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Abstract

In this paper, we have and study several properties of semi-invariant submanifolds of an almost a-cosymplectic
f-manifold. We give an example and investigate the integrability conditions for the distributions involved in the
definition of a semi-invariant submanifold of an almost a-cosymplectic f-manifold.
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1. Introduction

Contact geometry has been seen to underly many physical phenomena and be related to many other mathematical structures.
Contact structures first appeared in the work of Sophus Lie [1] on partial differential equations. They reappeared in Gibbs’
work on thermodynamics, Huygens” work on geometric optics and in Hamiltonian dynamics. ([2], [3], [4]).

On the other hand, the notion of CR-submanifold of a Kaehler manifold was introduced by Bejancu [5]. Later, semi-invariant
(or contact CR-) submanifolds of a Sasakian manifold was studied by Shahid, Sharfuddin and Husain [6], Kobayashi [7],
Matsumoto [8] and many others. Submanifolds of cosymplectic manifold have been studied by Ludden [9], A. Cabras, A.lanus
and G.H. Pitis [10].

Later, the subject was considered for Riemannian manifolds with an almost contact structure. In this sense A. Bejancu and
N. Papaghiuc study semi-invariant submanifolds of a Sasakian manifold or Sasakian space form ( [11],[12], [13], [14] ) and
C.L. Bejan, A., et.al. study them on cosymplectic manifolds in ([15], [16]). B. B. Sinha and R. N. Yadav studied the integrable
conditions of distributions and the geometry of leaves on a semi-invariant submanifolds in a Kenmotsu manifold [17].

In 2014, Oztiirk et.al. introduced and studied almost a-cosymplectic f-manifold [18] defined for any real number o which
is defined a metric f-manifold with f-structure (¢,&;,n', g) satisfying the condition dn’ = 0, dQ = 27 A Q.

In this paper, we introduce properties of semi-invariant submanifolds of an almost ¢-cosymplectic f-manifold. In Section
2, we review basic formulas and definitions for almost a-cosymplectic f-manifolds. In Section 3, we define semi-invariant
submanifolds of an almost a-cosymplectic f-manifold. We also present a way to build these submanifolds and give an example.
In Section 4, we obtain some basic results for semi-invariant submanifolds of an almost a-cosymplectic f-manifold. In Section
5, we investigate the integrability of the distributions involved in the definition of a semi-invariant submanifold. In last section
we focus mixed totally geodesic of semi-invariant submanifolds of an almost a-cosymplectic f-manifold.
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2. Preliminaries

Let M be a real (2n+s)-dimensional framed metric manifold [19] with a framed (¢,&,n',g),i € {1,...,s}, thatis, ¢ is a
non- vamshmg tensor field of type (1,1) on M which satisfies (p -+ ¢ = 0 and has constant rank r = 2n; 51, £, are s vector

fields; n',...,n® are 1-forms and g is a Riemannian metric on M such that
<p2—1+§n"®&- 1)
n'(&) =8}, ¢(&) =0, n'op =0, (2.2)
n'(X) =g(X.&), 2.3)
8(X,0Y)+g(9X,Y) =0, 24
g(pX, pY) = Zn 2.5)

forall X,Y € F(TM) and i, j € {1,...,s}. In above case, we say that M is a metric f-manifold and its associated structure will
be denoted by M (¢, &, ', g) [19].

A 2-form Q is defined by Q(X,Y) = g(X, oY), for any X,Y € ['(TM), is called the fundamental 2-form. A framed metric
structure is called normal [19] if

[.0]+2dn' © & =0
where [, @] is denoting the Nijenhuis tensor field associated to ¢. Throughout this paper we denote by 17 = ' +n24.. 1,
E=&+&EH4 .. +Eand S =8 +82+... 45

Definition 2.1. Let M((p &,n',g) be a (2n+s)- dimensional a metric f-manifold for each n',(1 <i<s) I-forms and each
2-form Q, if dn' = 0 and dQ = 201 A Q satisfy, then M is called almost a- cosymplectic f-manifold [18].

Let M be an almost a-cosypmlectic f-manifold. Since the distribution D is integrable, we have Lg,ﬂ’ =0, [&,&] € Dand
[X,&;] € D for any X € I'(D). Then the Levi-Civita connection is given by [18]:

N

28((Vx)Y.Z) =208 (Z (¢X,Y)E n"(Y)rpXLZ) (2.6)

i=1

+8(N(Y,2), 9X)

for any X,Y € I'(TM). Putting X = & we obtain Vé ¢ = 0 which implies Vé &; € D and then Vg Ei= Vé: &, since [§;,&] =

We put A, X = —VX Giand b = 5 (Léi ¢), where L denotes the Lie derivative operator. If M is almost - -cosymplectic f-manifold
with Kaehlerian leaves [20], we have

(Vx@)Y = Y [~(pAX, V)& +1'(V)pAX]
i=1
(Vx@)Y = Z (o (g(@X,Y)& —n'(Y)9X) +g(hiX,Y) & —1' (V)X ] . 2.7)
i=1

Proposition 2.2. ([18]) For any i € {1,...,s} the tensor field A; is a symmetric operator such that
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(i) Ai(§j) =0, forany je{1,...;s}

(ii) Ajo@+ @oA; = —2a¢

(iii) tr(A;) = —2an

(iv) Vx& = —a@?X — oh:X.

Proposition 2.3. ([21]) For any i € {1,...,s} the tensor field h; is a symmetric operator and satisfies

(i) hi(§;) =0, forany j € {1,...;s}

(ii) hio@ + @oh; =0

(iii) trhi =0

(iv) tr(oh;) =0.

Let M be an almost a-cosymplectic f-manifold with respect to the curvature tensor field R of 67 the following formulas are
proved in [18], forall X,Y e T(TM), i,j € {1,...,s}.

REXVE = oY (100X 0t (X)) 2.8)
k=1
- ai‘,(n"(Xﬁpth—n"(Y)(pth)
k=1

RX,&)& = Y 85020°X + aghX) 2.9)
k=1

+ O((P/’l,’X — h,‘/’le + (p(%éjhi)x

R(&j,X)&i— oR(E,0X)& = 2(—a?@*X +hih;X). (2.10)
Moreover, by using the above formulas, in [18] it is obtained that
- s
S(X.&) =—2na® Y n*(X) — (diveh;)X (2.11)
k=1

S(&.&) = —2na® —tr(h;h;) (2.12)

forall X,Y e [(TM), i, j € {1,...,s}, where S denote, the Ricci tensor field of the Riemannian connection.
From [18], we have the following result.

Proposition 2.4. Let M be an almost o -cosymplectic f-manifold and M be an integral manifold of D. Then
(i) when oo =0, M is totally geodesic if and only if all the operators h; vanish;

(ii) when o # 0, M is totally umbilic if and only if all the operators h; vanish.

3. Semi-Invariant Submanifolds of Almost a-Cosymplectic f-Manifolds

The submanifold M of the almost a-cosymplectic f-manifold M is said to be semi-invariant [22] if it is endowed with two pair
of ortogonal distribution D, D+ satisfying the conditions

(1) TMZD@DL@{&#:Z?---,&}
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(i1) the distribution D is invariant under @, that is

¢D, =D, for each xeM,

(iii) the distribution D is anti-invariant under ¢, that is

oD C TM* for each x€M.

The distribution D (resp.D") is called the horizantal (resp. vertical) distribution. A semi-invariant submanifold M is said
to be invariant (resp. anti-invariant) submanifold if we have (D;- = 0) respectively (D, = 0) for each x € M. We say that
M is proper semi-invariant submanifold if it is a semi-invariant submanifold which is neither an invariant nor anti-invariant
submanifold [22]. B

We denote by same symbol g both metrices on M and M. The projection morphism of TM to D and D are denoted by P
and Q respectively. For any X € I'(TM) and N € I'(TM*) we have

X=PX+0X+) n'(X)& (3.1)
i=1
N = CN + DN (3.2
and
hX =X + fiX (3.3)

where CN and ;X (resp.DN and f;X) denotes the tangential (resp. normal) of @N and £;X, respectively.

VxY = VxY +B(X,Y) (3.4)

VxN = —AyX + V¥ N (3.5)

forany X,Y e T'(TM) and N € TM L where V is the Levi-civita connection on M, V= is the linear connection induced by V on
the normal bundle TM*, B is the second fundamental form of M and Ay is the fundamental tensor of Weingarten with respect
to the normal section N. Also we have

8(B(X,Y),N) = g(AnX,Y) (3.6)

for any X,Y € T(TM),N € T(TM*) [19].
We now give an example of semi-invariant submanifold of an almost a-cosymplectic f-manifold.

Example 3.1. Let us denote the standart coordinates Of R¥"™S (X1, ey Xy V1 ooy Yy 215 -0, Z5) and take (2n+ s)-dimensional
manifold M C R*"** defined by

M = {(xla'-'7-xn7y1>"'7yn7zl7'-'7ZS)|Z1>-'-7ZS 7& O}'

Consider following vector fields as a global basis of M:

n 0 d d
X; = eki=1% Y= — == i=1,...,n j=1
i e axia i ayi, éj aZj’ l ) nJ ) S
The brackets of these vector fields are
0
[51, ]_e ' IZIax_7 [&jaYl]:[X7Xl]:[Xl7Yk}:[Yl7Yk]:O

1

SJorany ik € {l,...,n} and j € {1,...,s}. One may easily verify that putting

_2zl+ A+z5) dx +dy, +Zdzﬁ
1 j=

n=dz, g=

n

i
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0 d 0 0
N —(z1+.4z) 9 _ _(atetz)
(p(él) 0 (axl) e Byl’ (P(ayl) e axi7

(9,&,m',g) is an almost contact metric f- structure on M. We shall check that (M 0,&,n',g) is an almost o-cosymplectic f-
manifold. Obviously, n/ = dzj = dn/ = dzz = 0 from poincare metric we get dnJ = 0. To verify the condition d® = 20f) AP,

considering that all ®;;’ s are zero except for ®;; = (ax« , (pay.) = —e~(@1++4%) and hence
1 1

1 n
b= — T ; dx; \dy;

holds. As a result, the exterior derivative d® is given by

n
dd = —ei(zl+"'+ZS) dei Ady; N (le + ... -‘rdZs)

i=1

dd = e*(Z1+...+Zs)e(Z|+.-.+Zs)cp/\ (nl + ...+ n‘)

db=nNNDP= 2(1)17/\d>

Since the Nijenhuis torsion of ¢ is not zero, the manifold is an almost (%)-cosymplectic [f-manifold.
Now, we definite the distributions

D =sp{X\,Y1,X2,Y2, ... Xon, Y }
and
D* = s5p{Xpi1, X2y oes Xons p } (m < ).
It is clear that TM = D® D+ @ {&), ..., &}, dimM = 2m+ p +s. Let
TM* = {Yi1, Y2, oo, Yo ps Yok pi 1 oo Yoo X pr 1 oos X}
then we have D = D and @D+ C TM*. Consequently, M is a semi-invariant submanifold of an almost %—cosymplectic

f-manifold.

4. Basic Lemmas
For any X,Y € I'(TM), we put

u(X,Y) =Vx@PY —AyorX. 4.1)
We start with proving the following lemma.

Lemma 4.1. Let M be a semi-invariant submanifold of almost o- cosymplectic f- manifold with Kaehlerian leaves M. Then
we have

P(u(X,Y)) = @PVxY — Zan YOPX 4+ n'(Y)Pt;X] 4.2)
i=1

O(u(X,Y)) = QCB(X,Y) Zn )O1X 4.3)
B(X,pPY)+Vy@QY = 9QVxY +DB(X,Y)

—Zan )POX —n'(Y) fiX] (4.4)

S

n'(u(X.Y))& = Y [ag(@PX,Y)&i+g(hiX,Y)E]

I
-

n'(Y)n! (1:X)&. (4.5)
1

\
-

i

<.
Il
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Proof. For XY € I'(TM), putting (3.1), (3.2) and (3.3) in the equation (2.7) we get

(Txo) = i[wg(wx,m@—n"(mwx—nf(Y)q»Qx)
+ g(hiX,Y)&—1'(Y)hiX]
= Z[a(g(wpxm»—n"(wqopx—n"(Y><pr>+g<h,~X,Y>é,~

I
-

n'(Y)PtX —n'(Y) 01X —n'( Z —n'(Y)fiX

On the other hand, by using (3.1), (3.2), (3.4) and (3.5) we have

(Vx@)Y = Vx@Y — pVyxY
= Vx@PY +Vx@QY — o(VxY +B(X,Y))
= VxQPY +B(X,0PY) —AgorX + Vx 9QY
— @PVyxY — @QVxY —CB(X,Y) —DB(X,Y)

(Vx@)Y = PVx@PY + QVx @PY + Z n'(Vx@PY)& +B(X,PY)

i=1
s
— PAgorX — QAgor X +Vy 0QY — Y 1 (AgorX)&:

i=1

— @PVxY — @QVxY —CB(X,Y)—DB(X,Y).
Taking the components of D, &, D* and TM*" in above equations, we have our assertion. O

Lemma 4.2. Let M be a semi-invariant submanifold of almost o- cosymplectic f- manifold with Kaehlerian leaves M. Then
we have

OP(ANX)+P(VxCN) = P(ApnX) (4.6)
O((CVEN)+ApyX —VxCN) = 0 4.7
N(ApyX —VxCN) = ag(X,CN)+g(hX,N)&; (4.8)
B(X,CN)+ @Q(AyX) +V¥DN = DVgN 4.9)

forany X € T(TM) and N € T(TM*)

Proof. By using the decompositions (3.1), (3.2) and the equations of Gauss and Weingarten in (2.7) we have
~ ~ ~ N
(Vx@)N = VxoN — VxN = Y [ag(¢X,N)& + g(hiX ,N)&]
i=1

S
VxCN +B(X,CN) — ApyX + VDN + @AyX — 9VxN = Y [otg(9X ,N)&; + g(hiX,N)&;]
i=1

S N
= PVxCN+QVxCN+ Y 1'(VxCN)& + B(X,CN) — PApyX — QApyX — Y (ApnX)&;
i=1 i=1

+ V¥ DN + @PANX 4+ @QANX —CVxN — DVxN

- i[ag(X,CN)éi +g(hiX,N)&
i=1

Then (4.6)- (4.9) follows by taking the components on each of the vector bundle D, D, &; and respectively TM~. O
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Lemma 4.3. Let M be a semi-invariant submanifold of almost - cosymplectic f- manifold M. Then we have

Vx& =aX — X —CfiX VX e T(D) (4.10)
Vx& =aX — X —CfiX VX e T(DY) 4.11)
Ve& =0, B(X,&)=-DfX. (4.12)

Proof. For X € I'(TM), using (3.2), (3.3) and (3.4) we obtain

Vx& = Vx&+B(X,&) = —0@’X — ohiX

=aX —a) n'(X)&— phX
-1

=aX—a) n'(X)&—otX — ofiX
-1

:ocX—aini(X)éi—(ptiX—CﬁX—DﬁX. (4.13)
i=1

Thus (4.10)-(4.12) follows from (4.13). 0

Lemma 4.4. Let M be a semi-invariant submanifold of almost o- cosymplectic f- manifold with Kaehlerian leaves M. Then
we have

ApxY = AgrX (4.14)
forall X,Y € T(D4).
Proof. Forall X,Y € T'(D*) and Z € T'(TM), by using (3.4) and (3.6), we get

= 7g((PVZYaX) = 7g(VZ(PY7 (VZ(P)Y,X)

= _g(€Z¢YaX> = g((pY7 gzx)
= g((Pva(va)) = g(AquX,Z),

which proves (4.14). O

Lemma 4.5. Let M be a semi-invariant submanifold of almost &- cosymplectic f- manifold M. Then we have,

V.U € T(D), (4.15)
VeV eL(DY), (4.16)
[U,&] €T(D), (4.17)
V,&] e T(D*) (4.18)

foranyic {1,2,...,s}, U €T(D) andV € T(D").
Proof. ForU € T(D) and V € T'(D4),
8(VgU,5)) = &ig(U,&j) —g(U, Vg &j) =0
and
8(VeU,V) =&ig(U.V) —g(U, Ve V) = g(9’U. Ve V) = —g(9U, 9V V) = —g(9U, Ve 9V) = g(V, 0U, V) =0,
so Vg U € I'(D). In a similary way is deduced (4.16). On the other hand, using (4.10) and (4.11), we have
g([U,&],8) =g(Vu&i,—VeU,Ej) =0
and
g([U,&],V) =¢g(Vu&i,V) —g(VgU,V) = 0.

Thus completes the proof. O
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Lemma 4.6. Let M be a semi-invariant submanifold of almost - cosymplectic f- manifold M. Then we have

g(X, 1Y) =g(t:iX,Y), 4.19)
otX +1;,0X +CfX =0, (4.20)
DfiX + fioX =0 (4.21)

Sforany XY € I'(M).
Proof. Since h; is symmetric, we get

g(Xale) :g(thaY)
gX, Y + fiY) = g(t;X,Y) +g(fiX,Y)
gX,tY)+g(X, fiY) = g(t:iX,Y) +g(fiX,Y).

From above equation we get (4.19). By making use of proposotion 2.3 and using (3.2), (3.3), we get
ot X +;0X +CHX +DfiX + fipX = 0. (4.22)

Comparing the tangential and normal part of (4.22), we get (4.20) and (4.21), respectively. O

5. Integrability of distribution on a semi-invariant submanifold in an almost -
cosymplectic f- manifold

Theorem 5.1. Let M be a semi-invariant submanifold of almost a- cosymplectic f- manifold M. Then the distribution D is
never integrable.

Proof. For all X,Y € I'(D), we have

g([X,Y],&) =g(VxY,&) —g(VyX, &)
=—g(Y,Vx&)+g(X,Vy&)
=—g(Y,aX —ot;X —CfiX)+g(X,aY —ot,Y —Cf;Y)
=3g(Y, 01:X) +g(Y,CfiX) — (X, p1Y) — g(X,CfiY)
=g(Y,0tX+CfiX)—g(X,0t,Y +CfiY)
=—g(Y,1:pX) +g(X,1;9Y)

—8(1Y,pX) +g(1:X, 9Y)

=—g(Y,t;,0X) —g(ot;X,Y)

= —g(Y,t;0X + ¢ot;X)

=g(Y,CfiX) #£0.

This follows the non-integrability of D. O

Corollary 5.2. The distribution D ® D never involutive.

Theorem 5.3. Let M be a semi-invariant submanifold of almost a- cosymplectic f- manifold with Kaehlerian leaves M. The
distribution D® {&,, ..., &} is integrable if and only if

B(X,9Y) = B(¢X.Y) (5.1)
is satisfied.
Proof. From (4.4), the distribution D& {¢y, ..., &} is integrable if and only if

B(X,9Y)—B(Y,pX) = 9Q[X,Y] =0
is satisfied so, B(X, ¢Y) = B(Y, ¢X). O

Theorem 5.4. Let M be a semi-invariant submanifold of almost a- cosymplectic f- manifold with Kaehlerian leaves M. Then
the distribution D" is integrable.
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Proof. From (4.1), we have for X,Y € T'(D*)

U(X,Y) = —AgorX
operating ¢ in (4.2) we get

PVxY = @P(AgyX) (5.2)
for any X,Y € T'(D*). By virtue of Lemma 4.4, (5.2) reduce to

P([X,Y])=0

which is prove that [X,Y] € T(D™). O

6. Mixed totally geodesic semi-invariant submanifolds

Definition 6.1. A semi-invariant submanifold M of an almost o.- cosymplectic f- manifold M is called mixed totally geodesic
if the second fundamental form satisfies B(X,Y) = 0 for any X € D and Y € D*[5].

Theorem 6.2. Let M be a semi-invariant submanifold of almost a- cosymplectic f- manifold M. Then M is mixed totally
geodesic submanifold of almost a.- cosymplectic f- manifold M if and only if

AvX € T(D) (VX €T(D), V e T(TM)") (6.1)
and
AvX e T(D)* (VX e T(D)*, V e T(TM)™ ). (6.2)
Proof. Consider AyX, let X € (D) and V € [(TM)* and Y € ['(D"), then we have
8BX,Y),V) = g(AvX.Y)
= 0& AyX €T(D).
On the other hand, if AyX € I'(D), we get

g(AVX7V) = g(B(XVY)aV)
0< B(X,Y)=0.
In a similar way is deduced (6.2). O
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