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A Characteristic of Similarities by Use of Steinhaus’
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Abstract
H. Steinhaus [7] has asked whether inside each acute triangle there is a point from which perpendiculars
to the sides divide the triangle into three parts of equal areas. In this paper we present a new characteristic
of similarities by use of Steinhaus’ Problem on partition of a triangle.
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1. Introduction
A Möbius transformation f : C ∪ {∞} → C ∪ {∞} is a mapping of the form f(z) = (az + b)/(cz + d) satisfying

ad− bc 6= 0, where a, b, c, d ∈ C. Notice that

f(∞) = lim
z→+∞

f(z) =
a

c
and f(−d

c
) =∞.

It is well known that the set of all Möbius transformations is a group with respect to the composition and that
Möbius transformations have many beautiful properties. Some of these properties are as follows:

• Any Möbius transformation has at most two fixed points in C ∪ {∞}.

• The cross-ratio [z1, z2, z3, z4] of any four complex numbers, which is defined by

[z1, z2, z3, z4] =
z1 − z3
z1 − z4

· z2 − z4
z2 − z3

is invariant under Möbius transformations, that is

[z1, z2, z3, z4] = [f(z1), f(z2), f(z3), f(z4)]

• Möbius transformations are conformal and continuous.

• Möbius transformations map circles to circles, where straight lines are considered to be circles through∞.

Translations, rotations about origin, strech transformations (complex dilations), inversions and similarities
are most familiar Möbius transformations, which are defined by f(z) = z + b, g(z) = eiθz, h(z) = az (a 6= 0),
j(z) = 1

z , m(z) = az + b, respectively. It is well known that any Möbius transformation can be written as a
composition of translations, complex dilations and inversions. In the literature there are many characterizations of
Möbius transformations by use of some geometric objects such as Apollonius points of triangles [2], Apollonius
quadrilaterals [3], Apollonius pentagons [1], Apollonius hexagons [4] and others. The aim of this paper is to present
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Figure 1. If P is a solution of Steinhaus’ problem for an acute triangle ABC, then there exist corresponding points
K,L,M on AB,BC and CA, respectively, such that AB⊥PK,BC⊥PL,CA⊥PM satisfying
Area(AKPM) = Area(BLPK) = Area(CMPL) = Area(ABC)

3 .

a new characterization of similarities by use of Steinhaus’ problem on partition of triangles. H. Steinhaus [7] has
asked whether inside each acute triangle there is a point from which perpendiculars to the sides decide the triangle
into three parts of equal areas, see Fig.1. For the solution of this problem, we refer the reader to [8].

Example 1.1. Let ABC be an arbitrary equilateral triangle in the Euclidean plane and let L be its center. Then

Area(AELD) = Area(BFLE) = Area(CDLF ) =
AreaABC

3

holds, where D,E, F are the midpoints of the sides AC,AB and BC, respectively.

2. Main Results
Lemma 2.1. Let ABC be an equilateral triangle in the Euclidean plane and let L be its center. Denote the midpoints of the
sides AC,AB,BC by D,E, F respectively. Then AL⊥DE.

The proof is clear, so we omit it.

Throughout the paper we denote by X ′ the image of X under f , by AB the geodesic segment between points A
and B, by |AB| the distance between points A and B, by ABC the triangle with three ordered vertices A,B and C,
and by ∠BAC the angle between AB and AC. Unless otherwise stated, we consider w = f(z) as a nonconstant
meromorphic function of a complex variable z in the plane |z| < +∞.

Now we consider Property S.

Property S: Suppose that w = f(z) is an analytic and a univalent mapping in a nonempty domain R of
the complex plane. Let ABC be an arbitrary triangle contained in R. If L is a solution of Steinhaus’ prob-
lem for ABC, (that is there exist corresponding points D,E, F on the sides AC,AB,BC respectively, such that
LD⊥AC,LE⊥AB,LF⊥BC satisfying

Area(AELD) = Area(BFLE) = Area(CDLF ) =
Area(ABC)

3
),

then L′ is a solution of A′B′C ′ (that is the points D′, E′, F ′ are on the sides A′C ′, A′B′, B′C ′, respectively, such that
L′D′⊥A′C ′, L′E′⊥A′B′, L′F ′⊥B′C ′ satisfying

Area(A′E′L′D′) = Area(B′F ′L′E′) = Area(C ′D′L′F ′) =
Area(A′B′C ′)

3
).

Lemma 2.2. If w = f(z) is analytic and univalent in a nonempty domain R, then f ′(z) 6= 0 in R, see [6].

Lemma 2.3. Let w = f(z) satisfy Property S. If l1 and l2 are two lines meeting perpendicularly, then f(l1) meets f(l2)
perpendicularly.
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Proof. Let l1 and l2 be two lines meeting at a point, say B, perpendicularly. Let A be a point on l1 and let C be
a point on l2 such that ∠ACB = π

6 , ∠CBA = π
2 , ∠BAC = π

3 . It is enough to prove that C ′B′⊥A′B′. Denote the
reflection of C with respect to AB by D and denote the reflection of B with respect to AC by E. Let F be the
symmetry of C with respect to E. Hence we construct an equilateral triangle FCD. Clearly A is the center of FCD.
Since A is the solution of Steinhaus’ problem for FCD, that is

Area(CBAE) = Area(BDGA) = Area(GFEA) =
Area(FCD)

3
,

where G is the midpoint of the side DF . By Property S, we get

Area(C ′B′A′E′) = Area(B′D′G′A′) = Area(G′F ′E′A′) =
Area(F ′C ′D′)

3
,

which implies that C ′B′⊥A′B′. Therefore f(l1) meets f(l2) perpendicularly.

Theorem 2.1. w = f(z) has Property S if and only if w = f(z) is a similarity.

Proof. Let f be a similarity defined by
f(z) = az + b

satisfying a, b ∈ C, a 6= 0 and let ABC be an acute angled triangle. Clearly

|A′B′| = |a||AB|, |A′C ′| = |a||AC|, |CB′| = |a||CB|.

By the side-side-side theorem, we get

Area(A′B′C ′) = |a|2Area(ABC).

Let L be a solution of Steinhaus’ problem for ABC. Then one can easily see that there exist three points D,E, F on
the sides AC,AB and BC, respectively such that

Area(AELD) = Area(BFLE) = Area(FCDL) =
Area(ABC)

3
.

Since f preserves the measures of the angles of triangles and preserves the collinearity property of points, we get

Area(AELD) = Area(ALD) +Area(ALE) =
Area(A′L′D′)

|a|2
+
Area(A′L′E′)

|a|2

Area(BFLE) = Area(BFL) +Area(BEL) =
Area(B′F ′L′)

|a|2
+
Area(B′E′L′)

|a|2

Area(FCDL) = Area(CLF ) +Area(CLD) =
Area(C ′L′F ′)

|a|2
+
Area(C ′L′D′)

|a|2
,

which implies that f has Property S.
Now assume that w = f(z) has Property S. Because of the fact that w = f(z) is analytic and univalent in the

domain R, by Lemma 2.2,
f ′(z) 6= 0 (2.1)

holds in R. If x is an arbitrarily fixed point of R, then by (2.1) we get

f ′(x) 6= 0. (2.2)

Let L be the point represented by x. Because of L ∈ R, there exists a positive real number ε such that V (L, ε) is
contained in R, where V (L, ε) is ε-closed circular neighborhood of L. Throughout the proof let ABC denote an
arbitrary equilateral triangle which is contained in V (L, ε) and whose center is at L. Since ABC is an equilateral
triangle contained in V (L, ε), we can represent the points A,B,C by complex numbers

A = x+ y, B = x+ wy, C = x+ w2y,
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where w = −1+
√
3i

2 and |y| ≤ ε. Then the midpoints of the sides AC,AB and BC are

D = x+
w2 + 1

2
y, E = x+

w + 1

2
y, F = x+

w2 + w

2
y,

respectively. Since w = f(z) is univalent in R, the points A′, B′, C ′, D′, E′, F ′, L′ are different points. Clearly, there
exists some sufficiently small δ ∈ R+ satisfying δ ≤ ε such that A′, B′, C ′ are not collinear on the w-plane for all y
satisfying 0 < |y| ≤ ε by (2.2) and by the property of analytic functions, see [5]. By hypothesis, A′, B′, C ′ are not
collinear and L′ is a solution of Steinhaus’ Problem for A′B′C ′, that is

Area(A′E′L′D′) = Area(B′F ′L′E′) = Area(F ′C ′D′L′) =
Area(A′B′C ′)

3
,

where
A′ = f(x+ y), B′ = f(x+ wy), C ′ = f(x+ w2y),

D′ = f(x+
w2 + 1

2
y), E′ = f(x+

w + 1

2
y), F ′ = f(x+

w2 + w

2
y).

Since
Area(A′E′L′D′) = Area(B′F ′L′E′),

it follows that
1

2
|A′L′||D′E′|sinα =

1

2
|B′L′||F ′E′|sinβ, (2.3)

by the area formula, where α is the measure of the angle between A′L′ and D′E′, and β is the measure of the angle
between B′L′ and F ′E′. By Lemma 2.1, we get that AL⊥DE and BL⊥EF . Since f preserves right angles by Lemma
2.3, we get α = β = π

2 . Then by (2.2), we obtain

|A′L′||D′E′| = |B′L′||F ′E′|,

which implies∣∣∣∣(f(x+ y)− f(x))(f(x+
w + 1

2
y)− f(x+

w2 + 1

2
y))

∣∣∣∣ = ∣∣∣∣(f(x+ wy)− f(x))(f(x+
w2 + w

2
y)− f(x+

w + 1

2
y))

∣∣∣∣
and this yields ∣∣∣∣∣ (f(x+ y)− f(x))(f(x+ w+1

2 y)− f(x+ w2+1
2 y))

(f(x+ wy)− f(x))(f(x+ w2+w
2 y)− f(x+ w+1

2 y))

∣∣∣∣∣ = 1.

If we set

g(y) =
(f(x+ y)− f(x))(f(x+ w+1

2 y)− f(x+ w2+1
2 y))

(f(x+ wy)− f(x))(f(x+ w2+w
2 y)− f(x+ w+1

2 y))

then we get |g(y)| = 1 in the punctured closed disk 0 < |y| ≤ δ. Since the numerator and the denominator of g(y)
are analytic functions for all y satisfying 0 < |y| ≤ δ and since, by the fact that w = f(z) is univalent in R, the
denominator of g(y) never vanishes in 0 < |y| ≤ δ, g(y) is analytic in 0 < |y| ≤ δ. Next we prove that g(y) is also
analytic at y = 0. As y → 0, by L’Hopital’s rule and by the fact that f ′(x) 6= 0, we obtain

f(x+ y)− f(x
f(x+ wy)− f(x)

→ f ′(x)

wf ′(x)
=

1

w

and
f(x+ w+1

2 y)− f(x+ w2+1
2 y)

f(x+ w2+w
2 y)− f(x+ w+1

2 y)
→ −w

1 + w

holds. Hence, for y → 0, we immediately get

g(y)→ 1

w
· −w
1 + w

=
−1
w + 1

.
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If we define

g(0) =
−1
w + 1

and by Riemann’s theorem on removable singularities, the function g(y) is analytic at y = 0. Furthermore, since
g(0) = −1

w+1 holds, the equality |g(y)| = 1 still holds at y = 0. Therefore g(y) is analytic in the closed disk |y| ≤ δ and
that |g(y)| = 1 holds for all y with |y| ≤ δ. By the maximum modulus principle for analytic functions we obtain

g(y) = K

in |y| ≤ δ, where K is a complex constant with modulus 1. Setting y = 0 in g(y) = K and using g(0) = −1
w+1 , we get

K =
−1
w + 1

.

Thus we get

(w+1)(f(x+y)−f(x))(f(x+ w + 1

2
y)−f(x+ w2 + 1

2
y))+(f(x+wy)−f(x))(f(x+ w2 + w

2
y)−f(x+ w + 1

2
y)) = 0

(2.4)
Differentiating both sides of (2.4) three times with respect to y and setting y = 0, we get

f ′(x)f ′′(x) = 0.

Since f ′(x) 6= 0, we obtain that
f ′′(x) = 0,

which implies that f must be a similarity, that is it must be of the form

f(z) = az + b

for some a, b ∈ C with a 6= 0.
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