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1. Introduction
In modern contact geometry, the study of nullity distribution on paracontact geometry is one among the most

interesting topics. Paracontact metric structures have been introduced in [3], as a natural odd-dimensional counter-
part to para-Hermitian structures, like contact metric structures correspond to the Hermitian ones. Paracontact
metric manifolds have been studied by many authors in the recent years. A systematic study of paracontact metric
manifolds was carried out by Zamkovoy [11].

An important class among paracontact metric manifolds is that of the (k, µ)-manifolds, which satisfy the nullity
condition

R(X,Y )ξ = k(η(Y )X − η(X)Y ) + µ(η(Y )hX − η(X)hY ), (1.1)

for all X,Y vector fields on M , where k and µ are constants and h = 1
2Lξφ [1]. This class includes the para-Sasakian

manifolds [3, 11], the paracontact metric manifolds satisfying R(X,Y )ξ = 0 for all X,Y vector fields on M [12].
Among the geometric properties of manifolds symmetry is an important one. Local point of view it was

introduced by Shirokov [5] as a Riemannian manifold with covariant constant curvature tensor R, that is, with
∇R = 0, where ∇ is the Levi-Civita connection. An extensive theory of symmetric Riemannian manifolds was
introduced by Cartan [2]. A manifold is called semisymmetric if the curvature tensor R satisfies R(X,Y ) ·R = 0,
where R(X,Y ) is considered to be a derivation of the tensor algebra at each point of the manifold for the tangent
vectors X,Y . Semisymmetric manifolds were locally classified by Szabó [7]. Also in [10] Yildiz and De studied
h-Weyl semisymmetric, φ-Weyl semisymmetric, h-projectively semisymmetric and φ-projectively semisymmetric
non-Sasakian (k, µ)-contact metric manifolds. Recently Mandal and De studied certain curvature conditions on
paracontact (k, µ)-spaces [4].

The projective curvature tensor is an important tensor from the differential geometric point of view. LetM be a (2n+
1)-dimensional semi-Riemannian manifold with metric g. The Ricci operator Q of (M, g) is defined by g(QX,Y ) =
S(X,Y ), where S denotes the Ricci tensor of type (0, 2) on M . If there exists a one-to-one correspondence between
each coordinate neighbourhood of M and a domain in Euclidean space such that any geodesic of the semi-
Riemannian manifold corresponds to a straight line in the Euclidean space, then M is said to be locally projectively
flat. For n ≥ 1, M is locally projectively flat if and only if the well known projective curvature tensor P vanishes.
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Here P is defined by [6]

P (X,Y )Z = R(X,Y )Z − 1

2n
{S(Y, Z)X − S(X,Z)Y }, (1.2)

for all X,Y, Z vector fields on M , where R is the curvature tensor and S is the Ricci tensor of M .
In fact, M is projectively flat if and only if it is of constant curvature [8]. Thus the projective curvature tensor is

the measure of the failure of a semi-Riemannian manifold to be of constant curvature.
In semi-Riemannain geometry one of the important curvature properties is conformal flatness. The Weyl

conformal curvature tensor is a measure of the curvature of spacetime and differs from the semi-Riemannian curvature
tensor. It is the traceless component of the Riemannian tensor which has the same symmetries as the Riemannian
tensor.The Weyl conformal curvature tensor is defined by

C(X,Y )Z = R(X,Y )Z

− 1

2n− 1
{S(Y,Z)X − S(X,Z)Y + g(Y, Z)QX − g(X,Z)QY }

+
r

2n(2n− 1)
{g(Y, Z)X − g(X,Z)Y }, (1.3)

for all X,Y, Z vector fields on M , where r = tr(S) is scalar curvature [9].
A paracontact metric (k, µ)-manifold is said to be an Einstein manifold if the Ricci tensor satisfies S = ag, where

a a smooth function.
The outline of the article goes as follows: After introduction in section 2, we recall basic facts and some

basic results of paracontact metric manifolds with characteristic vector field ξ belonging to the (k, µ)-nullity
distribution. In section 3, we characterize paracontact metric (k, µ)-manifolds satisfying some semisymmetry
curvature conditions. We prove that Weyl semisymmetric and projective semisymmetric paracontact metric
(k, µ)-manifolds are Einstein manifolds and h-Weyl semisymmetric and φ-Weyl semisymmetric paracontact metric
(k, µ)-manifolds are η-Einstein manifolds provided k 6= −1.

2. Preliminaries
An (2n+ 1)-dimensional manifold M is said to have an almost paracontact structure if it admits a (1, 1)-tensor

field φ, a vector field ξ and a 1-form η satisfying the following conditions ([3], [11]):

(i) η(ξ) = 1, φ2 = I − η ⊗ ξ,

(ii) the tensor field φ induces an almost paracomplex structure on each fibre of D = ker(η), i.e., the ±1-
eigendistributions, D± = Dφ(±1) of φ have equal dimension n.

Thus from the definition it follows that φξ = 0, η ◦ φ = 0 and the endomorphism φ has rank 2n. The Nijenhius
torsion tensor field [φ, φ] is given by

[φ, φ](X,Y ) = φ2[X,Y ] + [φX, φY ]− φ[φX, Y ]− φ[X,φY ].

When the tensor field Nφ = [φ, φ]− 2dη ⊗ ξ = 0, the almost paracontact manifold is said to be normal. If an almost
paracontact manifold admits a pseudo-Riemannian metric g such that

g(φX, φY ) = −g(X,Y ) + η(X)η(Y ), (2.1)

for all X,Y vector fields on M , then we say that (M,φ, ξ, η, g) is an almost paracontact metric manifold. Notice that
such a pseudo-Riemannian metric is necessarily of signature (n+ 1, n). For an almost paracontact metric manifold,
there always exists an orthogonal basis {X1, . . . , Xn, Y1, . . . , Yn, ξ}, such that g(Xi, Xj) = δij , g(Yi, Yj) = −δij ,
g(Xi, Yj) = 0, g(ξ,Xi) = g(ξ, Yj) = 0, and Yi = φXi, for any i, j ∈ {1, . . . , n}. Such basis is called a φ-basis.

We define the fundamental form of the almost paracontact metric manifold by θ(X,Y ) = g(X,φY ). If dη(X,Y ) =
g(X,φY ), then M is said to be paracontact metric manifold. In a paracontact metric manifold one defines a symmetric,
trace-free operator h = 1

2Lξφ, where Lξ, denotes the Lie derivative. It is known [11] that h anti-commutes with φ
and satisfies hξ = 0, trh = trhφ = 0 and

∇ξ = −φ+ φh,

where ∇ is the Levi-Civita connection of the pseudo-Riemannian manifold (M, g).
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Moreover h = 0 if and only if ξ is Killing vector field. In this case M is said to be a K-paracontact manifold.
A normal paracontact metric manifold is called a para-Sasakian manifold. Also in this context the para-Sasakian
condition implies the K-paracontact condition and the converse holds only in dimension 3. We also recall that any
para-Sasakian manifold satisfies

R(X,Y )ξ = η(X)Y − η(Y )X.

Now let M be a paracontact manifold. The (k, µ)-nullity distribution of a M for the pair (k, µ) is a distribution

N(k, µ) : p→ Np(k, µ) =

{
Z ∈ TpM | R(X,Y )Z = k(g(Y,Z)X − g(X,Z)Y )

+µ(g(Y, Z)hX − g(X,Z)hY ),

}
, (2.2)

for some real constants k and µ. If the characteristic vector field ξ belongs to the (k, µ)-nullity distribution we have
(2.2).

Lemma 2.1. [1] Let M be a paracontact metric (k, µ)-manifold of dimension 2n+ 1. Then the following identities hold:

h2 = (1 + k)φ2, (2.3)

(∇Xφ)Y = −g(X,Y )ξ + g(hX, Y )ξ + η(Y )X − η(Y )hX, for k 6= −1, (2.4)

(∇Xh)Y − (∇Y h)X = −(1 + k)(2g(X,φY )ξ + η(X)φY − η(Y )φX) + (1− µ)(η(X)φhY − η(Y )φhX), (2.5)

for any vector fields X , Y on M .

Lemma 2.2. [1] In any (2n+ 1)-dimensional paracontact metric (k, µ)-manifold (M,φ, ξ, η, g) such that k 6= −1, the Ricci
operator Q is given by

Q = (2(1− n) + nµ)I + (2(n− 1) + µ)h+ (2(n− 1) + n(2k − µ))η ⊗ ξ. (2.6)

In particular, for k > −1, (M, g) is an η-Einstein manifold if and only if µ = 2(1− n), or an Einstein manifold if
and only if k = 0 = µ and n = 1 (in this case the manifold is Ricci-flat).

For k < −1, (M, g) is an η-Einstein manifold if and only if µ = 2(1− n), or an Einstein manifold if and only if
k = 1−n2

n and µ = 2(1− n).

3. Main results
In this section we study some semisymmetry curvature conditions on paracontact metric (k, µ)-manifolds.

Firstly we give the following:

Definition 3.1. A semi-Riemannian manifold (M2n+1, g), n > 1, is said to be Weyl semisymmetric if

R(U,X) · C = 0,

holds on M for all U,X vector fields on M .

Let M be a Weyl semisymmetric paracontact metric (k, µ)-manifold with k 6= −1. Then above equation is
equivalent to

(R(U,X) · C)(W,Y )Z = 0, (3.1)

for any U,X,W, Y, Z vector fields on M . Thus we have

R(U,X)C(W,Y )Z − C(R(U,X)W,Y )Z − C(W,R(U,X)Y )Z − C(W,Y )R(U,X)Z = 0. (3.2)

Substituting U =W = ξ in (3.2) yields

R(ξ,X)C(ξ, Y )Z − C(R(ξ,X)ξ, Y )Z − C(ξ,R(ξ,X)Y )Z − C(ξ, Y )R(ξ,X)Z = 0, (3.3)

where

C(ξ, Y )Z = (
r − 2nk

2n(2n− 1)
)(g(Y,Z)ξ − η(Z)Y )− 1

2n− 1
(S(Y,Z)ξ − η(Z)QY ). (3.4)
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With the help of (3.3) and (3.4), we get

kS(X,Y ) + µS(hX, Y )− 2nk2g(X,Y )− 2nkµg(hX, Y ) = 0. (3.5)

Putting Y = hY in (3.5) and using (2.3), we obtain

µ(k + 1)S(X,Y ) + kS(hX, Y )− 2nk2g(hX, Y )− 2nkµ(k + 1)g(X,Y ) = 0. (3.6)

Now suppose k 6= −1 and µ 6= 0. Multiplying (3.5) by k and (3.6) by µ, we have

k2S(X,Y ) + µkS(hX, Y )− 2nk3g(X,Y )− 2nk2µg(hX, Y ) = 0, (3.7)

and

µ2(k + 1)S(X,Y ) + µkS(hX, Y )− 2nk2µg(hX, Y )− 2nk(k + 1)µ2g(X,Y ) = 0, (3.8)

respectively. Subtracting (3.8) from (3.7), we get

{k2 − µ2(k + 1)}{S(X,Y )− 2nkg(X,Y )} = 0. (3.9)

If k 6= −1, then k2 − µ2(k + 1) 6= 0. Therefore from (3.9) it follows that S(X,Y ) = 2nkg(X,Y ), which implies that
the manifold M is an Einstein manifold. Thus we have the following:

Theorem 3.1. If M is a (2n+1)-dimensional Weyl semisymmetric paracontact metric (k, µ)-manifold with k 6= −1 then the
manifold M is an Einstein manifold.

Definition 3.2. A semi-Riemannian manifold (M2n+1, g), n > 1, is said to be projective semisymmetric if

R(U,X) · P = 0,

holds on M for all U,X vector fields on M .

Let M be a projective semisymmetric paracontact metric (k, µ)-manifold with k 6= −1. Then above equation is
equivalent to

(R(U,X) · P )(W,Y )Z = 0, (3.10)

for any U,X,W, Y, Z vector fields on M . Thus we have

R(U,X)P (W,Y )Z − P (R(U,X)W,Y )Z − P (W,R(U,X)Y )Z − P (W,Y )R(U,X)Z = 0. (3.11)

Substituting U =W = ξ in (3.11) yields

R(ξ,X)P (ξ, Y )Z − P (R(ξ,X)ξ, Y )Z − P (ξ,R(ξ,X)Y )Z − P (ξ, Y )R(ξ,X)Z = 0, (3.12)

where
P (ξ, Y )Z = kg(Y,Z)ξ + µ(g(hY,Z)ξ − η(Z)hY )− 1

2n
S(Y, Z)ξ. (3.13)

With help of (3.13) and (3.12), we get

µ{η(Z)g(R(ξ,X)hY, ξ) + g(R(ξ,X)Y, hZ) + g(R(ξ,X)Z, hY )}+ 1

2n
{S(R(ξ,X)Y,Z) + S(Y,R(ξ,X)Z)} = 0,

which implies that

µ{kg(hX,Z)η(Y ) + µg(hX, hZ)η(Y )} (3.14)

+
k

2n
{S(Z, ξ)g(X,Y ) + S(Y, ξ)g(X,Z)

−S(X,Z)η(Y )− S(X,Y )η(Z)}

+
µ

2n
{S(Z, ξ)g(hX, Y ) + S(Y, ξ)g(hX,Z)

−S(hX,Z)η(Y )− S(hX, Y )η(Z)} = 0.
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Putting Z = ξ in (3.14), we have

kS(X,Y ) + µS(hX, Y )− 2nk2g(X,Y )− 2nkµg(hX, Y ) = 0. (3.15)

Putting X = hX in (3.15) and using h2 = (k + 1)φ2, we obtain

µ(k + 1)S(X,Y ) + kS(hX, Y )− 2nk2g(hX, Y )− 2nk(k + 1)µg(X,Y ) = 0. (3.16)

Multiplying (3.15) by k and (3.16) by µ, we have

k2S(X,Y ) + kµS(hX, Y )− 2nk3g(X,Y )− 2nk2µg(hX, Y ) = 0, (3.17)

and

µ2(k + 1)S(X,Y ) + µkS(hX, Y )− 2nk2µg(hX, Y )− 2nk(k + 1)µ2g(X,Y ) = 0. (3.18)

respectively. Subtracting (3.18) from (3.17), we get

{k2 − µ2(k + 1)}{S(X,Y )− 2nkg(X,Y )} = 0. (3.19)

If k 6= −1 then k2 − µ2(k + 1) 6= 0. Therefore from (3.19) it follows that S(X,Y ) = 2nkg(X,Y ). Thus the manifold
M is an Einstein manifold. Hence we have the following:

Theorem 3.2. If M is a (2n + 1)-dimensional projective semisymmetric paracontact metric (k, µ)-manifold with k 6= −1
then the manifold M is an Einstein manifold.

Definition 3.3. A semi-Riemannian manifold (M2n+1, g), n > 1, is said to be h-Weyl semisymmetric if

C(X,Y ) · h = 0, (3.20)

holds on M.

Now let M be a h-Weyl semisymmetric paracontact metric (k, µ)-manifold with k 6= −1. Then equation (3.20) is
equivalent to

C(X,Y )hZ − hC(X,Y )Z = 0,

for any X,Y, Z vector fields on M . Firstly, we get

R(X,Y )hZ − hR(X,Y )Z = µ(k + 1){g(Y,Z)η(X)ξ − g(X,Z)η(Y )ξ

+η(X)η(Z)Y − η(Y )η(Z)X}
+k{g(hY, Z)η(X)ξ − g(hX,Z)η(Y )ξ (3.21)
+η(X)η(Z)hY − η(Y )η(Z)hX

+g(φY,Z)φhX − g(φX,Z)φhY }
+(µ+ k){g(φhX,Z)φY − g(φhY, Z)φX}
+2µg(φX, Y )φhZ.

Then we can write

C(X,Y )hZ − hC(X,Y )Z = R(X,Y )hZ − hR(X,Y )Z

− 1

2n− 1
{S(Y, hZ)X − S(X,hZ)Y + g(Y, hZ)QX

−g(X,hZ)QY − S(Y, hZ)hX + S(X,hZ)hY (3.22)
−g(Y, hZ)hQX + g(X,hZ)hQY }

+
r

2n(2n− 1)
{g(Y, hZ)X − g(X,hZ)Y

−g(Y, hZ)hX + g(X,hZ)hY } = 0.
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Using (3.21) in (3.22), we get

µ(k + 1){g(Y,Z)η(X)ξ − g(X,Z)η(Y )ξ + η(X)η(Z)Y − η(Y )η(Z)X}
+k{g(hY,Z)η(X)ξ − g(hX,Z)η(Y )ξ + η(X)η(Z)hY − η(Y )η(Z)hX

+g(φY,Z)φhX − g(φX,Z)φhY }
+(µ+ k){g(φhX,Z)φY − g(φhY, Z)φX}+ 2µg(φX, Y )φhZ

− 1

2n− 1
{S(Y, hZ)X − S(X,hZ)Y + g(Y, hZ)QX (3.23)

−g(X,hZ)QY − S(Y, hZ)hX + S(X,hZ)hY

−g(Y, hZ)hQX + g(X,hZ)hQY }

+
r

2n(2n− 1)
{g(Y, hZ)X − g(X,hZ)Y − g(Y, hZ)hX + g(X,hZ)hY } = 0.

Putting Y = hY in (3.23), we have

µ(k + 1){g(hY, Z)η(X)ξ + η(X)η(Z)hY }
+k{g(h2Y,Z)η(X)ξ + η(X)η(Z)h2Y

+g(φhY,Z)φhX − g(φX,Z)φh2Y }
+(µ+ k){g(φhX,Z)φhY − g(φh2Y, Z)φX}
+2µg(φX, Y )φh2Z

− 1

2n− 1
{S(hY, hZ)X − S(X,hZ)hY + (3.24)

g(hY, hZ)QX − g(X,hZ)QhY − S(hY, hZ)hX
+S(X,hZ)h2Y − g(hY, hZ)hQX + g(X,hZ)hQhY }

+
r

2n(2n− 1)
{g(hY, hZ)X − g(X,hZ)hY

−g(hY, hZ)hX + g(X,hZ)h2Y } = 0.

Multyping with ξ in (3.24), we obtain

(k + 1)η(X)[µg(hY,Z) + k{g(Y,Z)− η(Y )η(Z)}

− 1

2n− 1
{S(Y,Z)− 2nkη(Y )η(Z) + 2nkg(Y, Z)− 2nkη(Y )η(Z)}

+
r

2n(2n− 1)
{g(Y,Z)− η(Y )η(Z)}] = 0,

i.e.,

µg(hY, Z) + (k +
r

2n(2n− 1)
+ 2nk){g(Y,Z)− η(Y )η(Z)} − 1

2n− 1
{S(Y, Z)− 2nkη(Y )η(Z)} = 0. (3.25)

Now from (2.6), we have

g(hY, Z) =
1

2(n− 1) + µ
S(Y,Z)− 2(1− n) + nµ

2(n− 1) + µ
g(Y,Z)− (2(n− 1) + n(2k − µ)

2(n− 1) + µ
η(Y )η(Z). (3.26)

Thus from (3.25) and (3.26), we get

(
µ

2(n− 1) + µ
− 1

2n− 1
)S(Y,Z)

−(µ(2(1− n) + nµ)

2(n− 1) + µ
− k − r

2n(2n− 1)
− 2nk)g(Y,Z)

−(µ(2(n− 1) + n(2k − µ))
2(n− 1) + µ

+ k +
r

2n(2n− 1)
+ 2nk − 2nk

2n− 1
)η(Y )η(Z) = 0,
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which turns to

S(Y, Z) =
λ2
λ1
g(Y, Z) +

λ3
λ1
η(Y )η(Z),

where

λ1 =
µ

2(n− 1) + µ
− 1

2n− 1
,

λ2 =
µ(2(1− n) + nµ)

2(n− 1) + µ
− k − r

2n(2n− 1)
− 2nk,

λ3 =
µ(2(n− 1) + n(2k − µ))

2(n− 1) + µ
+ k +

r

2n(2n− 1)
+ 2nk − 2nk

2n− 1
.

Thus the manifold M is an η-Einstein manifold. Hence we state the following:

Theorem 3.3. If M is a (2n+ 1)-dimensional h-Weyl semisymmetric paracontact metric (k, µ)-manifold with k 6= −1 then
M is an η-Einstein manifold.

Definition 3.4. A semi-Riemannian manifold (M2n+1, g), n > 1, is said to be φ-Weyl semisymmetric if

C(X,Y ) · φ = 0,

holds on M.

Let M be a φ-Weyl semisymmetric paracontact metric (k, µ)-manifold with k 6= −1. Then above equation is
equivalent to

C(X,Y )φZ − φC(X,Y )Z = 0.

for any X,Y, Z vector fields on M . Firstly we get

R(X,Y )φZ − φR(X,Y )Z = g(X,φZ)Y − g(Y, φZ)X + g(Y,Z)φX

−g(X,Z)φY − g(X,φZ)hY + g(Y, φZ)hX

+g(hY, φZ)X − g(hX, φZ)Y − g(Y,Z)φhX
+g(X,Z)φhY − g(hY, Z)φX + g(hX,Z)φY (3.27)

+
−1− µ

2

k + 1
{g(hY, φZ)hX − g(hX, φZ)hY − g(hY,Z)φhX

+g(hX,Z)φhY } −
−k + µ

2

k + 1
{g(hX, φZ)φhY − g(hY, φZ)φhX

−g(φhY,Z)hX + g(φhX,Z)hY }
+(k + 1){g(φX,Z)η(Y )ξ − g(φY,Z)η(X)ξ

+η(X)η(Z)φY − η(Y )η(Z)φX}
+(µ− 1){g(φhX,Z)η(Y )ξ − g(φhY,Z)η(X)ξ

+η(X)η(Z)φhY − η(Y )η(Z)φhX}.
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Then we have

C(X,Y )φZ − φC(X,Y )Z = g(X,φZ)Y − g(Y, φZ)X + g(Y, Z)φX

−g(X,Z)φY − g(X,φZ)hY + g(Y, φZ)hX

+g(hY, φZ)X − g(hX, φZ)Y − g(Y, Z)φhX
+g(X,Z)φhY − g(hY, Z)φX + g(hX,Z)φY

+
−1− µ

2

k + 1
{g(hY, φZ)hX − g(hX, φZ)hY − g(hY, Z)φhX

+g(hX,Z)φhY } −
−k + µ

2

k + 1
{g(hX, φZ)φhY − g(hY, φZ)φhX

−g(φhY,Z)hX + g(φhX,Z)hY }
+(k + 1){g(φX,Z)η(Y )ξ − g(φY,Z)η(X)ξ

+η(X)η(Z)φY − η(Y )η(Z)φX} (3.28)
+(µ− 1){g(φhX,Z)η(Y )ξ − g(φhY, Z)η(X)ξ

+η(X)η(Z)φhY − η(Y )η(Z)φhX}

− 1

2n− 1
{S(Y, φZ)X − S(X,φZ)Y + g(Y, φZ)QX

−g(X,φZ)QY − S(Y, φZ)φX + S(X,φZ)φY

−g(Y, φZ)φQX + g(X,φZ)φQY }

+
r

2n(2n− 1)
{g(Y, φZ)X − g(X,φZ)Y

−g(Y, φZ)φX + g(X,φZ)φY } = 0.

Putting X = φX and multyplying with W in (3.28), we obtain

g(φX, φZ)g(Y,W )− g(Y, φZ)g(φX,W )− g(Y, Z)g(φX, φW )

−g(φX,Z)g(φY,W )− g(φX, φZ)g(hY,W ) + g(Y, φZ)g(hφX,W )

+g(hY, φZ)g(φX,W )− g(hφX, φZ)g(Y,W )− g(Y,Z)g(φhφX,W )

+g(φX,Z)g(φhY,W ) + g(hY,Z)g(φX, φW ) + g(hφX,Z)g(φY,W )

+
−1− µ

2

k + 1
{g(hY, φZ)g(hφX,W )− g(hφX, φZ)g(hY,W )

−g(hY, Z)g(φhφX,W ) + g(hφX,Z)g(φhY,W )}

−
−k + µ

2

k + 1
{g(hφX, φZ)g(φhY,W )− g(hY, φZ)g(φhφX,W )

−g(φhY,Z)g(hφX,W ) + g(φhφX,Z)g(hY,W )}
−(k + 1){g(φX, φZ)η(Y )η(W )− η(Y )η(Z)g(φX, φW )} (3.29)
−(µ− 1){g(hφX, φZ)η(Y )η(W )− η(Y )η(Z)g(φhφX,W )}

− 1

2n− 1
{S(Y, φZ)g(φX,W )− S(φX, φZ)g(Y,W ) + g(Y, φZ)S(φX,W )

−g(φX, φZ)S(Y,W )− S(Y, φZ)g(φ2X,W ) + S(φX, φZ)g(φY,W )

+g(Y, φZ)S(φX, φW )− g(φX, φZ)S(Y, φW )}

+
r

2n(2n− 1)
{g(Y, φZ)g(φX,W )− g(φX, φZ)g(Y,W )

+g(Y, φZ)g(φX, φW ) + g(φX, φZ)g(φY,W )} = 0.

Putting Y =W = ξ in (3.29), we get

(−k + 2nk

2n− 1
− r

2n(2n− 1)
)g(φX, φZ) + µg(φhX, φZ) +

1

2n− 1
S(φX, φZ) = 0. (3.30)
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Using (2.1) and (2.6) in (3.30), we have

(k − 2nk

2n− 1
+

r

2n(2n− 1)
){g(X,Z)− η(X)η(Z)}

−S(X,Z) + 2nkη(X)η(Z)

−(µ(2n+ 1) + 4(n− 1)

2n− 1
){ 1

2(n− 1) + µ
S(X,Z)− (2(1− n) + nµ)

2(n− 1) + µ
g(X,Z)

− (2(n− 1) + n(2k − µ)
2(n− 1) + µ

η(X)η(Z)} = 0,

i.e.,

[4(n− 1) + µ− 2(n− 1)(2− µ) + (2− 2n+ nµ)

2(n− 1) + µ
]S(X,Z)

= [
2nk(2n− 1)− 4n2k + r

2n
− 2(n− 1)(2− µ) + (2− 2n+ nµ)

2(n− 1) + µ
]g(X,Z)

−[ 2nk(2n− 1)− 4n2k + r − 4n2k

2n
+

2(n− 1)(2− µ) + (2− 2n+ 2nk − nµ)
2(n− 1) + µ

]η(X)η(Z).

Hence we have

S(X,Z) =
λ

′

2

λ
′
1

g(X,Z) +
λ

′

3

λ
′
1

η(X)η(Z),

where

λ
′

1 = 4(n− 1) + µ− 2(n− 1)(2− µ) + (2− 2n+ nµ)

2(n− 1) + µ
,

λ
′

2 =
2nk(2n− 1)− 4n2k + r

2n
− 2(n− 1)(2− µ) + (2− 2n+ nµ)

2(n− 1) + µ
,

λ
′

3 =
2nk(2n− 1)− 4n2k + r − 4n2k

2n
+

2(n− 1)(2− µ) + (2− 2n+ 2nk − nµ)
2(n− 1) + µ

.

Thus the manifold M is an η-Einstein manifold. Hence we can state the following:

Theorem 3.4. If M is a (2n+ 1)-dimensional φ-Weyl semisymmetric paracontact metric (k, µ)-manifold with k 6= −1 then
M is an η-Einstein manifold.
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