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1. Introduction

In modern contact geometry, the study of nullity distribution on paracontact geometry is one among the most
interesting topics. Paracontact metric structures have been introduced in [3], as a natural odd-dimensional counter-
part to para-Hermitian structures, like contact metric structures correspond to the Hermitian ones. Paracontact
metric manifolds have been studied by many authors in the recent years. A systematic study of paracontact metric
manifolds was carried out by Zamkovoy [11].

An important class among paracontact metric manifolds is that of the (k, 1)-manifolds, which satisfy the nullity
condition

R(X,Y)§=k(n(Y)X —n(X)Y) + pun(Y)hX — n(X)RY), (1.1)

for all X,Y vector fields on M, where k and p are constants and h = %quﬁ [1]. This class includes the para-Sasakian
manifolds [3, 11], the paracontact metric manifolds satisfying R(X,Y )¢ = 0 for all X, Y vector fields on M [12].

Among the geometric properties of manifolds symmetry is an important one. Local point of view it was
introduced by Shirokov [5] as a Riemannian manifold with covariant constant curvature tensor R, that is, with
VR = 0, where V is the Levi-Civita connection. An extensive theory of symmetric Riemannian manifolds was
introduced by Cartan [2]. A manifold is called semisymmetric if the curvature tensor R satisfies R(X,Y)- R =0,
where R(X,Y) is considered to be a derivation of the tensor algebra at each point of the manifold for the tangent
vectors X, Y. Semisymmetric manifolds were locally classified by Szabé [7]. Also in [10] Yildiz and De studied
h-Weyl semisymmetric, ¢-Weyl semisymmetric, h-projectively semisymmetric and ¢-projectively semisymmetric
non-Sasakian (k, p1)-contact metric manifolds. Recently Mandal and De studied certain curvature conditions on
paracontact (k, ut)-spaces [4].

The projective curvature tensor is an important tensor from the differential geometric point of view. Let M be a (2n+
1)-dimensional semi-Riemannian manifold with metric g. The Ricci operator @ of (M, g) is defined by g(QX,Y) =
S(X,Y), where S denotes the Ricci tensor of type (0,2) on M. If there exists a one-to-one correspondence between
each coordinate neighbourhood of M and a domain in Euclidean space such that any geodesic of the semi-
Riemannian manifold corresponds to a straight line in the Euclidean space, then M is said to be locally projectively
flat. For n > 1, M is locally projectively flat if and only if the well known projective curvature tensor P vanishes.
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Here P is defined by [6]
P(X,Y)Z = R(X,Y)Z — QL{S(Y, 7)X — 8(X,2)Y}, (1.2)
n

for all X,Y, Z vector fields on M, where R is the curvature tensor and S is the Ricci tensor of M.

In fact, M is projectively flat if and only if it is of constant curvature [8]. Thus the projective curvature tensor is
the measure of the failure of a semi-Riemannian manifold to be of constant curvature.

In semi-Riemannain geometry one of the important curvature properties is conformal flatness. The Weyl
conformal curvature tensor is a measure of the curvature of spacetime and differs from the semi-Riemannian curvature
tensor. It is the traceless component of the Riemannian tensor which has the same symmetries as the Riemannian
tensor.The Weyl conformal curvature tensor is defined by

C(X,Y)Z = R(X,Y)Z
—in_ 1{5(Y7 )X -S(X,2)Y +9(Y,2)QX — g(X,2)QY}
+m{g(3’, Z)X —g(X,2)Y}, (1.3)

for all XY, Z vector fields on M, where r = tr(.5) is scalar curvature [9].

A paracontact metric (k, 1)-manifold is said to be an Einstein manifold if the Ricci tensor satisfies S = ag, where
a a smooth function.

The outline of the article goes as follows: After introduction in section 2, we recall basic facts and some
basic results of paracontact metric manifolds with characteristic vector field ¢ belonging to the (k, u)-nullity
distribution. In section 3, we characterize paracontact metric (k, 1)-manifolds satisfying some semisymmetry
curvature conditions. We prove that Weyl semisymmetric and projective semisymmetric paracontact metric
(k, pr)-manifolds are Einstein manifolds and h-Weyl semisymmetric and ¢-Weyl semisymmetric paracontact metric
(k, n)-manifolds are n-Einstein manifolds provided k& # —1.

2. Preliminaries

An (2n + 1)-dimensional manifold M is said to have an almost paracontact structure if it admits a (1, 1)-tensor
field ¢, a vector field £ and a 1-form 7 satisfying the following conditions ([3], [11]):

(i) 77(5)21, ¢2:I_77®€/

(ii) the tensor field ¢ induces an almost paracomplex structure on each fibre of D = ker(n), ie., the £1-
eigendistributions, D* = D (+£1) of ¢ have equal dimension n.

Thus from the definition it follows that ¢£ = 0, n o ¢ = 0 and the endomorphism ¢ has rank 2n. The Nijenhius
torsion tensor field [¢, ¢] is given by

[0, 0(X.Y) = ¢*[X, Y] + [¢X, ¢Y] — ¢[¢X, Y] — $[X, ¢Y].

When the tensor field Ny = [¢, ¢] — 2dn ® £ = 0, the almost paracontact manifold is said to be normal. If an almost
paracontact manifold admits a pseudo-Riemannian metric g such that

9(@X,0Y) = —g(X,Y) + n(X)n(Y), (2.1)

for all X,Y vector fields on M, then we say that (M, ¢,&,n, g) is an almost paracontact metric manifold. Notice that
such a pseudo-Riemannian metric is necessarily of signature (n + 1, n). For an almost paracontact metric manifold,
there always exists an orthogonal basis {X1,...,X,,Y1,...,Y,,&}, such that g(X;, X;) = d;;, 9(Yi,Y;) = =65,
9(X;,Y;) =0,9( X;) =9 Y;) =0,and Y; = ¢X,, forany 4,5 € {1,...,n}. Such basis is called a ¢-basis.

We define the fundamental form of the almost paracontact metric manifold by 6(X,Y) = ¢(X, ¢Y). If dn(X,Y) =
g9(X, ¢Y), then M is said to be paracontact metric manifold. In a paracontact metric manifold one defines a symmetric,
trace-free operator h = 1 L¢$, where L¢, denotes the Lie derivative. It is known [11] that : anti-commutes with ¢
and satisfies hé = 0, trh = trh¢ = 0 and

VE=—¢+¢h,

where V is the Levi-Civita connection of the pseudo-Riemannian manifold (M, g).
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Moreover h = 0 if and only if ¢ is Killing vector field. In this case M is said to be a K-paracontact manifold.
A normal paracontact metric manifold is called a para-Sasakian manifold. Also in this context the para-Sasakian
condition implies the K-paracontact condition and the converse holds only in dimension 3. We also recall that any
para-Sasakian manifold satisfies
R(X,Y)E=n(X)Y —n(Y)X.

Now let M be a paracontact manifold. The (k, p)-nullity distribution of a M for the pair (k, i) is a distribution

ZenM|MXYM—MmK@XﬂKZW)} (2.2)

N%M%p%Nﬂhm:{ +u(g(Y, Z)hX — g(X, Z)hY),

for some real constants k and . If the characteristic vector field £ belongs to the (k, 1)-nullity distribution we have
(2.2).

Lemma 2.1. [1] Let M be a paracontact metric (k, p)-manifold of dimension 2n + 1. Then the following identities hold:
= (1+ k)¢, (2.3)

(Vxo)Y = —g(X,Y)§+ g(hX, Y)E+n(Y)X —n(Y)hX, fork # —1, (2.4)

(Vxh)Y = (Vyh)X = —=(1+k)(29(X, 0Y)§ + n(X)oY —n(Y)¢X) + (1 — p)(n(X)ohY —n(Y)phX),  (2.5)
for any vector fields X, Y on M.

Lemma 2.2. [1] In any (2n + 1)-dimensional paracontact metric (k, p)-manifold (M, ¢, &, n, g) such that k # —1, the Ricci
operator Q) is given by

Q=0201-n)+nuw) I+ 2n—-1)+ph+2Mn—-1)+n2k—pn)nE. (2.6)

In particular, for k > —1, (M, g) is an n-Einstein manifold if and only if 4 = 2(1 — n), or an Einstein manifold if
and only if k = 0 = pr and n = 1 (in this case the manifold is Ricci-flat).
For k < —1, (M, g) is an n-Einstein manifold if and only if ;1 = 2(1 — n), or an Einstein manifold if and only if

k=122 and p = 2(1 — n).

3. Main results

In this section we study some semisymmetry curvature conditions on paracontact metric (k, 1)-manifolds.
Firstly we give the following;:
Definition 3.1. A semi-Riemannian manifold (M?" "1 g),n > 1, is said to be Weyl semisymmetric if
R(U,X)-C =0,
holds on M for all U, X vector fields on M.

Let M be a Weyl semisymmetric paracontact metric (k, 4)-manifold with & # —1. Then above equation is
equivalent to
(R(U, X) - C)(W,Y)Z =0, (3.1)

forany U, X, W, Y, Z vector fields on M. Thus we have
RUX)C(W,Y)Z - C(RU, X)W, Y)Z —CW,R(U,X)Y)Z - C(W,Y)R(U,X)Z = 0. (3.2)
Substituting U = W = £ in (3.2) yields

R(E X)C(E,Y)Z — C(R(E X)E,¥)Z — C(& R(E X)¥)Z - C(&, V)R(E, X)Z =0, 63)
where
CENZ = (Grgems) oV 2) = n(Z)Y) = g (S(V.2)¢ = 2)QY). 64
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With the help of (3.3) and (3.4), we get
ES(X,Y) + uS(hX,Y) — 2nk*g(X,Y) — 2nkug(hX,Y) = 0. (3.5)
Putting Y = hY in (3.5) and using (2.3), we obtain
u(k+1)S(X,Y) 4+ EkS(hX,Y) — 2nk?g(hX,Y) — 2nku(k + 1)g(X,Y) = 0. (3.6)
Now suppose k # —1 and p # 0. Multiplying (3.5) by k£ and (3.6) by 1, we have
E*S(X,Y) + pkS(hX,Y) — 2nk*g(X,Y) — 2nk?ug(hX,Y) = 0, (3.7)
and
pr(k+1)S(X,Y) 4+ pkS(hX,Y) — 2nk*ug(hX,Y) — 2nk(k + 1)p?g(X,Y) = 0, (3.8)
respectively. Subtracting (3.8) from (3.7), we get
{k?* — 12k + D)HS(X,Y) — 2nkg(X,Y)} = 0. (3.9)

If k # —1, then k? — p?(k + 1) # 0. Therefore from (3.9) it follows that S(X,Y) = 2nkg(X,Y), which implies that
the manifold M is an Einstein manifold. Thus we have the following:

Theorem 3.1. If M is a (2n + 1)-dimensional Weyl semisymmetric paracontact metric (k, )-manifold with k # —1 then the

manifold M is an Einstein manifold.

Definition 3.2. A semi-Riemannian manifold (M?"*! g),n > 1, is said to be projective semisymmetric if
R(U,X)-P =0,

holds on M for all U, X vector fields on M.

Let M be a projective semisymmetric paracontact metric (k, )-manifold with k # —1. Then above equation is
equivalent to
(R(U, X) - P)(W,Y)Z =0, (3.10)

for any U, X, W, Y, Z vector fields on M. Thus we have
R(U,X)P(W,Y)Z — P(R(U, X)W,Y)Z — P(W,R(U,X)Y)Z — P(W,Y)R(U,X)Z = 0. (3.11)
Substituting U = W = ¢ in (3.11) yields
R(& X)P(&,Y)Z — P(R(§, X)&,Y)Z — P(§ R(§, X)Y)Z — P(§,Y)R(§, X)Z = 0, (3.12)

where )
P,Y)Z = kg(Y, Z2)§ + u(g(hY, 2)§ —n(Z)hY) — %S(Y, Z)§. (3.13)

With help of (3.13) and (3.12), we get
p{n(Z)g(R(§, X)hY, &) + g(R(E, X)Y, hZ) + g(R(§, X)Z, hY)} + %{S(R(&X)K Z)+ S(Y,R(§, X)Z)} =0,
which implies that
p{kg(hX, Z)n(Y) + pg(hX,hZ)n(Y)} (3.14)
P {S(Z,€)9(X,Y) + (Y, )9(X, 2)
—S(X, Z)n(Y) = S(X,Y)n(Z)}

5 {S(Z,0g(hX.Y) + S(V.E)g(hX. Z)
—S(hX, Zn(Y) = S(hX,Y)n(Z)} = 0.
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Putting Z = ¢ in (3.14), we have
ES(X,Y) 4+ puS(hX,Y) — 2nk?*g(X,Y) — 2nkug(hX,Y) = 0. (3.15)
Putting X = hX in (3.15) and using h? = (k + 1)¢?, we obtain
wk+1S(X,Y) + kS(hX,Y) — 2nk?*g(hX,Y) — 2nk(k + 1)ug(X,Y) = 0. (3.16)
Multiplying (3.15) by & and (3.16) by 11, we have
E*S(X,Y) + kuS(hX,Y) — 2nk?g(X,Y) — 2nk*ug(hX,Y) = 0, (3.17)
and
p2(k+1)S(X,Y) + pkS(hX,Y) — 2nk?ug(hX,Y) — 2nk(k + 1)pg(X,Y) = 0. (3.18)
respectively. Subtracting (3.18) from (3.17), we get
{k? — p2(E+ DHS(X,Y) — 2nkg(X,Y)} = 0. (3.19)

If k # —1 then k% — 1%(k + 1) # 0. Therefore from (3.19) it follows that S(X,Y) = 2nkg(X,Y). Thus the manifold
M is an Einstein manifold. Hence we have the following:

Theorem 3.2. If M is a (2n + 1)-dimensional projective semisymmetric paracontact metric (k, v)-manifold with k # —1
then the manifold M is an Einstein manifold.

Definition 3.3. A semi-Riemannian manifold (M2, g),n > 1, is said to be h-Weyl semisymmetric if
C(X,Y)-h=0, (3.20)
holds on M.

Now let M be a h-Weyl semisymmetric paracontact metric (k, u)-manifold with k # —1. Then equation (3.20) is
equivalent to
C(X,Y)hZ — hC(X,Y)Z =0,

for any X, Y, Z vector fields on M. Firstly, we get

R(X,Y)hZ —hR(X,Y)Z = p(k+1){g(Y,Z)n(X)§ - g(X, Z)n(Y)¢
+n(X)(Z2)Y —n(Y)n(Z2)X}
+k{g(hY, Z)n(X)§ — g(hX, Z)n(Y)E (3.21)
+n(X)n(Z)nY —n(Y)n(Z)hX
+9(9Y, Z)phX — g(¢ X, Z)phY'}
+(pu+ k) {g(ohX, 2)pY — g(ohY, Z)p X}
+2ug(6 X, Y)phZ.

Then we can write

C(X,Y)hZ — hC(X,Y)Z R(X,Y)hZ — hR(X,Y)Z

an_ ASYRZ)X — S(X,hZ)Y +g(Y.hZ)QX
—g(X,hZ)QY — S(Y,hZ)hX + S(X,hZ)hY (3.22)
—g(Y, hZ)hQX + g(X,hZ)hQY}

{9(Y,hZ)X — g(X,hZ)Y

Lo
2n(2n — 1)
—g(Y,hZ)hX + g(X,hZ)hY } = 0.
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Using (3.21) in (3.22), we get

w(k +1){g(Y, Z)n(X)€ — g(X, Z)n(Y)E +n(X)n(2)Y —n(Y)n(Z)X}
+k{g(hY, Z)n(X)§ — g(hX, Z)n(Y)E +n(X)n(Z)hY —n(Y)n(Z)hX
+9(oY, Z)phX — g(¢X, Z)phY }
+(pu+ k) {g(ohX, 2)pY — g(ohY, Z)p X} + 2ug(¢ X, Y )phZ

in_ AS(VhZ)X — S(X,hZ)Y +9(Y,hZ2)QX
—g(X,hZ)QY — S(Y,hZ)hX + S(X,hZ)hY
—g(Y,hZ)hQX + g(X,hZ)hQY'}

{9(Y,hZ)X — g(X,hZ)Y — g(Y,hZ)hX + g(X,hZ)hY} = 0.

LT
2n(2n — 1)
Putting Y = AY in (3.23), we have

u(k + 1){g(hY, Z)n(X)& 4+ n(X)n(Z)hY'}
+h{g(h?Y, Z)n(X)é + n(X)n(Z)n*Y
+9(hY, Z)phX — g(¢X, Z)ph*Y'}
+(p+ k) {g(ohX, Z)phY — g(9h®Y, Z)p X}
+2ug(pX,Y)ph*Z

in_ {S(hY,h2)X — S(X, hZ)RY +
g(hY, hZ)QX — g(X,hZ)QhY — S(hY,hZ)hX
+S(X,hZ)h*Y — g(hY,hZ)hQX + g(X,hZ)hQhY '}

{g(hY,hZ)X — g(X,hZ)hY

+ r
2n(2n — 1)
—g(hY,hZ)hX + g(X,hZ)h*Y} = 0.

Multyping with £ in (3.24), we obtain

(k+ n(X)[ng(hY, Z) + k{g(Y, Z) —n(Y)n(Z)}
1 {S(Y,Z) = 2nkn(Y)(Z) + 2nkg(Y, Z) — 2nkn(Y)n(Z)}

+2:(2;11){9(Y, Z) —=n(Y)n(Z2)}] =0,
ie.,
oY, 2) + (b + 55—+ 2009 Y, 2) = 0V In(2)} = 5 S(Y.2) = 2ukn(Y (2} = .
Now from (2.6), we have
JY.2) = S 2) - ey 7)< B DRy ),
Thus from (3.25) and (3.26), we get
(Z(n —M1) tuo 2n1— )5, 2)
_(M;&—?; 12“) ke m — onk)g(Y, Z)
SR DAnhmp) T s 2R ) = 0,

2n—1) 4+ u 2n(2n —1) 2n —1

(3.23)

(3.24)

(3.25)

(3.26)
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which turns to

A2 A3

S(Y,2) = jg(Y, Z)+ =n(Y)n(2),

where

A A1

A= LI
YT -1 4p 2n-1
w(2(1=n) +nu) T
Ay = k- ——— — 2k
2 2(n—1)+ 41 on(2n—1) "
w(2(n —1) +n(2k — p)) r 2nk
= 2 - .
As 2n—1) + TRt e T T g

Thus the manifold M is an n-Einstein manifold. Hence we state the following:

Theorem 3.3. If M is a (2n + 1)-dimensional h-Weyl semisymmetric paracontact metric (k, w)-manifold with k # —1 then

M is an n-Einstein manifold.

Definition 3.4. A semi-Riemannian manifold (M?" !, g),n > 1, is said to be ¢-Weyl semisymmetric if

holds on M.

Let M be a ¢p-Weyl semisymmetric paracontact metric (k, u)-manifold with k # —1. Then above equation is

equivalent to

C(X,Y)$pZ — ¢C(X,Y)Z = 0.

for any X, Y, Z vector fields on M. Firstly we get

R(X,Y)¢Z — ¢R(X,Y)Z =

9(X,02)Y — g(Y,0Z)X + g(Y, Z)pX
—9(X,Z2)¢Y — (X, ¢Z)hY + g(Y,pZ)h X
+9(hY, $2)X — g(hX,$2)Y — g(Y, Z)phX
+9(X, Z)phY — g(hY, Z)¢X + g(hX, Z)¢Y

TR

+9(hX, Z)phY'} — — — {g(hX,0Z)ohY — g(hY, 6 Z)dphX
—g(¢hY, Z)hX + g(¢phX, Z)hY'}

+(k + D{g(oX, 2)n(Y)E — g(8Y, Z)n(X)¢

+n(X)n(Z)pY —n(Y)n(Z)pX}

+(p = D{g(ohX, Z)n(Y)€ — g(ophY, Z)n(X)E
+n(X)n(Z)phY —n(Y)n(Z)phX}.

{g(hY,0Z)hX — g(hX,9Z)hY — g(hY, Z)phX

22
2

(3.27)
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Then we have

C(X,Y)oZ —¢C(X,Y)Z = g(X,062)Y —g(Y,0Z)X + g(Y, Z)pX
—9(X,2)¢Y — g(X,6Z)hY + g(Y,pZ)hX
+9(hY,¢Z)X — g(hX,62)Y — g(Y, Z)phX
+9(X, Z)qShY g(hY, 2)¢X + g(hX, Z)pY

T 12 {g(hY,¢Z)hX — g(hX,pZ)hY — g(hY, Z)phX

23
2

+9(hX, Z)phY} — {9(hX,0Z)dhY — g(hY, pZ)phX
—g(¢hY, Z)hX + g(¢hX Z)hY}

+(k + 1{g(¢X, Z)n(Y)§ — g(¢Y, Z)n(X)§

+n(X)n(Z)pY —n(Y)n(Z)pX}

+(u = D{g(ohX, Z)n(Y )& — g(ohY, Z)n(X)E

+n(X )77( JohY —n(Y)n(Z)phX}

S {S(V.62)X = S(X,62)Y +g(Y,62)QX
—~9(X, 6Z2)QY — S(Y.62)6X + S(X, 62)6Y
~9(Y,62)6QX + g(X, 62)6QY )

o 02X — g(X,02)Y

—9(Y,0Z)pX + g(X,9Z)pY '} = 0.

Putting X = ¢X and multyplying with W in (3.28), we obtain

9(6X,0Z)g(Y, W) — g(Y, 0 Z)g(6X, W) — g(Y, Z)g(¢ X, pW)
—9(¢X, Z)g(¢Y. W) — g(¢X, 92)g(RY, W) + g(Y, $Z)g(h¢ X, W)
+9(hY, 0Z)g(¢ X, W) — g(h¢ X, 6 Z)g(Y, W) — g(Y, Z)g(phe X, W)
+9(0X, Z)g(phY, W) + g(hY, Z)g(¢ X, oW) + g(h¢ X, Z)g(8Y, W)

k1

~g(hY, Z)g($h6X, W) + g(h6X, Z)g(ohY, W)
L2 g(h6X, 02)g(0hY, W) — g(Y, 6Z)g(6hoX, W)

—g(OhY, Z)g(h6X, W) + g(ohoX, Z)g(hY, W)}

~(h+ D{(6X, 620V (W) = (Y Jn(Z)g(6X, 6W)}

~(a = D{g(ho X, 6Z)(Y (W) — (¥ )n(Z)g(0hoX, W)}

51 0¥, 02)9(0X, W) = S(6X,9Z)g(Y, W) + g(Y, 92)S (X, W)

(
~9(0X, 0Z)S(Y.W) — S(Y.6Z)g(6* X, W) + S(6X,6Z)g(6Y. W)
+9(Y,62)S(6X,6W) — 9(6X,6Z)S(Y,6W)}
Fonian 1) 90 0290X W) = 96X, 62)g(Y W)

+9(Y,02)9(¢ X, W) + g(¢X,9Z)g(¢Y, W)} = 0.

it %{gw $2)g(h X, W) — g(h¢ X, Z)g(hY, W)
)

Putting Y = W = £ in (3.29), we get

2nk r
2n—1 2n(2n-—1)

)9(6X, ¢Z) + ug(phX, 9Z) + S(pX,7Z) = 0.

2n—1

(3.28)

(3.29)

(3.30)
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Using (2.1) and (2.6) in (3.30), we have

2nk T
U T 2n(2n — 1)
—S(X,Z) 4 2nkn(X)n(Z)
u(2n+1)+4(n—1) 1 (2(1 —n) 4+ nu)

Ho(X, Z) —n(X)n(Z)}

— 2n—1 ){Q(n—l)—i—uS(X’Z)_ 2(n—1)+pu 9(X,2)
(2(n—1)+n(2k — p) B
ie.,
1= 1) 4 o - 2= DECI LB 53 )
nk(2n — 1) — 4n2k +r n— - —2n+n
_ [2 k(2 12)n Atk +r 2 1)(22(71;;_)—1#)(42—” 2n + N)]g(X, 2)
_[2nk(2n -1) 724: k+r—4n?k N 2(n—1)(2 - g()nJr_(Ql)—'_ZZ + 2nk — nu)]n(x)n(z)'
Hence we have ) )
S(X,2) = 29X, 2) + 2n(X)n(2),
where
N o= Mn_m+u_2m—1m2y?;f;2n+mq
N 2nk(2n — 1) —4n?k+7r  2(n—1)(2—p) + (2 — 2n + np)
2 2n a 2ln—1)+p ’
N 2nk(2n — 1) —4n2k +r —4n?k  2(n —1)(2 — p) + (2 — 2n + 2nk — np)
3= n - 2(n—1)+p '

Thus the manifold M is an 7-Einstein manifold. Hence we can state the following:

Theorem 3.4. If M is a (2n + 1)-dimensional ¢-Weyl semisymmetric paracontact metric (k, w)-manifold with k # —1 then

M is an n-Einstein manifold.
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