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1. Introduction 

 

In many fields of engineering, it is very crucial to 

analyze an incompressible viscous fluid. These fluids 

generally have been occurred in nonparallel walls. 

Additionally, liquids through convergent-divergent 

channels are one of the most applicable cases in fluid 

mechanics. All these afore mentioned models have been 

criticized in civil, electronic and ocean engineering 

problems [1]. Besides all of that, one needs to model all 

these types of equations to handle the mathematical 

cases and correspondingly the real phenomena of the 

physical situations. The mathematical analysis of that 

problem was also extensively studied by two successful 

researchers Jeffery and Hamel (J-H) in 1916 [2,3]. On 

the other hand, the term of magnetohydrodynamic 

(MHD) was first used in 1970 [4]. Additionally, the 

aforementioned J-H flows are an exact similarity 

solution of the Navier and Stokes equations. Especially, 

these equations appear in the special case of two-

dimensional (2-D) flow through a channel with inclined 

plane walls. These walls have been considered as 

meeting at a vertex with a source. Or it can be sink at 

the vertex [5]. Many researchers have studied to get 

approximate solutions to this flow problem. Most of 

them encounters with the highly difficult nonlinear 

terms and nonhomogeneous power terms. In order to get 

well-enough solutions, they use numerical techniques 

[1-4]. 

 

It is well known that there are many linear and nonlinear 

differential equations which are used in the study of 

several fields for example engineering, chemistry, 

physics, etc. The solutions of these equations can 

provide more information about the described process. 

However, because of the complexity of the nonlinear 

differential equations such as Jeffery-Hamel flows and 

other fluid problems, it is complicated to get the exact 

solutions. Therefore, a broad class of semi -analytical 

and analytical techniques have been proposed to solve 

these types of equations such as variational iteration 

method (VIM) [6], Adomian decomposition method 

(ADM) [7]. Besides these semi-analytical methods there 

are some semi-numerical techniques such as homotopy 

analysis method (HAM) [8], optimal homotopy 

asymptotic method [9]. Pandır has used generalized F 

expansion method for solving to Sine-Gordon equation 

[10]. Sezer et al. have implemented many kinds of 

collocation methods in their papers [11-12]. Inan has 

implemented exponential finite difference technique to 

nonlinear equations [13]. Lie symmetry is applied to 

handle ordinary differential equations [14]. In addition 

to these techniques, the well-known perturbation 

method has been recently used to construct the 

perturbation iteration method. This new effective 

technique has been used to solve some strongly 

nonlinear systems and yields better results than many 

other methods in literature [15-19]. Besides all these, 

stability analysis of these methods is very crucial 

concept to understand the qualitative idea behind the 
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methods. Therefore, many papers are devoted analyzing 

uniform continuity, convergence and stability analysis 

for all these types of techniques [20].  

 

Geometrical analysis for many real word phenomena is 

also very important such as in fluid dynamics. For 

instance, null quaternionic rectifying curves and null 

quaternionic similar curves in special Minkowski space 

has been discussed by Kahraman in 2018 [21]. He also 

studied null quaternionic slant helices in Minkowski 

Spaces in 2019 [22]. In 2004, Hopkins et. al have 

investigated the effects of arterial geometry on 

aneurysm growth as three-dimensional computational 

fluid dynamics study [23]. Besides all that, approximate 

solutions for MHD squeezing fluid flow has been 

obtained by Akgül [24]. Reproducing kernel Hilbert 

space method based on reproducing kernel functions for 

investigating boundary layer flow of a Powell–Eyring 

non-Newtonian fluid has been also used by same author 

[25]. Solitary wave solutions of time–space nonlinear 

fractional Schrödinger’s equation has been analyzed via 

two analytical approaches in [26]. Akgül has also 

published a paper about fluid equations including 

reproducing kernel Hilbert space method to solve MHD 

Jeffery-Hamel flows problem in nonparallel walls [26, 

27].   

 

2.  Mathematical Formulation of Jeffery-Hamel 

Flow 

 

In this part of the paper, we analyze the analytical plan 

with the help of fluid flow equation problems. They 

have been reviewed by many scientists in the literature 

[1-5]. We take the immovable and fixed two-

dimensional (2-D) flow. Of course, these flows have 

been existed with incompressible conducting viscous 

fluid. These fluids arise from a source or sink. We also 

suppose that these phenomena occur at the intersection 

between two rigid plane walls. The angle between these 

walls are taken as 2α. The rigid walls are taken to be 

divergent if α > 0. Reversely, convergent if α < 0. We 

now imagine that the velocity is only along the radial 

direction and depends on r and θ so that v = (u(r; θ); 0). 

Using continuity and the Navier-Stokes equations in 

polar coordinates, 
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Here P denotes the fluid pressure. The constant 
0B

represents the electromagnetic induction and σ symbols 

the conductivity of the fluid. As in many papers, ρ   

denotes the fluid density. Finally, ν shows the 

coefficient of kinematic viscosity. The continuity Eq. 

(1) implies that 
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For simplification, we can use the following 

dimensionless parameters, 
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and eliminating P between Eqs. (2.2) and (2.3), we 

obtain an ordinary differential equation for the 

normalized function profile  D x  : 
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or equivalently  

 
22 (4 ) 0D ReDD Ha D                   (2.7) 

 

Since one has a symmetric geometry here, we can take 

the boundary conditions as follows 

  

(0) 1,   (0) 0,   (1) 0.D D D                  (2.8) 

 

3. A Short Description of the Perturbation Iteration 

Method 

 

In this section, we give a short description of the 

perturbation iteration technique. For much more 

information, we refer to the papers [16-18].  This 

technique was firstly introduced by Pakdemirli et al. and 

applied to many types of nonlinear problems [28-30]. 
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Many different kinds of ordinary and partial differential 

equations are solved by using perturbation iteration 

techniques and even fractional differential equations are 

also considered modified forms of this method [31-38]. 

 

Consider the following third order nonlinear differential 

equation: 

 , , , 0F D D D                 (3.1) 

 

where ( )D D x . Here  is  the perturbation 

parameter. To obtain perturbation iteration algorithms 

(PIA), we will use only one correction term from  

classical perturbation expanding as 
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where  N 0n   and  c n
D  is the n th correction 

term of the iteration algorithm. Upon substitution of 

(3.2) into (3.1) then expanding it in a Taylor series with 

nth derivatives yields the PIA n ’s. With only first 

derivatives, we have PIA-1 as  
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where subscripts of F symbolize partial differentiation. 

Note here that all derivatives and functions are 

computed at 0  . We can now start to iterate. First 

of all, we require a trial function which is called 0D . 

This function  can be chosen judiciously according to 

the given described conditions. After this step,  
0cD is 

evaluated from the algorithms (3.3) with the help of 

0D  and recommended condition(s). After this step, the 

first approximate PIM solution 1D  is obtained by using 

 
0cD and so on.  

 

4. Pim Solutions for Jeffery-Hamel Flow  

 

Let us now apply OPIM to Jeffery-Hamel flow. 

Artificial perturbation parameter is inserted to Eq. (2.7) 

as follows: 
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Using the Eqs. (3.2) and (3.3) and setting  1   we get 

the following perturbation iteration algorithm:  
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As a starting function we can use      
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which satisfies the boundary conditions (2.8). 

Substituting 
0D  into Eq. (4.2) gives a first-order   

problem:  
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By solving (4.4), first correction term is obtained as: 
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Thus, the first approximate solution is 
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Proceeding as mentioned in previous section, one can 

get second order solution and so on.         

 

Higher order iterations can be reached in a similar 

manner. Manifestly, the more iterations, the more 

approximate solution becomes more sophisticated, 

which wants powerful computer programs. We use 

Mathematica 9.0 to handle the complex computations 

throughout this study. 

 

In [5],  optimal homotopy asymptotic method is used to 

get the second order approximate solution for 

, 0
36

Ha


     and 50Re   .  

 

In the following plots and tables, a comparison of the 

OHAM, PIM and the numerical results is shown. It is 

also clear from figure 4.1 and tables that PIM solutions 

are better than those of OHAM solutions. Figures 4.2 - 

4.3 show the magnetic field effect on the velocity 

profiles for convergent and divergent channels for some 

fixed Reynolds, Hartmann numbers with angels α’s.  
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Table 1. Absolute errors for sixth order PIM solutions for different Reynolds and Hartmann numbers. 

x                      Re= 175, Ha=5                   Re=200, Ha=5              Re=50, Ha= 10                  Re=50, Ha=20 

0.1                     
63.124 10                  

74.632 10                 
57.111 10                    

52.044 10  

0.2                     
68.052 10                  

71.057 10                 
58.041 10                    

56.034 10  

0.3                      
78.711 10                  

71.086 10                 
62.222 10                    

64.706 10  

0.4                     
85.011 10                  

72.997 10                 
66.411 10                    

67.055 10  

0.5                     
62.058 10                  

75.088 10                 
66.520 10                    

63.524 10  

0.6                      
72.779 10                

62.410 10                 
56.030 10                    

54.001 10  

0.7                     
63.087 10                  

65.085 10                 
61.005 10                    

53.041 10  

0.8                     
73.045 10                  

66.047 10                 
58.006 10                    

57.770 10  

0.9                     
64.056 10                  

68.047 10                 
59.056 10                    

59.055 10  

 

 

Table 2. Absolute errors for sixth order OHAM solutions for different Reynolds and Hartmann numbers. 

x                      Re= 175, Ha=5                   Re=200, Ha=5              Re=50, Ha= 10                  Re=50, Ha=20 

0.1                     
55.004 10                  

41.018 10                 
45.032 10                    

42.005 10  

0.2                     
42.067 10                  

69.044 10                 
44.502 10                    

45.660 10  

0.3                      
68.046 10                  

64.222 10                 
55.177 10                    

69.995 10  

0.4                     
61.110 10                  

65.002 10                 
59.025 10                    

69.755 10  

0.5                     
68.096 10                  

69.023 10                 
55.023 10                    

51.067 10  

0.6                      
61.009 10                

52.055 10                 
65.023 10                    

45.905 10  

0.7                     
59.066 10                  

67.502 10                 
36.024 10                    

31.010 10  

0.8                     
64.068 10                  

65.065 10                 
42.014 10                    

46.012 10  

0.9                     
79.098 10                  

62.023 10                 
45.014 10                    

47.463 10  

 

5. Conclusion and Results 

 

In this study, we implement perturbation iteration 

method to find the approximate solutions of nonlinear 

differential equation governing Jeffery-Hamel flow. Our 

results clearly demonstrate that PIM can solve nonlinear 

problems with successive rapidly convergent 

approximations without any restrictive assumptions or 

transformations causing changes in the physical 

definition of the considered problem. One of the 

fundamental advantages of this method is to be 

applicable directly to the nonlinear terms. Also, 

resulting equations can also be solved by using simple 

analytical methods. We also make a comparison with 

the OHAM solution and see that PIM is more useful 

because it reduces the size of calculations and also its 

iterations are direct and straightforward. The figures and 

tables also reveal that new solutions agree very well 

with the numerical solutions obtained from 

Mathematica 9.0. Finally, we can say that PIM can be 

safely used to handle fluid mechanics and other 

problems in engineering. 
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