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Abstract
Mathematical modeling of infectious diseases has shown that combinations of isolation, quarantine,
vaccine, and treatment are often necessary in order to eliminate most infectious diseases. Continuous
mathematical models have been used to study the dynamics of infectious diseases within a human
host and in the population. We have used in this study a SIR model that categorizes individuals in a
population as susceptible (S), infected (I) and recovered (R). It also simulates the transmission dynamics
of diseases where individuals acquire permanent immunity. We have considered the SIR model using the
Caputo-Fabrizio and we have obtained special solutions and numerical simulations using an iterative
scheme with Laplace transform. Moreover, we have studied the uniqueness and existence of the solutions.
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1. Introduction
Infectious diseases that confer permanent immunity are modelled by the epidemiological models [1]. One of

the most important epidemiological models which are used extensively is the SIR model for the spread of disease,
which consists of a three-dimensional system that describes the changes in the number of susceptible, infected, and
recovered individuals in a given population. This model was firstly developed by Kermack and McKendrick [2] in
1927, and despite its simplicity, it is a useful and applicable model for many infectious diseases. Many researchers
have done interesting studies about the SIR model and its different special modifications in the literature. For
instance, Arqub and El-Ajou [3] have obtained a solution for the fractional SIR model by using homotopy analysis
method (HAM). They have used the Caputo fractional derivative operator in their study. El-Saka [4] has used the
fractional order SIR and SIRS models in order to model an infectious disease with variable population size by using
the Caputo derivative operator. In another study, Angstmann et al. [5] have derived a fractional-order infectivity SIR
model from a stochastic process that incorporates a time-since-infection dependence on the infectivity of individuals.
Arenas et al. [6] have developed a nonstandard finite difference (NSFD) method to obtain numerical solutions of
the fractional SI and SIR epidemic models by using Caputo and Grünwald-Letnikov fractional operators.

Angstmann et al. [7] have constructed an SIR model for an epidemic, including vital dynamics, from an
underlying stochastic process. They have concluded that how fractional differential operators arise naturally
in epidemiological models whenever the recovery time from the disease is power-law distributed. Demirci et
al [8] have introduced a fractional SEIR epidemic model with vertical transmission, where the death rate of the
population is density dependent. They have also assumed that there exists an infection related death rate. They
have showed the existence of non-negative solutions of the model, and also give a detailed stability analysis of
disease free and positive fixed points. Finally, they have supported their theoretical aspects with a numerical
example. In addition to these studies, in the literature there are many papers demonstrate to model other epidemic
models and special diseases such as modelling the spread of computer virus [9], stability analysis of a fractional
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human African trypanosomiasis model [10], a schistosomiasis disease model [11], a novel framework for blood
vessels detection in retinal images [12], a parabolic fractional degenerate problem emerging in a spatial diffusion of
biological population model [13], SIRI epidemic model with distributed delay and relapse [14], etc.

On the other hand, in the recent years, some useful and effective fractional operators with non-singular kernel
have been investigated. In this sense, Caputo and Fabrizio [15] firstly have defined a derivative operator of
fractional order which is called as Caputo-Fabrizio (CF) fractional derivative based on exponential law which
meaning in many natural processes and also has crossover effect with statistical representation. Then, Atangana
and Baleanu [16] have introduced a new definition which is called as Atangana-Baleanu (AB) in terms of the
Mittag-Leffler function. The AB operator has also been regarded as a filter with fractional regulator and it has the
fundamental properties of usual fractional derivative and integrals [17]. These operators have shown to be the future
for modeling of several scientific processes including chaotic theory, control theory, financial problem. Moreover,
the Laplace transform of the CF and AB operators require the physically interpretable initial conditions with integer
order derivatives and so it is rather preferred for modelling of different physical process. The two operators have
strong statistical representation which can be interpreted in real-life sense. That is why their considerable properties,
they have an increasing interest in different real-life problems [19–48]. In 2017, Yang et al. [18] have defined a new
fractional operator based on the normalized sinc function (NSF). These fractional operators also have a nonlocal
kernel. Therefore, the non-locality of the kernel gives opportunity to have better description of memory properties
in the structures with different scales.

In this study, the main reason for regarding as the operator is fractional instead of integer order is that the integer
order system can be considered as a special case from the fractional order system by putting the time-fractional
derivative equal to unity. Moreover, it is a fact that using differential equations of fractional order (FDEs) can help
us to reduce the errors deriving from the unheeded parameters in modelling of real life problems [3, 49, 50]. Also,
FDEs are innately reference to systems with memory, which holds in most biological systems. Since, the study
found that fractional derivative was very suitable to describe long memory and hereditary properties of various
materials and processes [51].

2. Some Preliminaries
Let us remind some well-known mathematical tools needed to use in the present study.

The Caputo-Fabrizio fractional derivative in Caputo sense (CFC) is defined by [15]

CFC
0 Dε

τζ (τ) =
κ (ε)

1− ε

∫ τ

0

ζ ′ (m) exp

[
−ε (τ −m)

1− ε

]
dm, 0 < ε ≤ 1, (2.1)

where κ (ε) is a normalization function that equals to 1 when ε = 0 and ε = 1. In the present study, we apply the
Laplace transform of CF derivative according to time variable τ. Considering the convolution property of Laplace
transform (LT), we have the following transformation of CFC0 Dε

τζ (τ) [15, 52]:

L
{
CFC
0 Dε

τζ (τ)
}

(`) =
`L{ζ (τ)} − ζ (0)

`+ ε (1− `)
. (2.2)

In addition, the integral definition of order ε, (0 < ε ≤ 1) of the function ζ (τ) is given by [53]

CF
0 Iετζ (τ) =

2 (1− ε)
(2− ε)κ (ε)

ζ (τ) +
2ε

(2− ε)κ (ε)

∫ τ

0

ζ (s) ds, τ ≥ 0, (2.3)

where
κ (ε) =

2

2− ε
, 0 < ε < 1. (2.4)

3. SIR Epidemic Model with Exponential Decay Law

In this work, we consider a population that has three individuals groups: susceptible, infected and recovered.
Their dynamics are modelled by standard SIR problem [54] and throughout the study, we demonstrate these
individuals with the notations ξ1, ξ2, ξ3, respectively. We show the mentioned epidemic model with the integer-
order as

ξ
′

1 (τ) = λ− (αξ2 (τ) + λ) ξ1 (τ) ,

ξ
′

2 (τ) = αξ1 (τ) ξ2 (τ)− (λ+ δ) ξ2 (τ) ,

ξ
′

3 (τ) = δξ2 (τ)− λξ3 (τ) ,

(3.1)
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where λ, α and δ are system parameters. In the model 3.1, ξ1 (τ) represents the rate of individuals susceptible
to the illness, who are born and die at the same proportion λ. Therefore their life expectancy average is 1/λ.
Susceptible becomes infected at the proportion αξ2 (τ) , where ξ2 (τ) is the rate of infected individuals and α is the
communication rate. Infected individuals become recovered (i.e. acquire long life immunity) at a rate δ > 0, so that
1/δ is their infectious process average. Infected individuals who have recovered are represented by the proportion
ξ3.
Considering the SIR model in Eq. 3.1, the generalized SIR epidemic model with a derivative operator which is
defined by exponential function is presented by

CFC
0 Dε

τξ1 (τ) = λ− (αξ2 (τ) + λ) ξ1 (τ) ,
CFC
0 Dε

τξ2 (τ) = αξ1 (τ) ξ2 (τ)− (λ+ δ) ξ2 (τ) ,
CFC
0 Dε

τξ3 (τ) = δξ2 (τ)− λξ3 (τ) ,
(3.2)

where CFC
0 Dε

τ demonstrates the Caputo-Fabrizio fractional operator of order 0 < ε ≤ 1. This mentioned fractional
epidemic model has the following initial conditions

ξ1(0) (τ) = ξ1 (0) ; ξ2(0) (τ) = ξ2 (0) ; ξ3(0) (τ) = ξ3 (0) . (3.3)

By taking into account the fixed-point theorem, we determine the existence of the solution of the system 3.2. We
rewrite Eq. 3.2 in terms of an integral equation by using the integral operator mentioned in Eq. 2.3 as the following:

ξ1 (τ)− ξ1 (0) = CF
0 Iετ [λ− (αξ2 (τ) + λ) ξ1 (τ)] ,

ξ2 (τ)− ξ2 (0) = CF
0 Iετ [αξ1 (τ) ξ2 (τ)− (λ+ δ) ξ2 (τ)] ,

ξ3 (τ)− ξ3 (0) = CF
0 Iετ [δξ2 (τ)− λξ3 (τ)] .

(3.4)

Applying the integral operator we have the following system

ξ1 (τ) = ξ1 (0) + 2(1−ε)
(2−ε)κ(ε) [λ− (αξ2 (τ) + λ) ξ1 (τ)]

+ 2ε
(2−ε)κ(ε)

∫ τ
0

[λ− (αξ2 (k) + λ) ξ1 (k)] dk,

ξ2 (τ) = ξ2 (0) + 2(1−ε)
(2−ε)κ(ε) [αξ1 (τ) ξ2 (τ)− (λ+ δ) ξ2 (τ)]

+ 2ε
(2−ε)κ(ε)

∫ τ
0

[αξ1 (k) ξ2 (k)− (λ+ δ) ξ2 (k)] dk,

ξ3 (τ) = ξ3 (0) + 2(1−ε)
(2−ε)κ(ε) [δξ2 (τ)− λξ3 (τ)]

+ 2ε
(2−ε)κ(ε)

∫ τ
0

[δξ2 (k)− λξ3 (k)] dk.

(3.5)

Now, we consider the following kernels

η (τ, ξ1 (τ)) = λ− (αξ2 (τ) + λ) ξ1 (τ) ,
σ (τ, ξ2 (τ)) = αξ1 (τ) ξ2 (τ)− (λ+ δ) ξ2 (τ) ,
ω (τ, ξ3 (τ)) = δξ2 (τ)− λξ3 (τ) .

(3.6)

Theorem 3.1. The kernels η, σ and ω hold the Lipschitz condition (LC).

Proof. We consider the mentioned condition for each kernel proposed. Let us take the functions ξ1 and ξ4, for the
kernel η, ξ2 and ξ5, for the kernel σ, and ξ3 and ξ6, for the kernel ω. Then we obtain:

‖η (τ, ξ1 (τ))− η (τ, ξ4 (τ))‖ = ‖(αξ2 (τ) + λ) (ξ1 (τ)− ξ4 (τ))‖ ,
‖σ (τ, ξ2 (τ))− σ (τ, ξ5 (τ))‖ = ‖αξ1 (τ) (ξ2 (τ)− ξ5 (τ))− (µ+ γ) (ξ2 (τ)− ξ5 (τ))‖ ,
‖ω (τ, ξ3 (τ))− ω (τ, ξ6 (τ))‖ = ‖λ (ξ3 (τ)− ξ6 (τ))‖ .

(3.7)

Using Cauchy’s inequality in Eq. 3.7, we have

‖η (τ, ξ1 (τ))− η (τ, ξ4 (τ))‖ ≤ ‖(αξ2 (τ) + λ) (ξ1 (τ)− ξ4 (τ))‖ ,
‖σ (τ, ξ2 (τ))− σ (τ, ξ5 (τ))‖ ≤ ‖αξ1 (τ) (ξ2 (τ)− ξ5 (τ))− (µ+ γ) (ξ2 (τ)− ξ5 (τ))‖ ,
‖ω (τ, ξ3 (τ))− ω (τ, ξ6 (τ))‖ ≤ ‖λ (ξ3 (τ)− ξ6 (τ))‖ .

(3.8)

Considering the following recursive formula, we get

ξ1 (τ) = 2(1−ε)
(2−ε)κ(ε)η

(
τ, ξ1(µ−1) (τ)

)
+ 2ε

(2−ε)κ(ε)
∫ τ
0
η
(
k, ξ1(µ−1) (k)

)
dk,

ξ2 (τ) = 2(1−ε)
(2−ε)κ(ε)σ

(
τ, ξ2(µ−1) (τ)

)
+ 2ε

(2−ε)κ(ε)
∫ τ
0
σ
(
k, ξ2(µ−1)

)
dk,

ξ3 (τ) = 2(1−ε)
(2−ε)κ(ε)ω

(
τ, ξ3(µ−1) (τ)

)
+ 2ε

(2−ε)κ(ε)
∫ τ
0
ω
(
k, ξ3(µ−1)

)
dk.

(3.9)
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Then, we consider the norm and triangular inequality in order to state the difference between the consecutive terms,
applying, we can write

‖Υµ (τ)‖ =
∥∥ξ1(µ) (τ)− ξ4(µ−1) (τ)

∥∥ ≤ 2(1−ε)
(2−ε)κ(ε)

∥∥η (τ, ξ1(µ−1) (τ)
)
− η

(
τ, ξ4(µ−2) (τ)

)∥∥
+ 2ε

(2−ε)κ(ε)
∥∥∫ τ

0

[
η
(
k, ξ1(µ−1) (k)

)
− η

(
k, ξ4(µ−2) (k)

)]
dk
∥∥ ,

‖Ωµ (τ)‖ =
∥∥ξ2(µ) (τ)− ξ5(µ−1) (τ)

∥∥ ≤ 2(1−ε)
(2−ε)κ(ε)

∥∥σ (τ, ξ2(µ−1) (τ)
)
− σ

(
τ, ξ5(µ−2) (τ)

)∥∥
+ 2ε

(2−ε)κ(ε)
∥∥∫ τ

0

[
σ
(
k, ξ2(µ−1) (k)

)
− σ

(
k, ξ5(µ−2) (k)

)]
dk
∥∥ ,

‖Ψµ (τ)‖ =
∥∥ξ3(µ) (τ)− ξ6(µ−1) (τ)

∥∥ ≤ 2(1−ε)
(2−ε)κ(ε)

∥∥ω (τ, ξ3(µ−1) (τ)
)
− ω

(
τ, ξ6(µ−2) (τ)

)∥∥
+ 2ε

(2−ε)κ(ε)
∥∥∫ τ

0

[
ω
(
k, ξ3(µ−1) (k)

)
− ω

(
k, ξ6(µ−2) (k)

)]
dk
∥∥ ,

(3.10)

where

ξ1(µ) (τ) =

∞∑
γ=0

Υγ (τ) ; ξ2(µ) (τ) =

∞∑
γ=0

Ωγ (τ) ; ξ3(µ) (τ) =

∞∑
γ=0

Ψγ (τ) . (3.11)

So, the kernels η, σ and ω hold the Lipschitz condition, we can write

‖Υµ (τ)‖ =
∥∥ξ1(µ) (τ)− ξ4(µ−1) (τ)

∥∥ ≤ 2(1−ε)
(2−ε)κ(ε)∆1

∥∥ξ1(µ−1) (τ)− ξ4(µ−2) (τ)
∥∥

+ 2ε
(2−ε)κ(ε)∆2

∫ τ
0

∥∥ξ1(µ−1) (k)− ξ4(µ−2) (k)
∥∥ dk,

‖Ωµ (τ)‖ =
∥∥ξ2(µ) (τ)− ξ5(µ−1) (τ)

∥∥ ≤ 2(1−ε)
(2−ε)κ(ε)∆3

∥∥ξ2(µ−1) (τ)− ξ5(µ−2) (τ)
∥∥

+ 2ε
(2−ε)κ(ε)∆4

∫ τ
0

∥∥ξ2(µ−1) (k)− ξ5(µ−2) (k)
∥∥ dk,

‖Ψµ (τ)‖ =
∥∥ξ3(µ) (τ)− ξ6(µ−1) (τ)

∥∥ ≤ 2(1−ε)
(2−ε)κ(ε)∆5

∥∥ξ3(µ−1) (τ)− ξ6(µ−2) (τ)
∥∥

+ 2ε
(2−ε)κ(ε)∆6

∫ τ
0

∥∥ξ1(µ−1) (k)− ξ4(µ−2) (k)
∥∥ dk.

(3.12)

These results complete the proof of Theorem 3.1.

Theorem 3.2. [Existence of the Solution] The system presented by Eq. 3.2 has a solution.

Proof. We show that the kernels η, σ and ω satisfy the LC by regarding that Eq. 3.12 is bounded. Taking into
consideration the results get in Eq. 3.12 and using the recursive method, we have the following inequality coupled
with the relation:

‖Υµ (τ)‖ ≤ ‖ξ1 (0)‖+
{{

2(1−ε)
(2−ε)κ(ε)∆1

}µ
+
{

2ε
(2−ε)κ(ε)∆2τ

}µ}
,

‖Ωµ (τ)‖ ≤ ‖ξ2 (0)‖+
{{

2(1−ε)
(2−ε)κ(ε)∆3

}µ
+
{

2ε
(2−ε)κ(ε)∆4τ

}µ}
,

‖Ψµ (τ)‖ ≤ ‖ξ3 (0)‖+
{{

2(1−ε)
(2−ε)κ(ε)∆5

}µ
+
{

2ε
(2−ε)κ(ε)∆6τ

}µ}
.

(3.13)

Therefore, Eq. 3.13 exists and is smooth. Nevertheless, we suppose the followings to prove that the functions stated
in Eq. 3.13 are a system of solutions of Eq. 3.2,

ξ1 (τ) = ξ1(n) (τ)−<1(n) (τ) ,
ξ2 (τ) = ξ2(n) (τ)−<2(n) (τ) ,
ξ3 (τ) = ξ3(n) (τ)−<3(n) (τ) ,

(3.14)

where <1(n) (τ) , <2(n) (τ) and <3(n) (τ) are reminder terms of series solution. Thus,

ξ1 (τ)− ξ1(n) (τ) = 2(1−ε)
(2−ε)κ(ε)η

(
τ, ξ1 (τ)−<1(n) (τ)

)
+ 2ε

(2−ε)κ(ε)
∫ τ
0
η
(
k, ξ1 (τ)−<1(n) (k)

)
dk,

ξ2 (τ)− ξ2(n) (τ) = 2(1−ε)
(2−ε)κ(ε)σ

(
τ, ξ2 (τ)−<2(n) (τ)

)
+ 2ε

(2−ε)κ(ε)
∫ τ
0
σ
(
k, ξ2 (τ)−<2(n) (k)

)
dk,

ξ3 (τ)− ξ3(n) (τ) = 2(1−ε)
(2−ε)κ(ε)ω

(
τ, ξ3 (τ)−<3(n) (τ)

)
+ 2ε

(2−ε)κ(ε)
∫ τ
0
ω
(
k, ξ3 (τ)−<3(n) (k)

)
dk.

(3.15)
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If we take the norm of both sides and use the LC, we get∥∥∥ξ1 (τ)− ξ1 (0)− 2(1−ε)
(2−ε)κ(ε)η (τ, ξ1 (τ))− 2ε

(2−ε)κ(ε)
∫ τ
0
η (k, ξ1 (k)) dk

∥∥∥
≤
∥∥<1(n) (τ)

∥∥+
{

2(1−ε)
(2−ε)κ(ε)∆1 + 2ε

(2−ε)κ(ε)∆2τ
}∥∥<1(n) (τ)

∥∥ ,∥∥∥ξ2 (τ)− ξ2 (0)− 2(1−ε)
(2−ε)κ(ε)σ (τ, ξ2 (τ))− 2ε

(2−ε)κ(ε)
∫ τ
0
σ (k, ξ2 (k)) dk

∥∥∥
≤
∥∥<2(n) (τ)

∥∥+
{

2(1−ε)
(2−ε)κ(ε)∆3 + 2ε

(2−ε)κ(ε)∆4τ
}∥∥<2(n) (τ)

∥∥ ,∥∥∥ξ3 (τ)− ξ3 (0)− 2(1−ε)
(2−ε)κ(ε)ω (τ, ξ3 (τ))− 2ε

(2−ε)κ(ε)
∫ τ
0
ω (k, ξ3 (k)) dk

∥∥∥
≤
∥∥<3(n) (τ)

∥∥+
{

2(1−ε)
(2−ε)κ(ε)∆5 + 2ε

(2−ε)κ(ε)∆6τ
}∥∥<3(n) (τ)

∥∥ .
(3.16)

Considering the limit µ→∞ of Eq. 3.16, we have

ξ1 (τ) = ξ1 (0) + 2(1−ε)
(2−ε)κ(ε)η (τ, ξ1 (τ)) + 2ε

(2−ε)κ(ε)
∫ τ
0
η (k, ξ1 (k)) dk,

ξ2 (τ) = ξ2 (0) + 2(1−ε)
(2−ε)κ(ε)σ (τ, ξ2 (τ)) + 2ε

(2−ε)κ(ε)
∫ τ
0
σ (k, ξ2 (τ)) dk,

ξ3 (τ) = ξ3 (0) + 2(1−ε)
(2−ε)κ(ε)ω (τ, ξ3 (τ)) + 2ε

(2−ε)κ(ε)
∫ τ
0
ω (k, ξ3 (τ)) dk.

(3.17)

Eq. 3.17 is the solution of Eq. 3.2; accordingly, we conclude that a solution of the system exists.

Theorem 3.3. [Uniqueness of the Solution] The system given by Eq. 3.2 has a unique solution.

Proof. Let us consider ξ∗1 (τ) , ξ∗2 (τ) and ξ∗3 (τ) , as other solutions for the system 3.2 to show the uniqueness of the
solution, then we can write

ξ1 (τ)− ξ∗1 (τ) = 2(1−ε)
(2−ε)κ(ε) [η (τ, ξ1 (τ))− η (τ, ξ∗1 (τ))]

+ 2ε
(2−ε)κ(ε)

∫ τ
0

[η (k, ξ1 (k))− η (k, ξ∗1 (k))] dk,

ξ2 (τ)− ξ∗2 (τ) = 2(1−ε)
(2−ε)κ(ε) [σ (τ, ξ2 (τ))− σ (τ, ξ∗2 (τ))]

+ 2ε
(2−ε)κ(ε)

∫ τ
0

[σ (k, ξ2 (k))− σ (k, ξ∗2 (k))] dk,

ξ3 (τ)− ξ∗3 (τ) = 2(1−ε)
(2−ε)κ(ε) [ω (τ, ξ3 (τ))− ω (τ, ξ∗3 (τ))]

+ 2ε
(2−ε)κ(ε)

∫ τ
0

[ω (k, ξ3 (k))− ω (k, ξ∗3 (k))] dk.

(3.18)

Applying the norm to both sides of Eq. 3.18, we have

‖ξ1 (τ)− ξ∗1 (τ)‖ ≤ 2(1−ε)
(2−ε)κ(ε) [‖η (τ, ξ1 (τ))− η (τ, ξ∗1 (τ))‖]

+ 2ε
(2−ε)κ(ε)

∫ t
0

[‖η (k, ξ1 (k))− η (k, ξ∗1 (k))‖] dk,
‖ξ2 (τ)− ξ∗2 (τ)‖ ≤ 2(1−ε)

(2−ε)κ(ε) [‖σ (τ, ξ2 (τ))− σ (τ, ξ∗2 (τ))‖]
+ 2ε

(2−ε)κ(ε)
∫ t
0

[‖σ (k, ξ2 (k))− σ (k, ξ∗2 (k))‖] dk,
‖ξ3 (τ)− ξ∗3 (τ)‖ ≤ 2(1−ε)

(2−ε)κ(ε) [‖ω (τ, ξ3 (τ))− ω (τ, ξ∗3 (τ))‖]
+ 2ε

(2−ε)κ(ε)
∫ t
0

[‖ω (k, ξ3 (k))− ω (k, ξ∗3 (k))‖] dk.

(3.19)

Taking into account the LC and the solution is bounded, we have

‖ξ1 (τ)− ξ∗1 (τ)‖ ≤ 2(1−ε)
(2−ε)κ(ε)∆1Σ1 +

{
2ε

(2−ε)κ(ε)∆2Σ2τ
}µ

,

‖ξ2 (τ)− ξ∗2 (τ)‖ ≤ 2(1−ε)
(2−ε)κ(ε)∆3Σ3 +

{
2ε

(2−ε)κ(ε)∆4Σ4τ
}µ

,

‖ξ3 (τ)− ξ∗3 (τ)‖ ≤ 2(1−ε)
(2−ε)κ(ε)∆5Σ5 +

{
2ε

(2−ε)κ(ε)∆6Σ6τ
}µ

.

(3.20)

Eq. 3.20 holds for any µ, hence we can obtain

ξ1 (τ) = ξ∗1 (τ) , ξ2 (τ) = ξ∗2 (τ) , ξ3 (τ) = ξ∗3 (τ) . (3.21)

This result means that the solution of Eq. 3.2 is unique.
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In this part of the study, we get the solution of the system given by Eq. 3.2 using the LT method. Taking the LT of
both sides of Eq. 3.2, we have the following system

`L{ξ1(τ)}−ξ1(0)
`+ε(1−`) = L{λ− (αξ2 (τ) + λ) ξ1 (τ)} (`) ,

`L{ξ2(τ)}−ξ2(0)
`+ε(1−`) = L{αξ1 (τ) ξ2 (τ)− (λ+ δ) ξ2 (τ)} (`) ,

`L{ξ3(τ)}−ξ3(0)
`+ε(1−`) = L{δξ2 (τ)− λξ3 (τ)} (`) .

(3.22)

By applying the inverse LT of the last equation, we obtain

ξ1 (τ) = ξ1 (0) + L−1
{
`+ε(1−`)

` L{λ− (αξ2 (τ) + λ) ξ1 (τ)} (`)
}

(τ) ,

ξ2 (τ) = ξ2 (0) + L−1
{
`+ε(1−`)

` L{αξ1 (τ) ξ2 (τ)− (λ+ δ) ξ2 (τ)} (`)
}

(τ) ,

ξ3 (τ) = ξ3 (0) + L−1
{
`+ε(1−`)

` L{δξ2 (τ)− λξ3 (τ)} (`)
}

(τ) .

(3.23)

Then we get the following recurrence relations

ξ1(µ) (τ) = L−1
{
`+ε(1−`)

` L
{
λ−

(
αξ2(µ−1) (τ) + λ

)
ξ1(µ−1) (τ)

}
(`)
}

(τ) ,

ξ2(µ) (τ) = L−1
{
`+ε(1−`)

` L
{
αξ1(µ−1) (τ) ξ2(µ−1) (τ)− (λ+ δ) ξ2(µ−1) (τ)

}
(`)
}

(τ) ,

ξ3(µ) (τ) = L−1
{
`+ε(1−`)

` L
{
δξ2(µ−1) (τ)− λξ3(µ−1) (τ)

}
(`)
}

(τ) .

(3.24)

where ξ1(0) (τ) = ξ1 (0) ; ξ2(0) (τ) = ξ2 (0) ; ξ3(0) (τ) = ξ3 (0) .
Therefore the approximate solution is presented as a limit when µ→∞

ξ1 (τ) = lim
µ→∞

ξ1(µ) (τ) ; ξ2 (τ) = lim
µ→∞

ξ2(µ) (τ) ; ξ3 (τ) = lim
µ→∞

ξ3(µ) (τ) . (3.25)

Example 1. We give an example to simulate the numerical findings obtained with solutions of the mentioned
epidemic model coupled with the CF fractional operator. We start the simulations with the special initial conditions,
ξ1 (0) = 20, ξ2 (0) = 1, ξ3 (0) = 1, and λ = 0.1, α = 0.5, δ = 0.1.

The simulations results presented by the following figures demonstrate that the numerical computations with
respect to the special solutions of the suggested model are very efficient and accurate.

Figure 1. The numerical results of susceptible individuals (ξ1) in the CF operator mean when ε = 0.5.
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Figure 2. The numerical results of susceptible individuals (ξ1) in the CF operator mean when ε = 0.7.

Figure 3. The numerical results of susceptible individuals (ξ1) in the CF operator mean when ε = 1.0.

Figure 4. The numerical results of infected individuals (ξ2) in the CF operator mean when ε = 0.5.

Figure 5. The numerical results of infected individuals (ξ2) in the CF operator mean when ε = 0.7.
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Figure 6. The numerical results of infected individuals (ξ2) in the CF operator mean when ε = 1.0.

Figure 7. The numerical results of recovered individuals (ξ3) in the CF operator mean when ε = 0.5.

Figure 8. The numerical results of recovered individuals (ξ3) in the CF operator mean when ε = 0.7.

Figure 9. The numerical results of recovered individuals (ξ3) in the CF operator mean when ε = 1.0.
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Figure 10. The numerical simulations projected onto ξ1 (τ)− ξ2 (τ) in the CF operator mean when ε = 0.5.

Figure 11. The numerical simulations projected onto ξ1 (τ)− ξ2 (τ) in the CF operator mean when ε = 0.7.

Figure 12. The numerical simulations projected onto ξ1 (τ)− ξ2 (τ) in the CF operator mean when ε = 1.0.

Figure 13. The numerical simulations projected onto ξ2 (τ)− ξ3 (τ) in the CF operator mean when ε = 0.5.
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Figure 14. The numerical simulations projected onto ξ2 (τ)− ξ3 (τ) in the CF operator mean when ε = 0.7.

Figure 15. The numerical simulations projected onto ξ2 (τ)− ξ3 (τ) in the CF operator mean when ε = 1.0.

4. Concluding Remarks

In this paper, we have analyzed a three-dimensional fractional dynamical SIR epidemic model. This model
categorizes individuals in a population as Susceptible (S), Infected (I) and Recovered (R). It also simulates the
transmission dynamics of diseases where individuals acquire permanent immunity. The SIR model has been
considered via the Caputo-Fabrizio fractional derivative. The solutions of the alternative models were obtained
using an iterative scheme for the CFC fractional operator based on the Laplace transform. Furthermore, the stability
analysis of the iterative method and the uniqueness of the special solutions have been presented with figures. The
results we obtained have shown that the concept of fractional differentiation is a powerful mathematical tool to
express the non-locality of a given dynamical system. This is because the operator has crossover property which
makes it possible to capture complex phenomena and gives an accurate prediction.
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