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Abstract
For motion of a material point along a space curve, due to Siacci [1], a resolution of the acceleration
vector is well known. In this resolution, the acceleration vector is stated as the sum of two special oblique
components in the osculating plane to the curve. In this paper, we have studied the Siacci’s theorem for
non-relativistic particles moving along the Frenet curves at very low speeds relative to the speed of light
in Minkowski 3-space. Moreover, an illustrative example is given to show how the aforesaid theorem
works. This theorem is a new contribution to the field and it may be useful for some specific applications
in theoretical, mathematical and computational physics.
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1. Introduction
The Minkowski 3-dimensional space E3

1 is the Euclidean space E3 equipped with Lorentzian inner product

〈X,Y〉L = x1y1 + x2y2 − x3y3

where X = (x1, x2, x3) , Y = ( y1, y2, y3) ∈ E3. A vector X ∈ E3
1 belongs to the one of three categories which is

called its causal character; spacelike, timelike and lightlike (null). The vector X ∈ E3
1 is spacelike, timelike and

lightlike if 〈X,X〉L > 0 or X = 0, 〈X,X〉L < 0 and 〈X,X〉L = 0 (X 6= 0), respectively. For a vector Z in E3
1 , the

norm of Z is defined by ‖Z ‖L =
√
|〈Z,Z〉L| and also, if ‖Z ‖L = 1, Z is said to be a unit vector. In Minkowski

3-space E3
1 , the Lorentzian vector product X∧LY of the vectors X = (x1, x2, x3) and Y = ( y1, y2, y3) is defined

by

X∧LY =

∣∣∣∣∣∣∣
e1 e2 − e3
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣∣ = (x2y3 − x3y2 , x3y1 − x1y3, x2y1 − x1y2).

An arbitrary regular curve α = α(t) : I ⊂ R → E3
1 is said to be a spacelike curve (resp. timelike curve, lightlike

curve) if all of its velocity vectors α′(t) are spacelike (resp. timelike, lightlike) for each t ∈ I . If α is spacelike or
timelike, it is called as a non-lightlike curve. In this case, α can be reparameterized by the arc-length s = s(t) such
that ‖α′(s) ‖L = 1. After this reparametrization α is called as a unit speed curve. For this unit speed curve, we
can define a Frenet frame {T(s),N(s),B(s)} associated for each point s where T(s),N(s) and B(s) are called the
tangent, principal normal and binormal vector fields, respectively [2, 3].
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Timelike curves, spacelike curves with timelike normal vector and spacelike curves with spacelike normal vector
are called Frenet curves and these curves also satisfy the equations

T(s) = α′(s) , N(s) =
T′(s)

κ(s)
, B(s) = T(s)∧LN(s) (1.1)

such that the orthonormal Frenet frames of timelike curves and spacelike curves with timelike normal are positively
oriented and the last orthonormal Frenet frame is negatively oriented, [4]. For these curves, T′ is proportional to
N and this proportion defines the curvature function κ. Also, the third coordinate of N′ according to Frenet basis
define the torsion τ , [4]. On the other hand, the Frenet formulas can be given in a unified way as in the following:T′

N′

B′

 =

 0 κ 0
εBκ 0 τ
0 εTτ 0

 T
N
B

 (1.2)

where εB = 〈B,B〉L = ±1 and εT = 〈T,T〉L = ±1, [5]. Some studies which are studied in the Minkowski
3-dimensional space can be found in [6–14].

On the other hand, in kinematics, the acceleration of a particle moving along a curve in space is the time
derivative of its velocity. In most applications, the acceleration vector is expressed as the sum of its normal
and tangential components, which are orthogonal to each other. Siacci’s theorem, formulated by the Italian
mathematician Francesco Siacci (1839-1907), is the kinematical decomposition of the acceleration vector into its
radial and tangential components which are not generally orthogonal to each other. Firstly, F. Siacci obtained
this resolution of the acceleration vector for planar motions of a particle in [15], also succeeded to obtain a smilar
resolution for spatial motions of a particle in [1]. In the spatial case, the two components of the acceleration vector
lie in the instantaneous osculating plane to the path of the particle. One lies along the tangent to the path, while the
other one is directed from the particle towards the foot of the perpendicular that is from an arbitrary fixed origin to
the instantaneous osculating plane to the path [16]. In the literature, there have been numerous studies about the
Siacci’s theorem. After F. Siacci, the first study about Siacci’s theorem was presented by E. T. Whittaker [17]. In this
study, a geometrical proof of Siacci’s theorem in the plane was given. After that, a study which has a more modern
proof (but the concomitant diagram was misdrawn) was put forward by N. Grossman in [18]. Recently, J. Casey has
studied about the Siacci’s theorem in [16]. This study has a proof of Siacci’s theorem in the space which is based
on the Serret-Frenet formulas. Also, for the curves in Finsler manifold F3, Siacci’s theorem has been studied by
Z. Küçükarslan et al. [19]. Then, K. E. Özen et al. [20] have studied the Siacci’s theorem for the curves on regular
surfaces in E3 by considering the Darboux frame of a regular surface curve. Lastly, K. E. Özen et al. [21] have
discussed the Siacci’s theorem for the space curves which are equipped with the modified orthogonal frame.

This article is organized as follows. In Section 1 and Section 2, we have reviewed Minkowski 3-space and its
some important properties needed to understand the ensuing section. In Section 3, we have studied the Siacci’s
theorem for a non-relativistic particle moving along the Frenet curves at very low speeds relative to the speed of
light in Minkowski 3-space by inspiring the statement and proof of Siacci’s theorem given in [16]. Furthermore,
in this section, we have obtained the components of the acceleration for motion along a Frenet planar curve in
Minkowski 3-space as a corollary and we have given an example for an application of the Siacci’s theorem for
Frenet curves in Minkowski 3-space.

2. Preliminaries
Let unit speed Frenet curves αi , i = 1, 2, 3 be a spacelike curve with a timelike binormal, a spacelike curve with a
timelike principal normal and a timelike curve, respectively and let Ti(s), Ni(s), Bi(s) and κi(s), τi(s) show the
Frenet bases and the Frenet curvatures of αi. By means of (1.1), we can write the following equation for the Frenet
curves αi, i = 1, 2, 3 :

Ti(s) = αi
′(s), Ni(s) =

Ti
′(s)

κi(s)
, Bi(s) = Ti(s)∧LNi(s) (2.1)

where the Frenet frames {T2, N2, B2} and {T3, N3, B3} are positively oriented and the Frenet frame {T1, N1, B1}
is negatively oriented. On the other hand, from (1.2), we can write the following equation for the Frenet curves
αi, i = 1, 2, 3 : Ti

′(s)
Ni

′(s)
Bi

′(s)

 =

 0 κi(s) 0
εiB(s)κi(s) 0 τi(s)

0 εiT(s)τi(s) 0

 Ti(s)
Ni(s)
Bi(s)

 (2.2)
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where εiT(s) = 〈Ti(s),Ti(s)〉L = ±1 and εiB(s) = 〈Bi(s),Bi(s)〉L = ±1.

Assume that non-relativistic particles P1, P2 and P3 with non-zero masses move asynchronously along the
Frenet curves α1, α2 and α3 in Minkowski 3-space at very low speeds relative to the speed of light, respectively.
Choose arbitrary fixed origins Oi, i = 1, 2, 3 in the space for these three cases. Let xi be the position vector of Pi at
time ti, and let si be the arc length of αi described at time ti. Then, the unit tangent vector for the curve αi can be
found as

Ti = xi
′ =

dxi

dsi
. (2.3)

With the aid of (2.2) and (2.3), the velocity vector vi and the acceleration vector ai of Pi at time ti are given by

vi = ẋi = vi Ti, ai = v̇i = v̇i Ti + κi vi
2 Ni (2.4)

where d
dti

is denoted by the superposed dot and dsi
dti

is symbolized by vi. Since vi can be expressed as a function of
si, the acceleration of Pi can be written as

ai = vi
dvi
dsi

Ti + κi vi
2 Ni. (2.5)

Thus, the acceleration vector of Pi always lies in the osculating plane Vi to αi at Pi. ( Here, we follow the steps in
[16] to get the acceleration vector.)

Let us denote the vector which is perpendicular in the Lorentzian sense at Pi to the position vector xi and the
linear momentum vector mivi by Hi. It means that the equality

Hi = xi∧Lmivi = xi ∧Lmivi Ti (2.6)

is satisfied.

3. Siacci’s theorem for Frenet curves
Let the position vector of Pi be resolved on the Serret-Frenet bases in Minkowski 3-space as follows:

xi = qi Ti − pi Ni + bi Bi. (3.1)

In that case,

qi = εiT〈xi,Ti〉L, pi = −εiN 〈xi,Ni〉L, bi = εiB 〈xi,Bi〉L (3.2)

where εiT = 〈Ti,Ti〉L, εiN = 〈Ni,Ni〉L and εiB = 〈Bi,Bi〉L.

Denote by ri a vector in the osculating plane Vi as in the following equation

ri = − pi Ni + qi Ti. (3.3)

Then, we get

〈 ri , ri〉L = εiNpi
2 + εiTqi

2. (3.4)

By differentiating the equation (3.1) with respect to the arc length parameter si and taking into consideration (2.2),
we get

Ti =
(
qi

′ − εiBκipi
)
Ti +

(
κiqi − pi

′ + εiTτibi
)
Ni +

(
− τipi + bi

′ )Bi. (3.5)

In that case, the equations

qi
′ = 1 + εiBκipi, pi

′ = κiqi+ε
i
T τibi, bi

′ = τipi (3.6)
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hold since the Frenet bases are linearly independent. If we differentiate (3.4) and use the formulas (3.6) by
considering the values of εiT, ε

i
N and εiB, we have

〈ri , ri′〉L = εiTqi − εiBτipibi, 〈ri , ri′〉L = εiTqi − εiBbibi
′. (3.7)

If the vector Hi, given by (2.6), is calculated by considering the position vector xi indicated in (3.1), the vector Hi

takes the form

Hi = mivibiNi + mivipiBi. (3.8)

Let us use the notations as follows:

hi = pivi, wi = bivi. (3.9)
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Figure 1. The particle Pi moves along the curve αi in Minkowski 3-space. The osculating plane at Pi is Vi and the
tangent line to αi at Pi is SiPiKi. OiBi is the perpendicular that is orthogonal in the Lorentzian sense from origin
Oi to the osculating plane Vi. ri is the position vector of Pi relative to Bi, and BiZi is perpendicular that is
orthogonal in the Lorentzian sense from Bi to the tangent line. −piNi is the position vector of Zi relative to Bi, and
qiT i is the position vector of Pi relative to Zi.
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We need to warn the readers about some cases. Figure 1 given above is a representative figure and however the
perpendiculars in this figure seem to be orthogonal in the Euclidean sense, they represent the perpendiculars that
are orthogonal in the Lorentzian sense. We prefer this to ensure the visual harmony of the figure.

According to Siacci’s theorem, the acceleration vector of a particle P of mass m (> 0) which travels along a
curve C in Euclidean 3-space can be written by the sum of its tangential direction and the radial direction in the
osculating plane, [16]. We aim the same for the particles Pi, i = 1, 2, 3 in Minkowski 3-space. For this purpose,
firstly let us express the vector Ni in terms of ri and Ti by using the equation (3.3). But this is possible if and only if
pi 6= 0. By making an assumption "the binormal component of the vector Hi in (3.8) never vanishes", it can be easily
said that pi 6= 0. Thus, from (3.3) we get

Ni =
1

pi
(−ri + qi Ti ) .

Substituting this last equation in (2.5) we get

ai = − κi vi
2

pi
ri +

(
vi
dvi
dsi

+
κi vi

2 qi
pi

)
Ti. (3.10)

As it is seen from the equation (3.4), when pi = qi, 〈 ri , ri〉L = 0 for the curves αi, i = 2, 3. In this case,
the unit vectors in direction of ri , i = 2, 3 can not be defined. By making an assumption that the vectors
ri , i = 2, 3 in the radial directions do not lie on the light-cone, we can avert this. After this assumption, we
have ri = ‖ ri ‖L =

√
|〈 ri , ri〉L| 6= 0 , i = 2, 3. On the other hand, from the equation (3.4), it is clear that

ri = ‖ ri ‖L =
√
|〈 ri , ri〉L| 6= 0 for i = 1. Hence, we can define the unit vectors eri , i = 1, 2, 3 in directions of

ri , i = 1, 2, 3 by

eri =
1

ri
ri. (3.11)

If we substitute the equation (3.11) in (3.10), we have the fundamental form of Siacci’s resolution of the acceleration
vector in Minkowski 3-space as

ai = −κi vi
2 ri

pi
er i

+

(
vi
dvi
dsi

+
κi vi

2 qi
pi

)
Ti = Sr i

er i
+ STi

Ti. (3.12)

Here, Sri and STi
are called the radial and tangential Siacci components of the acceleration, respectively. Using the

equation (3.9) with pi 6= 0, we get the radial Siacci component as follows:

Sri = − κiri hi
2

pi
3

. (3.13)

Now, let us show that the tangential Siacci component can be put into three different forms. At first, if we
consider the equations (3.6) and (3.9), we obtain

STi =
(vi

2)′

2
+
vi

2κiqi
pi

=
(vi

2)′

2
+
vi

2 pi
′

pi
− εiT

vi
2τibi
pi

=
(hi

2)
′

2pi
2
− εiT

τibihi
2

pi
3

=
1

2pi
2

{
(hi

2)
′ − εiT

hi
2

pi
2
(bi

2)
′
}
.(3.14)

In a similar way, using the first expression in (3.7), we get

STi =
1

2
(vi

2)
′

+ κi vi
2

{
εiT
〈ri , ri〉′L

2pi
− εiN τibi

}
. (3.15)

The following two equations appear depending on the causal character of the vector ri . That is, if the vector ri is
spacelike or timelike, the equations (3.16) and (3.17) hold respectively:

STi
=

1

2
(vi

2)
′

+ κi vi
2

{
εiT

(ri
2)

′

2pi
− εiN τibi

}
, (3.16)

STi
=

1

2
(vi

2)
′ − κi vi

2

{
εiT

(ri
2)

′

2pi
+ εiN τibi

}
. (3.17)
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Finally, if we take into consideration the second expression in (3.7), we obtain

STi =
1

2
(vi

2)
′

+
κi vi

2

2pi

[
εiT〈ri , ri〉L − εiN bi

2
] ′
. (3.18)

Likewise, if the vector ri is spacelike or timelike, the equations (3.19) and (3.20) hold respectively:

STi
=

1

2
(vi

2)
′

+
κi vi

2

2pi

[
εiTri

2 − εiN bi
2
] ′
, (3.19)

STi
=

1

2
(vi

2)
′ − κi vi

2

2pi

[
εiTri

2 + εiN bi
2
] ′
. (3.20)

If we take into consideration above derivation, we can express the following theorem and corollary for Frenet
curves in Minkowski 3-space.

Theorem 3.1. (Siacci’s theorem for Frenet curves) Let non-relativistic particles P1, P2 and P3 move along a spacelike curve
α1 with a timelike binormal, a spacelike curve α2 with a timelike principal normal and a timelike curve α3 at very low speeds
relative to the speed of light in Minkowski 3-space, respectively. Also, let arbitrary fixed origins Oi, i = 1, 2, 3 be chosen in
the space for these three motions. Assume that the binormal component of the vector Hi (i = 1, 2, 3), given by (3.8), never
vanishes. Denote byBi (i = 1, 2, 3) the foot of the perpendicular that is orthogonal in the Lorentzian sense fromOi (i = 1, 2, 3)

to the osculating plane Vi (i = 1, 2, 3). Also, for the case of i = 2, 3, assume that the vector
−−→
BiPi does not lie on the light-cone.

Then, the acceleration vector of Pi (i = 1, 2, 3) can be expressed as the sum of the Siacci components as in (3.12).

Corollary 3.1. The radial component Sr i
can be written as in (3.13) except for the form in (3.12), while the tangential

component STi
can be written as (3.14), (3.15) and (3.18) except for the form in (3.12). Additionally, due to the causal

character of the vector
−−→
BiPi (i = 1, 2, 3), the specific forms of the tangential component (3.16),(3.17) and (3.19),(3.20) which

are obtained from (3.15) and (3.18), respectively exist.

In Minkowski 3-space, let the oriented Frenet curve αi traced out by Pi be restricted to a fixed plane which does
not necessarily contain the origin Oi. From [4], we know that in Minkowski-3 space, a Frenet curve parameterized
by the arc length is a planar curve if and only if the torsion vanishes. As a result of this, τi = 0 for the oriented
curve αi traced out by Pi. Thus the vector Bi is constant and orthogonal in the Lorentzian sense to the plane. If the
equations (3.1), (3.3) and (3.11) are considered, the position vector of Pi is given by

xi = ri eri + bi Bi. (3.21)

Now, (3.12) holds in the plane of the motion. If we consider τi = 0, from (3.14) and (3.15) we obtain (3.22) and
(3.23), respectively

ST i
=

(hi
2)

′

2pi
2
, (3.22)

STi
=

1

2

[
(vi

2)
′

+ κi vi
2εiT
〈ri , ri〉′L

pi

]
. (3.23)

Hence, the following corollary can be given.

Corollary 3.2. In Minkowski 3-space, let the oriented Frenet curve αi traced out by Pi be restricted to a fixed plane which
does not necessarily contain the origin Oi. Assume that the binormal component of the vector Hi never vanishes and that

−−→
BiPi

does not lie on the light-cone. Then, Siacci’s resolution (3.12) holds and the tangential Siacci component of the acceleration
takes the forms (3.22) and (3.23).

It may be noted that if bi = 0, the fixed plane in Corollary 3.2 obviously passes through Oi.
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Example 3.1. Suppose that a particle travels along an Euclidean helix α lying on a cylinder of radius A at very low
speed relative to the speed of light. Let the parametric equation of α be given by

α(s) =

(
A cos

s√
B2 −A2

, A sin
s√

B2 −A2
, B

s√
B2 −A2

)
where A and B are constants which satisfy the inequality 0 < A < B. In that case, the velocity vector is given by

α′(s) =

(
− A√

B2 −A2
sin

s√
B2 −A2

,
A√

B2 −A2
cos

s√
B2 −A2

,
B√

B2 −A2

)
.

From the equalities 〈α′(s) , α′(s)〉L = −1 and ‖α′(s)‖L =
√
|〈α′(s) , α′(s)〉L| = 1, it can be said that α is a unit

speed timelike curve and s is the arc length parameter of α. So α is an example of the type of the curve α3. Then,
we can use the equations which we have obtained for the curve α3 in this section.

Let C =
√
B2 −A2. Since the particle travels along α, we can immediately write the position vector of the particle

as in the following:

x =
(
A cos

s

C
, A sin

s

C
, B

s

C

)
. (3.24)

Thus, the velocity and acceleration vectors of the particle are

v =

(
−Av

C
sin

s

C
,
Av

C
cos

s

C
,
Bv

C

)
, a =

(
−CAv dv

ds sin
s
C −Av

2 cos s
C

C2 ,
CAv dv

ds cos
s
C −Av

2 sin s
C

C2 ,
Bv dv

ds

C

)
(3.25)

where v = ds
dt .

The Frenet bases for α, the curvature and torsion can be obtained as

T(s) =

(
−A

C
sin

s

C
,
A

C
cos

s

C
,
B

C

)
,

N(s) =
(
− cos

s

C
, − sin

s

C
, 0
)
,

B(s) =

(
B

C
sin

s

C
, −B

C
cos

s

C
, − A

C

)
,

κ(s) =
A

C2 ,

τ(s) =
B

C2 .

(3.26)

Due to the causal characters of the Frenet bases for timelike curve α, the equalities

εT(s) = 〈T(s),T(s)〉L = −1 , εN(s)= 〈N(s),N(s)〉L = 1 , εB(s) = 〈B(s),B(s)〉L = 1 (3.27)

are obvious. Then, by considering (3.2), (3.24) and (3.26), we find the components of the position vector of the
particle on the Serret-Frenet bases as

q(s) =
B2

C2 s , p(s) = A , b(s) =
BA

C2 s. (3.28)

If the equations (3.28) are substituted in (3.9), h(s) and w(s) are obtained as

h(s) = Av , w(s) =
BA

C2 v s. (3.29)

From (3.27) and (3.4), it can be noted that

r = ‖ r ‖L =
√
|p2 − q2| =

√∣∣∣∣A2 − B4

C4 s
2

∣∣∣∣ =
√∣∣∣∣(A+

B2

C2 s

)(
A− B2

C2 s

)∣∣∣∣.
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Considering this last equation, it can be said that; the values of the parameter which can make the vector r lightlike
are ±AC2

B2 . Then, we conclude that Theorem 3.1 is applicable for all the values of the parameter except for s = ±AC2

B2 .
If this situation is kept in mind, Siacci components

Sr = − v
2

C2

√∣∣∣∣A2 − B4

C4 s
2

∣∣∣∣ , ST = v
dv

ds
+
v2B2

C4 s (3.30)

of the particle’s acceleration are easily obtained by applying Theorem 3.1.

4. Conclusion
Along a space curve in the 3-dimensional Euclidean space, a resolution of the acceleration vector (time derivative

of velocity vector) is well known thanks to Siacci [1]. This resolution comprises two special oblique components
which lie in the osculating plane of the curve. In kinematics and mechanics, to state the acceleration vector in this
form is practical and has many advantages.

In this paper, by adapting Siacci’s this idea to the Frenet curves in Minkowski 3-space, a similar resolution is
obtained for the acceleration of a non-relativistic particle moving along a Frenet curve. This is a new contribution to
the field. Just like in the case of Siacci’s resolution, it may be needed for some specific applications in many areas of
science.
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eğrileri. Erzincan Universitesi Fen Bilimleri Enstitüsü Dergisi. 13 (Özel Sayı-I), 7-17 (2020).
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