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(ORCID: https://orcid.org/0000-0002-0594-2377), (ORCID: https://orcid.org/0000-0002-3987-7171)

2Dokuz Eylül University, Izmir Vocational School, İzmir, Turkey
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Abstract: This paper presents the Lucas polynomial solution of second-order nonlinear
ordinary differential equations with mixed conditions. Lucas matrix method is based on
collocation points together with truncated Lucas series. The main advantage of the method
is that it has a simple structure to deal with the nonlinear algebraic system obtained from
matrix relations. The method is applied to four problems. In the first two problems, exact
solutions are obtained. The last two problems, Bratu and Duffing equations are solved
numerically; the results are compared with the exact solutions and some other numerical
solutions. It is observed that the application of the method results in either the exact or
accurate numerical solutions.

İkinci Mertebeden Doğrusal Olmayan Diferansiyel Denklemler için Lucas Polinom Yaklaşımı

Anahtar Kelimeler
Lucas polinomu,
İşlevsel matrisler,
Sıralama noktaları

Özet: Bu makale, karışık koşullar altında ikinci mertebeden doğrusal olmayan adi difer-
ansiyel denklemlerin Lucas polinom çözümünü oluşturur. Lucas matris yöntemi sıralama
noktaları ile birlikte sınırlandırılmış Lucas serisine dayanmaktadır. Yöntemin en büyük
avantajı matris bağıntılarında elde edilen doğrusal olmayan cebirsel sistemi ele almak
için basit bir yapıya sahip olmasıdır. Yöntem dört probleme uygulanır. İlk iki problemde,
tam çözümler elde edilir. Son iki problemde Bratu ve Duffing denklemleri sayısal olarak
çözülür; sonuçlar, tam çözümler ve diğer bazı sayısal çözümler ile karşılaştırılır. Yöntemin
uygulanması, tam ve doğru sayısal çözümler vermesine yol açtığı gözlemlenmektedir.

1. Introduction

Nonlinear ordinary differential equations play an impor-
tant role in many physical phenomena such as chemical
reactions [1], spring-mass systems [2, 3], quantum physics
[4], analytical chemistry [5], astronomy [6] and biology
[7]. From last decade, researchers pay attention towards
analytical and numerical solutions of nonlinear ordinary
differential equations. However there is a stiff problem
while solving nonlinear equations analytically. Thus, the
importance of numerical solutions increase day by day.
The Bratu equation arises in the fuel ignition of the ther-
mal combustion theory, radiative heat transfer, and the
Chandrasekhar model of the expansion of the universe
[10, 11, 13]. Wazwaz [13] studied Adomian decompo-
sition method for a reliable treatment of the Bratu-type
equations; in this study, exact solutions of Bratu-type equa-
tions are presented. In another study, restarted Adomian’s
decomposition method is used the approximate the ana-
lytical solution by Vahidi and Hasanzade [14]. Several

numerical techniques, such as the finite difference method
[15], weighted residual method [12], the shooting method
[10], decomposition technique [16], Legendre wavelets
[17], wavelet analysis method [18], B-spline method [19],
Jacobi-Gauss collocation method [20], Laplace transform
decomposition method [21], He’s variational iteration
[22, 23], have been implemented to solve the Bratu model
numerically.
On the other hand, Duffing model [24] arises in several sci-
entific fields such as classical oscillator in chaotic systems,
non-uniformity caused by an infinite domain, nonlinear
mechanical oscillators, magnetic-pliancy mechanical sys-
tems, nonlinear vibration of beams and plates, prediction
of diseases. Duffing equation occurs as a result of the mo-
tion of a body subjected to a nonlinear spring power, linear
sticky damping, and periodic powering [25]. A variety
of numerical methods such as the improved Taylor ma-
trix method [26], generalized differential quadrature rule
[27], shifted Chebyshev polynomials [28], Daftardar-Jafari
(DJM) method [25], Runge-Kutta-Fehlenberg algorithm
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[29], Laplace decomposition algorithm [30] are used to
obtain numerical solutions of this equation.
In this study, Lucas matrix method is applied for solv-
ing the second-order ordinary differential equations with
nonlinear terms, namely the Ricatti, Bratu and Duffing
equations. To the best knowledge of author’s this is the
first application of the Lucas polynomial solution for both
Bratu and Duffing equations.

2. Fundamentals of the Numerical Method

A general class of second-order nonlinear ordinary differ-
ential equation can be expressed as

2

∑
k=0

Pk(x)y(k)(x)+
2

∑
p=0

p

∑
q=0

Qpq(x)y(p)(x)y(q)(x) = g(x),

(1)

with the initial conditions

1

∑
k=0

ak jy(k)(a) = λ j, j = 0,1. (2)

where the functions Pk(x), Qpq(x), y(x) and g(x) are de-
fined on [a,b].
The function y(x) is approximated by an Nth order polyno-
mial such as

y(x)∼= yN(x) =
N

∑
n=0

an Ln(x) (3)

where an’s are the unknown coefficients to be determined
and Ln(x)’s are the Lucas polynomials defined as follows
[31, 32].

Ln(x) =
b n

2c
∑
n=0

n
n− k

(
n− k

k

)
tn−2k

Our aim is to seek the approximate Lucas solution of Eq.
1, which can be expressed in matrix form (see [8, 9])

y(x)∼= yN(x) = L(x)A (4)

where

L(x) =
[

L0(x) L1(x) · · · LN(x)
]

and

A =
[

a0 a1 · · · aN
]T

.

The matrix form L(x) is

L(x) = T(x)MT . (5)

where T(x) =
[

1 x · · · xN ]
and M is a nonsingular

matrix given as in [8, 9].
Substituting Eq. 5 into Eq. 4 yields

yN(x) = T(x)MT A.

In order to find the kth derivative of the above equation, we
use the relation

L(k)(x) = L(x)Sk (6)

where S = (MT )−1BMT ,

S0 =


1 0 0 · · · 0
0 1 0 · · · 0
...

...
...

. . .
...

0 0 1 · · · 0

 ,

B =


0 1 0 · · · 0
0 0 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · N
0 0 0 · · · 0

 .
The relation in Eq. 6 enables to approximate the derivatives
of the solution as

y(k)(x)∼= y(k)N (x) = L(x)SkAk = 0,1,2, · · · ,m. (7)

In addition, by Eq. 7, we can easily present the matrix
forms of the expressions

(
y(0)(x)

)2
, y(1)(x)y(0)(x),

(
y(1)(x)

)2
, y(2)(x)y(1)(x),

y(2)(x)y(0)(x),
(

y(2)(x)
)2

similarly as follows(
y(0)(x)

)2
= L(x) L(x) A

y(1)(x) y(0)(x) = L(x) S L(x) A(
y(1)(x)

)2
= L(x) S L(x) S A

y(2)(x) y(1)(x) = L(x) S2 L(x) S A

y(2)(x) y(0)(x) = L(x) S2 L(x) A(
y(2)(x)

)2
= L(x) S2 L(x) S2 A

(8)

where

L(x) = diag [L(x)](N+1)×(N+1)2 ,

S = diag [S](N+1)2×(N+1)2 ,

S2 = diag
[
S2]

(N+1)2×(N+1)2

A =
[

a0 a1 · · · aN
]T

,

A =
[

a0A a1A · · · aNA
]T

,.

231



S. Gümgüm et al. / Lucas Polynomial Approach

Substituting the collocation points

xi = a+
b−a

N
i, i = 0,1, · · · ,N

into Eq. 1 gives

2

∑
k=0

Pk(xi)y(k)(x)+
2

∑
p=0

p

∑
q=0

Qpq(xi)y(p)(xi)y(q)(xi) = g(xi),

which can be written in matrix form as
2

∑
k=0

Pk Y(k)+
2

∑
p=0

p

∑
q=0

QpqY(p,q) = G (9)

where

Pk = diag
[

Pk(x0) Pk(x1) · · · Pk(xN)
]

and

Y(k) =


y(k)(x0)

y(k)(x1)
...

y(k)(xN)

 , Y(p,q) =


y(p)(x0)y(q)(x0)

y(p)(x1)y(q)(x1)
...

y(p)(xN)y(q)(xN)

 ,

G =


g(x0)
g(x1)

...
g(xN)

 .
When we insert the collocation points into each
equation in Eq. 9, we can write the matrices
Y(0,0),Y(1,0),Y(1,1),Y(2,0),Y(2,1) and Y(2,2) as follows

Y(0,0) = L∗0,0A, Y(1,0) = L∗1,0A, Y(1,1) = L∗1,1A

Y(2,0) = L∗2,0A, Y(2,1) = L∗2,1A, Y(2,2) = L∗2,2A
(10)

where

L∗0,0 =


L(x0)L(x0)

L(x1)L(x1)
...

L(xN)L(xN)

 , L∗1,0 =


L(x0)SL(x0)

L(x1)SL(x1)
...

L(xN)SL(xN)

 ,

L∗1,1 =


L(x0)S L(x0)S
L(x1)S L(x1)S

...
L(xN)S L(xN)S

 , L∗2,0 =


L(x0)S2 L(x0)

L(x1)S2 L(x1)
...

L(xN)S2 L(xN)

 ,

L∗2,1 =


L(x0)S2 L(x0)S
L(x1)S2 L(x1)S

...
L(xN)S2 L(xN)S

 ,

L∗2,2 =


L(x0)S2 L(x0)S2

L(x1)S2 L(x1)S2

...
L(xN)S2 L(xN)S2



3. Application of the Numerical Method

The fundamental matrix equation derived from Eq. 1 can
be stated by substituting the matrix relations in Eq. 7 and
Eq. 10 into Eq. 9 as

2

∑
k=0

Pk LSkA+
2

∑
p=0

p

∑
q=0

QpqL∗p,qA = G

which can also be expressed as

WA+VA = G (11)

where

W = [wi j] =
2

∑
k=0

Pk LSk; i, j = 0,1, · · · ,N

V = [vi j] =
2

∑
p=0

p

∑
q=0

QpqL∗p,q; i = 0,1, · · · ,N,

j = 0,1, · · · ,(N +1)2

The augmented matrix of the equation 11 is

[W;V;G] (12)

Following the same procedure the matrix equation for the
initial conditions given in Eq. 2 can be written as

UA+O∗A = λ

where

U =
[

u j0 u j1 · · · u jN
]

=
1

∑
k=0

(
ak jL(a)+bk jL(b)+ ck jL(c)

)
Sk, j = 0,1,

λ =
[

λ0 λ1
]T and 0∗ is the zero matrix in the form

0∗ =
[

0 0 · · · 0
]

2×(N+1)2 .

The augmented form of the above equation is[
U ; O∗ ; λ

]
(13)

Consequently, to find Lucas coefficients an, (n =
0,1, · · · ,N), by replacing the two row matrices 12 by the
last 2 rows (or any two rows) of the augmented matrix 13,
we obtain the resulting matrix[

W̃; Ṽ : G̃
]

4. Numerical examples and Discussion

In this section, four stiff problems are considered. In the
first two problems the exact solutions are obtained. The
third problem is the Bratu equation and the last one is the
Duffing equation which are both solved numerically and
compared with other numerical results where available.
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Problem 1: As a first example, we consider the following
nonlinear ordinary differential equation

y′′(x)+2y′(x)+ y(x)+ y2(x)− y′′(x)y′(x) = x2 + x+2

with the initial conditions y(0) = 0 and y′(0) = 1.
In this problem, P0(x) = 1, P1(x) = 2, P2(x) =
1, Q00(x,y) = 1, Q21(x,y) =−1, g(x) = x2 +x+2
when a = 0, b = 1 and N = 2, the collocation points are
computed as {x0 = 0, x1 = 1/2, x2 = 1}. Application of
the method gives the fundamental matrix equation of the
considered problem as

W =
2

∑
k=o

PkL SkA = P0L S0A+P1L S1A+P2L S2A

where

L =

 2 0 2
2 1

2
9
4

2 1 3

 , P0 =

 1 0 0
0 1 0
0 0 1

 ,

P1 =

 2 0 0
0 2 0
0 0 2

 , P2 =

 1 0 0
0 1 0
0 0 1

 ,
S0 =

 1 0 0
0 1 0
0 0 1

 , S1 =

 0 1
2 0

0 0 2
0 0 0

 ,
S2 =

 0 0 1
0 0 0
0 0 0


and hence

W =

 2 2 4
2 5

2
25
2

2 3 9


Let us now prepare

V = Q00L∗0,0 +Q21L∗2,1

Recall that

L∗0,0 =

 4 0 4 0 0 0 4 0 4
4 1 9

2 1 1
4

9
8

9
2

9
8

81
16

4 2 6 2 1 3 6 3 9

 ,
and

L∗2,1 =

 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 2 2
0 0 0 0 0 0 0 2 4

 .
Thus, the matrix V is obtained as

V =

 4 0 4 0 0 0 4 −2 4
4 1 9

2 1 1
4

9
8

9
2 − 7

8
49
16

4 2 6 2 1 3 6 1 5


The augmented matrix of the equation WA+VA = G is

[
W̃ ; Ṽ ; G̃

]
= 2 2 4 ; 4 0 4 0 0 0 4 −2 4 : 2

2 0 2 ; 0 0 0 0 0 0 0 0 0 : 0
0 1 0 ; 0 0 0 0 0 0 0 0 0 : 1


where

y(0) = 0⇒ y(0) = L(0)A = 0

y′(0) = 1⇒ y′(0) = L(0)SA = 1

and

[
2 0 2

]
A = 0⇒[

2 0 2 ; 0 0 0 0 0 0 0 0 0 ; 0
]

[
2 0 2

]  0 1
2 0

0 0 2
0 0 0

A = 1⇒

[
0 1 0 ; 0 0 0 0 0 0 0 0 0 ; 1

]
Solving this system, A is obtained as A =

[
0 1 0

]T
From Eq. 4, y(t) is obtained as

y(x) = L(t) A =
[

2 x x2 +2
] 0

1
0

 .
Thus, the solution of the problem appears as

y(x) = x,

which is the exact solution which shows that the present
method is accurate, efficient and applicable.

Problem 2: The second example is the well known Riccati
equation

y′(x)−3y(x)+ e−xy2(x) =−ex

y(0) = 0.

In this problem, P0(x) =−3, P1(x) = 1,
Q00(x,y) = e−x,
g(x) =−ex

and the collocation points when a = 0, b = 1 and N = 2
are computed as {x0 = 0, x1 = 1/2, x2 = 1}.
The fundamental matrix equation of the given equation is

W =
1

∑
k=o

PkL SkA = P0L S0A+P1L S1A
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where

L =

 2 0 2
2 1

2
9
4

2 1 3

 , P0 =

 −3 0 0
0 −3 0
0 0 −3

 ,

P1 =

 1 0 0
0 1 0
0 0 1

 , S0 =

 1 0 0
0 1 0
0 0 1

 ,
S1 =

 0 1
2 0

0 0 2
0 0 0

 , S2 =

 0 0 1
0 0 0
0 0 0


and hence, W is computed as

W =

 −6 1 −6
−6 −1

2
−23

4
6 −2 −7

 .
V is easily obtained via

V = Q00L∗0,0

Q00 =

 1 0 0
0 e−

1
2 0

0 0 e− 1

 ,
L∗0,0 =

 4 0 4 0 0 0 4 0 4
4 1 9

2 1 1
4

9
8

9
2

9
8

81
16

4 2 6 2 1 3 6 3 9


After solving the augmented matrix of the equation, A
yields A=

[
0 1 1/2

]T . From Eq. 4, y(t) is obtained
as

y(x) = L(t) A =
[

2 x x2 +2
] 0

1
1
2


=1+ x+

x2

2
∼= ex

Thus, the solution of the problem becomes y(x) = ex,
which is the exact solution.

Problem 3: We considered the classical Bratu’s problem
[16]

y′′(x)+λ ey(x) = 0, 0 < x < 1
y(0) = y(1) = 0

which has the exact solution for λ > 0, y(x) =

−2ln
[cosh((x−1/2)θ/2)

cosh(θ/4)

]
, where θ is the solution of

θ =
√

2λ cosh(θ/4).
The problem is solved by taking N = 4 and λ = 1. The
nonlinear term ey is approximated by 1+ y+ y2

2 . Table 1
presents the comparison of our method with the exact so-
lution and Decomposition Method (DM) with N = 6, [16]
at some particular points. One can see that the numerical
solutions obtained by the present method using a fourth or-
der polynomial has an accuracy up to four decimal places.
On the other hand, the solutions obtained from Adomian

Decomposition method using a sixth order polynomial has
an accuracy only up to third order decimal place except
for two points. Thus, we can say that the present method
is more effective since it enables us to solve the problem
with a better accuracy by using a less order polynomial.

Table 1. Comparison of the present method (PM) with
the exact solution (ES) and Decomposition method (DM)
[16]

xi ES PM. N =
4

DM,
N = 6
[16]

|e4(xi)| |e6(xi)|
[16]

0.1 0.049847 0.049517 0.047162 3.30e-04 2.69e-03
0.2 0.089190 0.088587 0.87168 6.03e-04 2.02e-03
0.3 0.117609 0.117694 0.117761 8.15e-04 1.52e-04
0.4 0.134790 0.133838 0.136992 9.53e-04 2.20e-03
0.5 0.140539 0.139540 0.143555 9.99e-04 3.02e-03
0.6 0.134790 0.133840 0.136992 9.50e-04 2.20e-03
0.7 0.117609 0.116798 0.117761 8.11e-04 1.52e-04
0.8 0.089190 0.088592 0.087168 5.98e-04 2.02e-03
0.9 0.049847 0.049520 0.047161 3.26e-04 2.69e-03

Fig. 1 shows the numerical and exact solutions of the
problem. It can be seen that the numerical solution matches
well with the exact solution. This shows that the present
method is effective even using a fourth order polynomial.
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Figure 1. Exact solution and computed solution for N = 4

Problem 4: The final example is the Duffing type equation

y′′(x)+ y′(x)− y(x)y′(x) = 2ex− e2x, x ∈ [0,0.5]
y(0) = y′(0) = 1

The exact solution of the problem is y(x) = ex. The prob-
lem is solved by taking N = 5 and N = 6 to find out the
order of the polynomial which is adequate to approximate
the exact solution. The numerical results and the exact
solution are presented in Fig. 2. From this figure, one can
see that the numerical solution for N = 5 does not match
with the exact solution for increasing values of t, but N = 6
matches well with the exact solution. In order to empha-
size this difference, the absolute errors for both values of
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N are given in Fig. 3. It can be seen that when N = 6 the
absolute errors are quite smaller. This shows that taking
N = 6 is adequate to solve this problem.
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Figure 2. Comparison of the exact solution and the ap-
proximated solutions for N = 5 and N = 6.
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Figure 3. Error analysis of the results for N = 5 and
N = 6.

5. Conclusion

In this paper, the Lucas matrix method is applied to solve
nonlinear ordinary differential equations. The method has
a simple and efficient structure, which makes it eligible
to solve systems of nonlinear algebraic equations, thus
greatly simplifying the problems. The proposed method
provides several prominent advantages compared to other
numerical methods. Main advantage is that the method
converts the nonlinear algebraic functions to a matrix sys-
tem then solves directly the system by eliminating rows
of the resulting matrix. Thus, the numerical solution is
immediately reached by inserting the obtained coefficients
into the solution form. This issue makes the method practi-
cal without using any iteration techniques for differential
equations of nonlinear type.
Four test problems are considered. In the first two prob-
lems, the application of the method results in the exact
solutions. The third and fourth problems are the Bratu
and Duffing equations, which are solved numerically and
compared with the analytical solutions and other numerical
solutions when available. One can see that the numerical

results have high accuracy even for quite small values of
N.
It is well known that many nonlinear ordinary differential
equations either do not have an analytical solutions or have
complex solutions which require numerical methods. In
order to solve such kind of problems, one has to verify
the numerical technique on equations where the analytical
solutions are known. Hence, the applications of the Lucas
matrix method can be extended to solve indicated type of
problems as it is eligible to solve stiff problems.
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