 − 𝑟

),                                            (44) 

 

for 𝑖 = 𝑟, let  

 

𝛽 = (
𝐴1   𝐴2 …    𝐴𝑖−1  𝐴𝑖\{𝑥𝑖} {𝑥𝑖}     𝐴𝑖+1 …   𝐴𝑟
𝑛 𝑛 − 1 … 𝑛 − 𝑖 + 2 𝑛 − 𝑖 + 1 𝑛 − 𝑖 𝑛 − 𝑖 − 1 … 𝑛 − 𝑟

),      (45) 
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for 2 ≤ 𝑖 ≤ 𝑟 − 1. Also, let 𝛾 be the mapping defined as  

 

𝑗𝛾 = {

𝑛 − 𝑟;    𝑖𝑓     1 ≤ 𝑗 ≤ 𝑛 − 𝑟 − 1

𝑗 + 1;    𝑖𝑓     𝑛 − 𝑟 ≤ 𝑗 ≤ 𝑛 − 𝑖

𝑗;    𝑖𝑓     𝑛 − 𝑖 + 1 ≤ 𝑗 ≤ 𝑛.

                                                            (46) 

 

Then 𝛽, 𝛾 ∈ 𝐹𝑟+1 and 𝛼 = 𝛽𝛾. 

 

If 𝑘 = 𝑟, let  

 

𝛽 = (
𝐴1\{𝑥1} {𝑥1}    𝐴2 … 𝐴𝑟
  𝑟 + 1    𝑟 𝑟 − 1 …  1

),                                                                      (47) 

 

for 𝑖 = 1, let  

 

𝛽 = (
   𝐴1 𝐴2 … 𝐴𝑟−1 𝐴𝑟\{𝑥𝑟} {𝑥𝑟}
𝑟 + 1 𝑟 …   3      2   1

),                                                          (48) 

 

for 𝑖 = 𝑟, let  

 

𝛽 = (
   𝐴1 𝐴2 …     𝐴𝑖−1  𝐴𝑖\{𝑥𝑖}     {𝑥𝑖} 𝐴𝑖+1 … 𝐴𝑟
𝑟 + 1  𝑟 … 𝑟 − 𝑖 + 3 𝑟 − 𝑖 + 2 𝑟 − 𝑖 + 1 𝑟 − 𝑖 … 1

),             (49) 

 

for 2 ≤ 𝑖 ≤ 𝑟 − 1. Also, let 𝛾 be the mapping defined as  

 

𝑗𝛾 = {

𝑗;    𝑖𝑓     1 ≤ 𝑗 ≤ 𝑟 − 𝑖 + 1

𝑗 − 1;    𝑖𝑓     𝑟 − 𝑖 + 2 ≤ 𝑗 ≤ 𝑟 + 1

𝑟 + 1;    𝑖𝑓     𝑟 + 2 ≤ 𝑗 ≤ 𝑛.

                                                       (50) 

 

Then 𝛽, 𝛾 ∈ 𝐹𝑟+1 and 𝛼 = 𝛽𝛾. 

 

Corollary 4.2  If α ∈ 𝐹𝑖 for 1 ≤ i ≤ n − 1 then α ∈< 𝐹𝑛−1 > for n ≥ 3.  

 

Let 𝑂𝑅𝐶𝑇(𝑛,𝑟) = {𝛼 ∈ 𝑂𝑅𝐶𝑇𝑛: | im (𝛼)| ≤ 𝑟} for 1 ≤ 𝑟 < 𝑛. It is clear that 𝑂𝑅𝐶𝑇(𝑛,𝑟) 

is an ideal of 𝑂𝑅𝐶𝑇𝑛. Moreover we have  

 

𝐹𝑛 = {𝜖 = (
1 2 … 𝑛
1 2 … 𝑛

) , 𝜃 = (
1     2 … 𝑛
𝑛 𝑛 − 1 … 1

)},                                              (51) 

 

and notice that  

 

< 𝐹𝑛−1 >= 𝑂𝑅𝐶T(𝑛,𝑛−1) = 𝑂𝑅𝐶𝑇𝑛\Sn = 𝑂𝑅𝐶𝑇𝑛\{𝜖, 𝜃}                                           (52) 

 

where 𝜖 is the identity element of 𝑂𝑅𝐶𝑇𝑛 and that 𝜃2 = 𝜖. 

 

Corollary 4.3  𝑂𝑅𝐶𝑇𝑛 =< 𝐹𝑛−1 ∪ {θ} > for n ≥ 3.  

 

If 𝛼 ∈ 𝐹𝑛−1, since  im (𝛼) is a convex subset of 𝑋𝑛, we have  im (𝛼) = {1,2, … , 𝑛 − 1} 
or  im (𝛼) = {2,3, … , 𝑛}. Moreover there are 𝑛 − 1 different kernel classes in 𝐹𝑛−1 and 
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there exist 4 elements in 𝐹𝑛−1 which has the same kernel classes. Thus |𝐹𝑛−1| = 4(𝑛 −
1) for 𝑛 ≥ 3. 

 

Let 𝛼𝑖,𝑖+1 and 𝛽𝑖,𝑖+1 be the order-preserving full contraction mappings defined before 

Theorem 3.3 for each 1 ≤ 𝑖 ≤ 𝑛 − 1. Moreover let 𝜆𝑖,𝑖+1 ∈ 𝐹𝑛−1 be the order-reversing 

full contraction mappings such that  im (𝜆𝑖,𝑖+1) = {1,2, … , 𝑛 − 1} and ker(𝜆) = [𝑖, 𝑖 +
1], that is  

 

𝜆𝑖,𝑖+1 = ( 
   1 …     𝑖 𝑖 + 1     𝑖 + 2 … 𝑛
𝑛 − 1 … 𝑛 − 𝑖 𝑛 − 𝑖 𝑛 − 𝑖 − 1 … 1

),                                         (53) 

 

for 1 ≤ 𝑖 ≤ 𝑛 − 2, and  

 

𝜆𝑛−1,𝑛 = (
    1    2 … 𝑛 − 2 𝑛 − 1 𝑛
𝑛 − 1 𝑛 − 2 …    2    1 1

).                                                   (54) 

 

Also, let 𝜇𝑖,𝑖+1 ∈ 𝐹𝑛−1  be the order-reversing full contraction mappings with 

 im (𝜇𝑖,𝑖+1) = {2,3, … , 𝑛} with ker(𝜇𝑖,𝑖+1) = [𝑖, 𝑖 + 1], that is  

 

𝜇1,2 = (
1 2     3 … 𝑛 − 1 𝑛
𝑛 𝑛 𝑛 − 1 …    3 2

),                                                                      (55) 

 

and  

 

𝜇𝑖,𝑖+1 = (
1     2 …         𝑖     𝑖 + 1 … 𝑛
𝑛 𝑛 − 1 … 𝑛 − 𝑖 + 1 𝑛 − 𝑖 + 1 … 2

),                                         (56) 

 

for 2 ≤ 𝑖 ≤ 𝑛 − 1. Also notice that 𝐹𝑛−1 = {𝛼𝑖,𝑖+1, 𝛽𝑖,𝑖+1, 𝜆𝑖,𝑖+1, 𝜇𝑖,𝑖+1|1 ≤ 𝑖 ≤ 𝑛 − 1}. 
We give some equations in the following lemmas. 

 

Lemma 4.4  For n ≥ 3 and 1 ≤ i ≤ n − 1,  

(i). 𝛼𝑖,𝑖+1𝜃 = 𝜇𝑖,𝑖+1  

(ii). 𝛽𝑖,𝑖+1𝜃 = 𝜆𝑖,𝑖+1  

(iii). 𝜆𝑖,𝑖+1𝜃 = 𝛽𝑖,𝑖+1  

(iv). 𝜇𝑖,𝑖+1𝜃 = 𝛼𝑖,𝑖+1.  

 

Proof. By using the multiplication it is a routine matter to show (i) and (ii). Also, the 

results (iii) and (iv) follows from the fact 𝜃2 = 𝜖. 

 

Lemma 4.5  For n ≥ 3 and 1 ≤ i ≤ n − 1,  

(i). 𝜃𝛼𝑖,𝑖+1 = 𝜆𝑛−𝑖,𝑛−𝑖+1  

(ii). 𝜃𝛽𝑖,𝑖+1 = 𝜇𝑛−𝑖,𝑛−𝑖+1  

(iii). 𝜃𝜆𝑖,𝑖+1 = 𝛼𝑛−𝑖,𝑛−𝑖+1  

(iv). 𝜃𝜇𝑖,𝑖+1 = 𝛽𝑛−𝑖,𝑛−𝑖+1.  

  

Proof. (i) First notice that 1(𝜃𝛼𝑖,𝑖+1) = 𝑛𝛼𝑖,𝑖+1 = 𝑛 − 1 and 𝑛(𝜃𝛼𝑖,𝑖+1) = 1𝛼𝑖,𝑖+1 = 1. 

Thus  im (𝜃𝛼𝑖,𝑖+1) = {1,2, … , 𝑛 − 1}  and clearly 𝜃𝛼𝑖,𝑖+1  is an order-reversing full 

contraction mappings. Moreover  

 

(𝑛 − 𝑖)(𝜃𝛼𝑖,𝑖+1) = (𝑖 + 1)𝛼𝑖,𝑖+1 = 𝑖𝛼𝑖,𝑖+1 = (𝑛 − 𝑖 + 1)(𝜃𝛼𝑖,𝑖+1)                            (57) 
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and so we have ker(𝜃𝛼𝑖,𝑖+1) = [𝑛 − 𝑖, 𝑛 − 𝑖 + 1] . Thus, 𝜃𝛼𝑖,𝑖+1 = 𝜆𝑛−𝑖,𝑛−𝑖+1 , as 

required. 

(ii), (iii) and (iv) can be shown similarly. 

 

Lemma 4.6  For n ≥ 3 and 1 ≤ i ≤ n − 1 we have 𝛼𝑖,𝑖+1𝛽𝑛−1,𝑛 = 𝛽𝑖,𝑖+1. 
 

Proof. By using the multiplication it is a routine matter to prove the claim. 

 

Proposition 4.7  Let n ≥ 3 and let 𝐴 be a generating set for 𝑂𝑅𝐶𝑇𝑛 . If n is an odd 

number then 𝐴 must include at least 
n−1

2
 elements from 𝐹𝑛−1, and if n is an even number 

then A must include at least 
n

2
 elements from 𝐹𝑛−1.  

Proof. Let 𝑛 ≥ 3 and let 𝐴 be a generating set for 𝑂𝑅𝐶𝑇𝑛. Recall that 𝐹𝑛 = {𝜖, 𝜃} and 

𝜃2 = 𝜖  where 𝜖  is the identity element of 𝑂𝑅𝐶𝑇𝑛 . Also 𝑂𝑅𝐶𝑇(𝑛,𝑛−2)  is an ideal of 

𝑂𝑅𝐶𝑇𝑛  and there are 𝑛 − 1 different kernel classes in 𝐹𝑛−1 . Let 𝛼 ∈ 𝐹𝑛−1  then there 

exists 1 ≤ 𝑘 ≤ 𝑛 − 1 such that ker(𝛼) = [𝑘, 𝑘 + 1]. Let 𝑚 ∈ 𝑍+ and suppose that 𝛼 =
𝛼1𝛼2…𝛼𝑚  where 𝛼𝑖 ∈ 𝑂𝑅𝐶𝑇𝑛  for each 1 ≤ 𝑖 ≤ 𝑚 . Then every 𝛼𝑖 ∈ 𝐹𝑛−1 ∪ 𝐹𝑛  since 

𝑂𝑅𝐶𝑇(𝑛,𝑛−2) is an ideal of 𝑂𝑅𝐶𝑇𝑛. If 𝛼1 ∈ 𝐹𝑛−1 then it is clear that ker(𝛼1) = ker(𝛼). 

If 𝛼1 ∈ 𝐹𝑛 then we can assume that 𝛼1 = 𝜃 since 𝜖 is the identity element. Then we can 

assume that 𝛼2 ∈ 𝐹𝑛−1 since 𝜃2 = 𝜖 and so ker(𝛼2) = [𝑛 − 𝑘, 𝑛 − 𝑘 + 1] from Lemma 

4.5. Thus if 𝑛 is an odd number then 𝐴 must include at least 
𝑛−1

2
 elements from 𝐹𝑛−1 

and if 𝑛 is an even number then 𝐴 must include at least 
𝑛

2
 elements from 𝐹𝑛−1. 

 

For 𝑛 ≥ 3 it is clear that 𝐹𝑛 = {𝜖, 𝜃} is a subsemigroup generated by {𝜃} or {𝜃, 𝜖}, and 

𝑂𝑅𝐶𝑇𝑛\𝐹𝑛 = 𝑂𝑅𝐶𝑇(𝑛,𝑛−1) is an ideal of 𝑂𝑅𝐶𝑇𝑛. Hence every generating set of 𝑂𝑅𝐶𝑇𝑛 

must include the element 𝜃. Thus, if 𝑛 is an odd number then rank (𝑂𝑅𝐶𝑇𝑛) ≥
𝑛+1

2
, and 

if 𝑛 is an even number then rank (𝑂𝑅𝐶𝑇𝑛) ≥
𝑛+2

2
 from Proposition 4.7. 

 

Theorem 4.8 For n ≥ 1,  

 

𝑟𝑎𝑛𝑘 (𝑂𝑅𝐶𝑇𝑛) =

{
 
 

 
 
𝑛 + 1

2
;    if     𝑛   is  an  odd  number   

𝑛 + 2

2
;    if     𝑛   is  an  even  number .

 

 

Proof. If 𝑛 = 1 or 𝑛 = 2 then the result is clear. Let 𝑛 ≥ 3 and 𝑛 be an odd number. 

Then we have rank (𝑂𝑅𝐶𝑇𝑛) ≥
𝑛+1

2
. Let  

 

𝑊 = {𝜃} ∪ {𝛼𝑖,𝑖+1|1 ≤ 𝑖 ≤
𝑛−1

2
},                                                                                  (58) 

 

and it is clear that |𝑊| =
𝑛+1

2
. Hence it is enough to show that 𝑊 is a generating set of 

𝑂𝑅𝐶𝑇𝑛 . For 1 ≤ 𝑘 ≤
𝑛−1

2
 then 𝛼𝑘,𝑘+1 ∈ 𝑊  and so 𝛼1,2𝜃 = 𝜇1,2  and 𝜃𝜇1,2 = 𝛽𝑛−1,𝑛 . It 
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follows that 𝛼𝑘,𝑘+1𝛽𝑛−1,𝑛 = 𝛽𝑘,𝑘+1 , 𝛽𝑘,𝑘+1𝜃 = 𝜆𝑘,𝑘+1  and 𝛼𝑘,𝑘+1𝜃 = 𝜇𝑘,𝑘+1 . Thus if 

1 ≤ 𝑘 ≤
𝑛−1

2
 then  

 

{𝛼𝑘,𝑘+1, 𝛽𝑘,𝑘+1, 𝜆𝑘,𝑘+1, 𝜇𝑘,𝑘+1} ∈< 𝑊 >. 
 

Now let 
𝑛−1

2
< 𝑘 ≤ 𝑛 − 1 and let 𝑖 = 𝑛 − 𝑘. Then it is clear that 𝛼𝑖,𝑖+1 ∈ 𝑊. Moreover 

𝜃𝛼𝑖,𝑖+1 = 𝜆𝑛−𝑖,𝑛−𝑖+1 = 𝜆𝑘,𝑘+1  and 𝜆𝑘,𝑘+1𝜃 = 𝛽𝑘,𝑘+1 . Since 𝑖 ≤
𝑛−1

2
 we have 𝜆𝑖,𝑖+1 ∈<

𝑊 >, and so 𝜃𝜆𝑖,𝑖+1 = 𝛼𝑛−𝑖,𝑛−𝑖+1 = 𝛼𝑘,𝑘+1 and 𝛼𝑘,𝑘+1𝜃 = 𝜇𝑘,𝑘+1. It follows that  

 

{𝛼𝑘,𝑘+1, 𝛽𝑘,𝑘+1, 𝜆𝑘,𝑘+1, 𝜇𝑘,𝑘+1} ∈< 𝑊 >. 
 

So 𝑊 is a generating set of 𝑂𝑅𝐶𝑇𝑛 from Corollary 4.3. Thus if 𝑛 is an odd number then 

we have rank (𝑂𝑅𝐶𝑇𝑛) =
𝑛+1

2
. If 𝑛 is an even number similarly it can be shown that 

𝑊 = {𝜃} ∪ {𝛼𝑖,𝑖+1|1 ≤ 𝑖 ≤
𝑛

2
}  is a generating set of 𝑂𝑅𝐶𝑇𝑛  and so rank (𝑂𝑅𝐶𝑇𝑛) =

𝑛+2

2
, as required. 
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