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Abstract 

 

A virus is programs that are often hidden inside a file that appears to be harmless and cause unexpected 

and unwanted events on the computer when the file is run. Viruses, unlike others, are software designed to 

maliciously damage systems. Viruses have the ability to copy themselves, jump to the files you work 

with, and delete files, change the file content and make it unavailable. They can do all this without the 

knowledge of the user and without the need for any command. Therefore, in order to better understanding 

of computer virus, there are many mathematical models in the literature. In the present study, we consider 

computer virus spreading model benefiting from Atangana-Baleanu derivative in Caputo sense with non-

local and non-singular kernels. The solution properties of our fractional model are established benefiting 

from Arzelo-Ascoli theorem.  
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1. Introduction 

 

Computer viruses are some computer programs that can 

damage your computer in different ways when it works. 

If these programs (or virus codes) are run, they will start 

damaging your computer according to the way they are 

programmed. In addition, after viruses are activated in a 

system, they have the ability to reproduce, spread to 

other files on your computer, infect other computers 

over the network and many more. Many mathematical 

models are being studied to cope with the spread of 

computer viruses and for better understanding their 

structure such as SIR model, SEIRS model, SIRS model 

[1-8]. 

 

Due to memory properties of fractional derivatives, 

fractional operators gain increasing interest from 

various directions in the modeling of biological process, 

neural networks, engineering, physics, etc [9-20]. It is 

clear that Riemann Liouville and Caputo fractional 

derivatives have singular kernels. To cope with this 

problem, Atangana and Baleanu have proposed a new 

fractional derivative named as Atangana-Baleanu (AB) 

fractional derivative with Mittag-Leffler kernel. There 

are many extensive treatment and several applications 

of this recently defined AB derivatives in the literature 

[21-28]. 

 

 

Taking these motivations and AB derivative into 

consideration, in this article we examine the existence 

and uniqueness conditions for the solutions of the below 

computer virus spreading model presented by [29]: 

 

,
dS

b SI S
dt

 = − −   

( )1 ,
dE

p SI E I E
dt

   = − − + −   

.
dI

p SI E I I I
dt

    = + − − −                             (1.1) 

 

We choose this model because it defines a novel virus 

spreading system considering the possibility of a virus 

outbreak on a network with restricted antivirus ability. 

Here, the total number of computers attached  the 

internet are separated into four class: The number of 

susceptible computers ( )S t  is the set of external not 

infected computers which are attached to the network, 

the number of exposed computers ( )E t  is the set of all 

latent computers at which viruses are latent, the number 

of infected computers ( )I t   is the set of infected 

mailto:*sumeyraucar@balikesir.edu.tr
https://tureng.com/tr/turkce-ingilizce/attached
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computers at which viruses are explode. The model 

parameters are: b represents the ratio where external 

computers are linked with the network,   stands for 

the ratio where having a link to one latent computer,   

shows the ratio where one latent computer explodes,    

displays the ratio where one computer is out from the 

network,   displays  the recovery ratio of infected 

computers and connect to the the ability of the anti-virus 

software. Owing to a possible link with infected 

computers, susceptible computer is latent with 

possibility ( ) ( )1 ,p I t−  or explodes with possibility 

( )p I t  where 0p   is a fixed parameter. Since the 

network’s anti-virus ability is restricted, the virus is 

momentarily suppressed with possibility   where 

0   is a fixed parameter. 

In this paper, inspired by the above model, we give 

properties of the solution of our fractional model with 

AB derivative by Arzelo-Ascoli theorem.  

 

2. Preliminaries 

 

Now, we will give basic definitions related to AB 

fractional derivative. 

Definition 2.1. Let ( )1
,f H a b  be a function, a b

and  0,1r  . The AB derivative in Caputo sense of f  

is defined as [30] 

( )
( )

( )
( )

0

1 1

rt

ABC r

t r

a

K r t x
D f t f x E r dx

r r

−
= −

− −

 
 
 

  (2.1) 

with ( )K r  is a normalization function with 

( ) ( )0 1 1K K= =  .      

Definition 2.3. The fractional integral relevant to AB 

derivative is given by [30] 

( )
( )

( )0

1AB r

t

r
I f t

K r
f t

−
=   

             
( ) ( )

( )( )
1

t

a

r

f y
r

t y dy
K r r

−

+ −


           (2.2) 

3. Existence and Uniqueness of the Solutions 

 

Now, we remodel the system (1.1) using AB derivative 

in Caputo sense. 

( )

0

0

,

1 ,

ABC r

t

ABC r

t

D S b SI S

D E p SI E I E

 

   

= − −

= − − + −
  

0
.

ABC r

t
D p SI E I I II     = + − − −                      (3.1) 

In this part, the existence and uniqueness of the 

solutions for the model (3.1) is considered and proved 

by using AB derivative. For this aim, we apply AB 

integral to the system (3.1) and we get  

( ) ( )
( )

 

( ) ( )
( )  

1

0

1
0

,
t

r

r
S t S K b SI S

K r

r
t y b SI S dy

K r r

 

 
−

−
− = − −

+ − − −




  

( ) ( )
( )

 

( ) ( )
( )  

1

0

1
0 (1 )

(1 ) ,
t

r

r
E t E p SI E I E

K r

r
t y p SI E I E dy

K r r

   

   
−

−
− = − − + −

+ − − − + −




( ) ( )
( )

 

( ) ( )
( )  

1

0

1
0

.
t

r

r
I t I p SI E I I I

K r

r
t y p SI E I I I dy

K r r

    

    
−

−
− = + − − −

+ − + − − −




  

                                                                                   (3.2) 

For the simplification of equations in (3.2), we define 

our kernels below: 

( )( )

( )( )

,

, (1 )

,

,

b I Ss t S t S

s t E t p SI E I E

 

   

− −

− − + −

=

=
  

( )( ), .s t I t p SI E I I I    + − − −=                 (3.3) 

Now, we will consider the operator :G H H→  

defined as  

( )
( )

( )( )

( ) ( )
( ) ( )( )

1

0

1
,

,         ,
t

r

r
GS t s t S t

K r

r
t y s y S y dy

K r r

−

−
=

+ −




  

( )
( )

( )( )

( ) ( )
( ) ( )( )

1

0

1
,

,         ,
t

r

r
GE t s t E t

K r

r
t y s y E y dy

K r r

−

−
=

+ −




  

( )
( )

( )( )
1

,
r

GI t s t I t
K r

−
=   

             
( ) ( )

( ) ( )( )
1

0

, .
t

rr
t y s y I y dy

K r r

−

+ −


  (3.4) 

https://tureng.com/tr/turkce-ingilizce/possibility
https://tureng.com/tr/turkce-ingilizce/possibility
https://tureng.com/tr/turkce-ingilizce/restricted
https://tureng.com/tr/turkce-ingilizce/momentarily
https://tureng.com/tr/turkce-ingilizce/possibility
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Lemma 3.1. Let M H  be a bounded set, assume that 

S,E and I satisfy Lipschitz condition 

( ) ( )

( ) ( )

( ) ( )

2 1 2 1

2 1 2 1

2 1 2 1

,

,

.

S t S t p t t

E t E t r t t

I t I t q t t

−  −

−  −

−  −

  

For some positive constants p, q ,r. Then ( )G M  is 

compact. 

Proof 3.1 Let 
( )

( )( )
1

max , ,
r

P s t S t
K r

−
= +

 
 
 

 

( ) 10 S t K   for some positive constant 1.K  For 

( )S t M , then we get 

( )
( )

( )( )

( ) ( )
( ) ( )( )

1

0

1
,

,

t

r

r
GS t s t S t

K r

r
t y s y S y dy

K r r

−

−
=

+ −




  

( ) ( ) ( )

1

1
.

r
r rPt

P
K r K r r


−

+
 +

                                 (3.5) 

Let 
( )

( )( )
1

max , ,
r

R s t E t
K r

−
= +

 
 
 

 ( ) 20 E t K   

for some positive constant 2K . For ( ) ,E t M  then we 

get 

( )
( )

( )( )

( ) ( )
( ) ( )( )

1

0

1
,

,

t

r

r
GE t s t E t

K r

r
t y s y E y dy

K r r

−

−
=

+ −




  

( ) ( ) ( )

1

1

r
r rRt

R
K r K r r


−

+
 +

                                 (3.6) 

And similarly, we consider third equation, let 

( )
( )( )

1
max , ,

r
Q s t I t

K r

−
= +

 
 
 

( ) 30 I t K   for 

some positive constant 3K . For ( )I t M   

( )
( )

( )( )

( ) ( )
( ) ( )( )

1

0

1
,

,

t

r

r
GI t s t I t

K r

r
t y s y I y dy

K r r

−

−
=

+ −




  

( ) ( ) ( )

1

1
.

r
r rQt

Q
K r K r r


−

+
 +

                                 (3.7) 

Thus from equations (3.5)-(3.7) we can conclude that 

the operator G  is bounded. 

Now, we assume 
1 2
t t

 
and ( )S t M . Taking into 

account that M is bounded, for 0,   if  
2 1

t t −   

we have 

( ) ( )
( )

( )( )

( ) ( )
( ) ( )( )

( )
( )( )

( ) ( )
( ) ( )( )

2

1

2 1 2 2

1

0

1 1

1

1

0

2

1
,

,

1
,

,

t

r

t

r

r
GS t GS t s t S t

K r

r
t y s y S y dy

K r r

r
s t S t

K r

r
t y s y S y dy

K r r

−

−

−
− =

+ −


−
−

− −






  

( )
( )( ) ( )( )

( ) ( )
( ) ( )( )

( ) ( )
( ) ( )( )

2

1

2 2 1 1

1

2

0

1

1

0

1
, ,

,

,

t

r

t

r

r
s t S t s t S t

K r

r
t y s y S y dy

K r r

r
t y s y S y dy

K r r

−

−

−
 −

+ −


− −






  

( )
( )( ) ( )( )

2 2 1 1

1
, ,

r
s t S t s t S t

K r

−
 −

 

( ) ( )
( ) ( )

2 1

2 1

0 0

1 11 .
t t

r rrK
t y dy t y dy

K r r

− −
+ − − −



 
 
 
                        

                                                                          (3.8) 

We have that  

( ) ( )
2 1

1 1

2 1

0 0

t t

r r

t y dy t y dy
− −

− − −    

( )
2 1

.

r

t t

r

−
=                                                    (3.9) 

We study the following 

( )( ) ( )( )

( )( ) ( ) ( )

2 2 1 1

2 1

, ,s t S t s t S t

a b S t S t 

−

 + + −
  

1 2 1 .J t t −                                                   (3.10) 

Then, putting Eqs. (3.9)-(3.10) in (3.8), we obtain 
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( ) ( )
( )

( ) ( )

2 1 1 2 1

2 1

1

r

r
GS t GS t J t t

K r

t trK

K r r r

−
−  −

−
+



  

Let 

( ) ( ) ( )

1

1

11

1

rKr
J

K r K r r


 =

−
+

 +

 then we get 

( ) ( )
2 1

.GS t GS t −    

In the same manner, we can get the following results for 

the other two functions: If we get 0  , we have 

( ) ( ) ( )

2

2

21

1

,
rKr

J
K r K r r


 =

−
+

 +

 

( ) ( ) ( )

3

3

31

1

rKr
J

K r K r r


 =

−
+

 +

, 

then we obtain 

( ) ( )
2 1

,GE t GE t − 
 

( ) ( )
2 1

.GI t GI t −    

Thus ( )G M  is equicontinuous and so ( )G M  is 

compact by Arzelo-Ascoli Theorem.   

Theorem 3.2. Let    )  ): , 0, 0,S a b   →   be 

increasing  for each t  in  ,a b  and be a continuous 

function. Suppose that one can find ,u v  satisfying 

( ) ( ), ,M D u S t u  ( ) ( ),M D v S t v  for 

( ) ( )0 u t v t   and .a t b   Thus, system (1.1) 

has a positive solution. 

Proof 3.2. Now we handle the fixed point operator .G  

We know that the operator :G H H→  is completely 

continuous. Let 1 2 1 2 1 2, ,S S E E I I    then we get  

( )
( )

( )( )

( ) ( )
( ) ( )( )

1

1

1

0

1

1
,

  + ,         
t

r

r
GS t s t S t

K

r
t y s y S y dy

K r r

r

−

−


−




  

              ( )2 .GS t                                                 (3.11) 

Following similar steps, we obtain 

( )
( )

( )( )

( ) ( )
( ) ( )( )

1

1

1

0

1

1
,

  + ,         
t

r

r
GE t s t E t

K r

r
t y s y E y dy

K r r

−

−


−




  

( )2            GE t                                                   (3.12) 

and  

( )
( )

( )( )

( ) ( )
( ) ( )( )

1

1

1

0

1

1
,

  + ,         
t

r

r
GI t s t I t

K r

r
t y s y I y dy

K r r

−

−


−




  

( )2            GI t                                                   (3.13) 

Thus, G  is increasing operator. From the conjecture, 

,Gm m  Gn n . So : , ,G m n m n→  is compact 

and continuous from Lemma 3.1. Thus, H  is a normal 

cone.   

Now, we will investigate the uniqueness of solutions. 

To manage this, we study the followings: 

( ) ( )
( )

( )( ) ( )( )

( ) ( )
( ) ( )( ) ( )( )

( )
( ) ( )

( ) ( )
( ) ( ) ( )

1 2 1 2

1

1 2

0

1 1 2

1

1 1 2

0

1
, ,

, ,

1

t

r

t

r

s s

r
GS t GS t s t S t s t S t

K r

r
t y y S y y S y dy

K r r

r
F S t S t

K r

r
F t y y y dy

K r r
S S

−

−

+

−
−  −

+ − −


−
 −

− −






which gives 

( ) ( )
( ) ( ) ( )

1

1 2 1

1

1

r
rFbr

GS t GS t F
K r K r r

−
−  +

 +

 
 
 

  

( ) ( )
1 2

                             S t S t −                      (3.14) 

By a similar method, we obtain  

( ) ( )
( ) ( ) ( )

2

1 2 2

1

1

r
rF br

GE t GE t F
K r K r r

−
−  +

 +

 
 
 

  

( ) ( )
1 2

                               .E t E t −                   (3.15) 

( ) ( )
( ) ( ) ( )

3

1 2 3

1

1

r
rF br

GI t GI t F
K r K r r

−
−  +

 +

 
 
 

 

( ) ( )
1 2

                             .I t I t −                      (3.16) 
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Therefore, if the following conditions satisfy 

( ) ( ) ( )
1

1

1
1,

1

r
rFbr

F
K r K r r

−
+ 

 +
  

( ) ( ) ( )
2

2

1
1,

1

r
rF br

F
K r K r r

−
+ 

 +
  

( ) ( ) ( )
3

3

1
1,

1

r
rF br

F
K r K r r

−
+ 

 +
  

the mapping G  is a contraction, so it has a fixed point 

by Banach fixed-point theorem. Thus the new model 

has a unique positive solution. 

 

4. Numerical Results 

 

Here, in order to observe how fractional order r affects 

behavior of the fractional model  (1.1), some numerical 

simulations of this model are depict benefiting from the 

numerical method presented by Toufik and Atangana in 

the paper [31]. We select the parameters b=5, 

0.007, = 0.6, = 0.25, = 0.3, = 0.7p = with the 

initial conditions S(0)=3, E(0)=1, I(0)=1 as given in 

[29]. From Figure1, we see the behavior of susceptible, 

exposed and infected computers. From Figure 2, it is 

visible that as r goes up, the number of susceptible 

computers S(t) increases while the number of exposed 

computers E(t) and infected computers I(t) decreases.    

 

 
(a) 

 
(b) 

Figure 1. Numerical simulations for the model (1.1) at 

r=0.95 and r=0.6, respectively. 

 
(a) 

 
(b) 

 
(c) 

Figure 2. The behavior of the fractional computer virus 

spreading model components for distinct values r.  

 

5. Conclusion 

 

In this study, Atangana–Beleanu derivative with Mittag-

Leffler kernel has been applied in reformulating the 

computer virus spreading model presented by Xu and 

Ren [29]. Then, Arzelo-Ascoli theorem is used to prove 

the existence and uniqueness properties of the 

considered model. Benefiting from Toufik-Atangana 

method [31], some numerical simulations are depicted 

with several values r and briefly interpreted. We expect 

that the present study will be more helpful to construct 

computer virus spreading model with fractional 

derivatives. 
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