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Abstract — The main purpose of this paper is to introduce soft Keywords -

generalized topology on a soft set. The definitions of subspace soft Soft sets, generalized topology,
generalized topology and soft continuity of soft functions are soft generalized topology, Soft u-
introduced. Some basic concepts in soft generalized topological spaces  closure, soft(u, n)-continuous
are also defined and studied their properties. functions.

1. Introduction

Molodtsov [10] in 1999, initiated the concept of soft set theory as a mathematical tool for
modeling uncertainties. A soft set is a collection of approximate descriptions of an object.
Later other researchers like Maji et al. [8] have further improved the theory of soft sets.
NaimCagman et al. [4] modified the definition of soft sets which is similar to that of
Molodtsov. Csaszar [6] in 2002 introduced the concept of generalized topology and also
studied some of its basic properties. Let X be a nonempty set and & be a collection of subsets
of X. Then & is called a generalized topology (briefly GT) on X if and only if @€ £ and G;€
€ fori € JimpliesU;c; G; € &. In this paper, we begin with the basic definitions and results
related to soft set theory which are useful for subsequent sections. Basic notions and concepts
of soft generalized topological spaces such as soft basis, subspace soft generalized topology,
soft u-interior, soft u-closure, soft u-neighborhood, soft x-limit point, soft x-boundary, soft
u-exterior and soft continuity of soft functions are defined and studied their basic properties.
We then define soft generalized topology on an initial soft set and see that soft generalized
topology gives a parameterized family of generalized topologies on the initial universe.
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2. Preliminaries

In this section we recall some definitions and results defined and discussed in [4, 7, 8, 10].
Throughout this paper U denotes initial universe, E denotes the set of all possible parameters,
P (V) is the power set of U and A is a nonempty subset of E.

Definition 2.1.A soft set F, on the universe U is defined by the set of ordered pairs Fy =
{(e,fa(e)) /e €EE, fs(e) € P(U)}, where f, : E = P(U) such that f,(e)= 0 if e¢ A. Here
fa is called an approximate function of the soft set F,. The value of f,(e) may be arbitrary.
Some of them may be empty, some may have nonempty intersection. The set of all soft sets
over U with E as the parameter set will be denoted by S(U)e or simply S(U).

Definition 2.2.Let F, €S(U). If f,(e) = @ for all e € E, then F,is called an empty soft set,
denoted by Fy. f,(e) = @ means that there is no element in U related to the parameter e in E.
Therefore we do not display such elements in the soft sets as it is meaningless to consider
such parameters.

Definition 2.3.Let F, €S(U). If f,(e) = U for all e € E, then F, is called an A-universal soft
set, denoted by F5. If A = E, then the A-universal soft set is called an universal soft set,
denoted by Fg.

Definition 2.4.Let F,, Fg €S(U). Then Fg is a soft subset of F, denoted by Fg S Fy, if
fz(e) € fa(e), forall e E.

Definition 2.5.Let Fa, Fg €S(U). Then Fg and F, are soft equal, denoted by Fg = F,, if
fz(e) = fa(e), for all e€ E.

Definition 2.6. Let F,, Fg €S(U). Then, the soft union of Fyand Fg,denoted by F, U Fg, is
defined by the approximate function f; g(e) = fa(e) U fg(e).

Definition 2.7. Let F, Fg €S(U). Then, the soft intersection of Fyand Fg, denoted by F, N
Fg, is defined by the approximate function f,ng(e) = f4(e) N fz(e).

Definition 2.8. Let F5, Fg €S(U). Then, the soft difference of Fyand Fg,denoted by F, \ Fg,
is defined by the approximate function fy\g(e) = fa(e) \ fz(e).

Definition 2.9. Let F, €S(U). Then, the soft complement of F,,denoted by (F4)¢, is defined
by the approximate function f,c(e) = (f4(e))€, where (f4(e))€ is the complement of the set

fa(e), thatis, (f4(e))c =U \ fa(e)forall e E.
Cleary ((Fp)€)¢ = Faand(Fp)¢ = Fg.

Definition 2.10.Let F,€S(U). The soft power set of F,, denoted by P(F,), is defined by
P(Fa) = {Fa;/ Fa, € Fari €] € N},

Theorem 2.11. Let Fy, Fg, Fc €S(U). Then,

(1) FA V) FA = FA'
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FyN Fy= Fy.
F,U Fy = Fu.
FyN Fy = Fy.
F,U Fg = Fs.
FyN Fg = F,.

FyU (Fy)° = Fg.

Fyn (F)) = Fy.

FyU Fg = Fg UF,.

Fyn Fg= FgNFE,.

(FaU Fp)t = (Fp)° N (Fp)“.

(Fan Fp)t = (Fp)°U (Fp)“.

(FyU Fg) U Fe = F, U (Fg U Fp).

(Fyn Fg) N Fe= Fy,n (Fg N Fo).

FAU (Fg N Fo) = (F,U Fg) N (Fy U Fo).
Foan (Fg U Fo) = (Fyn Fg)U (Fy N Fe).

Definition 2.12.[7] Let S(U)e and S(V)k be the families of all soft sets over U and V,
respectively. Let ¢ : U = V and y : E - K be two mappings. The soft mapping ¢,:

S(U)e>S(V)k is defined as:

(1) Let Fp be a soft set in S(U)e. The image of F, under the soft mappinge,, is the soft
set over V, denoted by ©,(Fa) and is defined by ¢,(fa)(k) =

Ueeriwns o(fa(@). if xR NAE B ek
[} otherwise

(2) Let Gg be a soft set in S(V)k. The inverse image of Gg under the soft mappingg, is
the soft set over U, denoted by ¢, ~*(Gg) and is defined by

-1 -1 , if ;

The soft mapping ¢, is called injective, if ¢ and y are injective. The soft mapping ¢, is
called surjective, if ¢ and y are surjective.

Definition 2.13. Let ¢, S(U)e>S(V)k and 7,: S(V)k=>S(W)L, then the soft composition of

the soft

mappings ¢, and 7., denoted by ¢, o 7, is defined by ¢, 0 7, = (9 0 T) (0 o)-

Theorem 2.14. [7]Let S(U)e and S(V)k be the families of all soft sets over U and V,
respectively. Let Fy, Fg, Fy, € S(U)gandGy, Gg, G, € S(V)g. For a soft mappingse,:
S(U)e>S(V)k and t,: S(V)k—=>S(W)Lthe following statements are true:

1)
(2)

If FB c FA' then(pX(FB) c (pX(FA)
©y(Uies Fa,) = Uiey @y (Fa))-
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(3) @y (Nigj Fa,) S Niey @, (Fa,), equality holds if ¢, is injective.
(4)  Fa € @, (9, (F4)), equality holds if ¢, is injective.

(5)  @,(9, ' (F4)) € Fy4, equality holds if ¢, is surjective.

(6) If GB c GA’ then(pX_I(GB) c (px_l(GA).

M) ¢ (GR)) = (9 (Gr))°

(8) (Px_l(Uie] GBl-) = Uig ‘P)(_l(GBi)-

9) (p)(_l(niej Gg,) = Nigy (p)(_l(GBi)-

(10) (t50 (p)()_l = (p)(_lo Ta_l

3. Soft generalized topological spaces

Definition 3.1.Let F4,€S(U). A Soft Generalized Topology (SGT) on F,, denoted by u or
ur, is a collection of soft subsets of F, having the following properties:

(DFyen
(2){Fy, S Fy/T€TEN} © = Ui Fy, €1
The pair (Fy, p) is called a Soft Generalized Topological Space (SGTS)

Observe that F, € u must not hold.

Definition 3.2. Let F, €S(U) and u be the collection of all possible soft subsets of F,, then
wisaSGT on F,, and is called the discrete SGT on F,.

Definition 3.3. A soft generalized topology uon F,is said to be strong if F € u.
Definition3.4. Let (Fa, n)be a SGTS. Then, every element of x is called a soft u—open set.
Note: clearly Fy is a soft u—open set.

Definition 3.5. Let (F,, uy)and (Fy, u;) be SGTS’s. Then

(1) If u,2u4, then u, is soft finer than p,
(2) Ifu,ouq, then u, is soft strictly finer than p,
(3) If either u,2u, or uy2u, then u, is comparable with ..

Theorem 3.6. Let F, be a soft set and {u}j¢; be an indexed family of SGT’s on F4.Then
Njeyi; isaSGT on Fy and each u; ,j € ] is soft finer than N je; u;.

Proof. Since each uj,j € ] is a SGT on F,, the empty soft setFbelongs to each u;,j € ] and
S0 Fp € Njej 1. Let {Fg }ier be afamily of soft sets in N ¢, 1. Then each Fg belongs to each
pj- But u;, being a SGT on Fy, is closed under arbitrary soft unions. So U;¢, Fg, € p; for
each j € J. Thus U;e; F, € Njey1;. HenceNje;uj is a SGT on Fy.Clearly eachy;,j €] is
soft finer than N e, u;.m
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Remark 3.7. Let (F4, uy)and (F4, uy)be SGTS’s on Fy. Then (F4, uy U uy) may not be a
SGTSon F,.

Example 3.8. Let U = {hy, ho, h3, hs, hs}, A = E = {e1, €2}, Fa = {(e1, {h1, h2, h3, ha}), (e2,
{h2, hs})}. Let (Fy, pq) and (Fy, uz)be two SGTS’s on Fp where pi= {Fg, Fy,, Fa, }, p2 =
{Fp, Fay, Fa}, Where Fy, = {(es, {hs, h2}), (€2, 0P}, Fi, = {(es, {0ed), (oo, {hah)}, By, =
{(e1, {hs, ha})}, E4, = {(er, {hs, ha}), (e2, {hs})}. Now define x = p; U p, =
{F3,Fa,, Fa,, Fa,y Fa,}- Then Fy U Fy = {(e1, {h1, h2, h3, ha}), (€2, {h2})} €u. Hence x is not
aSGT on Fy.

Theorem 3.9. Let F, be a soft set and # be a family of soft subsets of F,. Then there exists
a unique SGT u on F4 such that it is the smallest SGT on F, containing 7.

Proof. Consider the collection of all SGT’s on F, which contains # (as subsets of P (F,)).
This family is non-empty, for the discrete SGT (i.e, the entire power set P(F,)) surely
contains #. Now let « be the intersection of the members of this collection. By theorem3.6, u
is a SGT on F,, it contains # and clearly it is the smallest SGT containing #, for any such
SGT will be a member of the collection of SGT’s just considered and hence soft finer than
its intersections viz, u. Uniqueness of x is trivial.m

Definition 3.10. Let (Fa, 1) be a SGTS. A sub family 8B of 4 is said to be a soft basis for u
if every member of x can be expressed as the soft union of some members of B.

Theorem 3.11. Let (F,, 1)be a SGTS and B<u. Then B is a soft basis for x if and only if
for each soft u-open setF;, and each a €F, there exists Fg€B such that a €Fg and Fz S F;;.

Proof. First suppose that B is a soft basis for u. Let F,; be a soft u-open set and o €F;. Then
Fg; can be written as the soft union of some members of B, say, F; = Ui¢; Fp, where J is an

index set and Fg €8, V i. Since o EF, there exists j € J such that a €Fp,. Take this Fg, as
the set F required in the assertion.

Conversely, suppose that the given condition holds. Let Fj, be a soft u-open set of F,. For
each o €Fp, there exists Fz €8 such that a €Fg_ and Fp S Fj. Clearly Fp = Uger,, Fp, -
Thus every member of x can be expressed as the soft union of some members of 8. Hence
B is a soft basis for . m

Theorem 3.12.Two distinct SGT’s can never have the same family of soft subsets as a soft
basis for both of them.

Proof. Let u; and u, be two SGT’s on a soft set F, and each have 8B as a soft basis. If F;€u,,
then F;; can be expressed as the soft union of some members of B; these members are also
members of u,, since BCu,. But u,, being a SGT, is closed under arbitrary soft unions,
Fz€u,. Thus u, Su,. Similarly u, Sp, and hence p;= u,.m
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Theorem3.13. Let (Fy, uq) and (Fy, uy) be two SGTS’s for a soft set F, having soft basis B1
and B respectively. Then u, is soft finer than y, if and only if every member of $B: can be
expressed as the soft union of some members of Bo..

Theorem 3.14. Let F, be a soft set and B be a family of its soft subsets. Then there exists a
SGT on F, with B as a soft basis.

Proof. Let B= {Fp,/ Fg, S Fs,i € J} U Fy S P(F,). Define u = {F;SF, | V a €F;, there
exists Fg €8 such that a €Fp, and Fg SF;}.i.e,u = {UFg / Fp, €8B}. We assert that yisa SGT
on F,. Clearly Fy€u. Let {FHj}]-E]eu and assume thatFy, = Ujg FH].. To show Fy€u. Now,
since each FH]. €E U, FH], = Uie1 F, F, € B. Then Fy = Ujej(Uier F,) € p. Hence u is a
SGTon F,. By theorem 3.11, it follows that B is a soft basis for x.m

Definition 3.15. Let (Fy, 1) be a SGTS andFg € Fy. Then the collection pp, = {Fp N

Fg / Fp € u} is called a Subspace Soft Generalized Topology (SSGT) on Fg. The pair (Fg,
ur,) is called a Soft Generalized Topological Subspace (SGTSS) of Fy.

Theorem 3.16. Let (Fa, u)be a SGTS and Fg © F5. Then a SSGT on Fy is a SGT.

Proof. Since Fy € u, Fy N Fg = Fy € pp,. Suppose {Fg }iej € Up,. Since each F;, € up, =
Fg, = Fp, N Fg where F, €u. Now consider U;e; Fg;, = Uie;(Fp, N Fg) = (Uie; Fp,)) N Fg €
Urg, Since u is closed under arbitrary soft unions.m

Theorem 3.17. Let (F, u)be a SGTS. If B is a soft basis for u, then the collection B, =
{Fp, N Fg / Fp, € B,i € J} is a soft basis for the SSGT pp, 0n Fp.

Proof. Let F; be an arbitrary element of the SSGT on Fg. Then F; = Fy N Fg where
Fy€u.Because Fy€u, Fy can be expressed as the soft union of some elements of B.i.e, Fy =
Urp, e Fp,. ThereforeF = (Ur, es Fp,) N Fg = Up, eg(Fp, N Fg). Thus each element of
the SSGT ug, on Fg is the soft union of members of B.. Hence B, is a soft basis for the
SSGTon Fg.m

Definition3.18. Let (Fa, 1) be a SGTS and Fg € F4. Then the soft u-interior of Fg denoted
by (F5)° is defined as the soft union of all soft x-open subsets of Fg.

Note that (F)° is the largest soft u-open set that is contained in Fg.

Theorem 3.19. Let (F4, 1) be a SGTS and Fg € F,. Then Fy is a soft x-open set if and only
if Fg= (Fp)°.
Proof. Assume that Fp is a soft x-open set. Then the largest soft x«-open set contained in Fg

is Fg itself. Therefore (Fg)°= Fj.

Conversely, assume that Fz= (Fg)°. Since (Fg)? is the soft union of all soft x-open subsets
of Fz and u is closed under arbitrary soft union, (Fz)° is soft u-open. If (F5)°= Fg, then Fg
is a soft u-open set.m
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Theorem 3.20. Let (Fa, p) be a SGTS and Fg, Fy; € F4. Then

(1) ((Fe)*)° = (Fp)°

(2) Fg € Fy = (Fg)° € (Fp)°
() (Fe)° N (Fy)° 2 (Fg N Fy)°
(4) (Fs)° U (Fy)° < (Fg U Fy)°
(5) (Fg)° € Fg

Proof.

(1) Let (F;)°= Fp, then Fpeu if and only if Fp, = (Fp)°. Therefore ((F;)°)° = (F;)°

(2) Let F;SFy. Since the soft u-interior of a soft set is the largest soft u-open set
contained in that soft set. Therefore (F;)°SF; and (Fy)°SFy. The largest soft u-
open set that is contained in Fyis (Fy)°. Hence F; CSFy=(F;)°S(Fy)°.

(3) F; N FySFzandF; N FySFy. Then (F; N Fy)°S(F;)° and (F; N Fy)°<S(Fy)°.
Therefore (F; N Fy)°<S(F;)° N (Fy)°.

(4) (F;)°CSFgzand(Fy)°CSFy. Then (F;)° U (Fy)°CSF; U Fy. (F; U Fy)is the largest
soft u-open set that is contained in F; U Fy. Hence (F;)° U (Fy)° € (F; U Fy)°.

(5) Trivial.m

Definition 3.21. Let (Fa, u) be a SGTS and Fg € F4. Then Fg is said to be a soft u-closed
set if its soft complement (Fg)€ is a soft x-open set.

Theorem 3.22. Let (Fa, pt) be a SGTS and Fg S F4. Then the following conditions hold:

(1) The universal soft set Fg is soft u—closed.
(2) Arbitrary soft intersections of the soft x—closed sets are soft u—closed.

Proof.

(1) (Fg)¢ = Fp € u. That is, the soft complement of the universal soft set F is the soft
empty set Fy and Fy€u. Therefore Fy is soft y—closed

(2) {F,}iesbe a given collection of soft u—closed sets. To show N;e; Fg, is soft u—closed.
Now(Nies Fg,) = Uiey(Fg,)® € 1, since each F; is soft u-closed, its soft
complement (Fg, )€ is soft u-open. Therefore N;¢; Fy, is a soft u-closed set. m

Theorem 3.23. Let (Fa, 1) be a SGTS and (Fg, pp,) @ SGTSS of Fy. Then,

(1) Fgis soft ug,-open if and only if F; = Fiy N Fg for some soft x-open set Fy.
(2) Fgis soft up,-closed if and only if Fg = Fyy N Fgfor some soft u-closed set Fy.

Proof.

(1) Follows from the definition of a SSGT.
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(2) Fgis soft up,-closed &F; = Fg \ Fy for some Fy€up,. Now Fy € pp, = Fy =
Fp N Fg for some Fp€u. Therefore Fj; is soft ug,-closed & F; = Fg \ (Fp N Fg)for
some Fp eEu e Fg=Fg\Fp © Fg = Fg N (Fp)© © F; = Fg N Fy where Fy =
(Fp)© is a soft u-closed set. Hence Fg, is soft ug_-closed if and only if F = Fyy N Fg
for some soft u-closed set Fy;.m

Definition 3.24. Let (F5, u)be a SGTS and Fg € F,. Then the soft u-closure of Fg, denoted
byc(Fg)is defined as the soft intersection of all soft u-closed super sets of Fg.

Note that c(Fg) is the smallest soft x-closed set that containing Fg.

Theorem 3.25. Let (Fa, 1) be a SGTS and Fg S F,.Fgis a soft u-closed set if and only if Fg
= c(Fp).

Proof. The proof is trivial.
Theorem 3.26. Let (Fa, ) be a SGTS and Fg € Fu. Then (Fg)°SFgCSc(FR)

Proof. Indeed(Fg)° = U {Fp, / Fg, € u, Fp, < Fp,1 € J}.

Then f5,(€) € fa(e)andUse; fa,(€) € fa(e),V e € E.

S0(Fg)° € Fg.c(Fg) =N {Fp, / F5,° € u, F5 S Fy,,i € J}. Then f5(e) S f5,(e)and
fe(e) €N fg,(e),V e €E. So FgCc(Fg). Hence (Fg)°SFgSc(Fp).m

Theorem 3.27. Let (Fa, ) be a SGTS and Fg, Fy S F4. Then

(1) c(c(Fg)) = c(Fg)

(2) Fg < Fy = c(Fg) < c(Fy)
(3)c(Fg) Nc(Fy) 2 c(Fg N Fy)
(4) c(Fg) U c(Fy) < c(F U Fy)

Proof.

(1) Let c(F;)= Fp. Then Fy is a soft u-closed set. Therefore Fj, and c(Fp) are soft equal.
i.e, Fp=c(Fp). Hence c(c(Fg)) = c(Fy).

(2) Let F; € Fy. By the definition of soft u-closure, F;Sc(F;) and FySc(Fy) and the
smallest soft u-closed set that containing Fgis c(F;). Hencec(F;)Sc(Fy).

(3) c(Fg)andc(Fy) are soft u-closed sets. So their soft intersection c(F;) N c(Fy) is a
soft u-closed set. Since c(F; N Fy) is the smallest soft u-closed set that containing
Fe; N Fyand F; N FyCSc(Fg) N c(Fy), c(Fg) Nc(Fy) 2 c(Fg N Fy).

(4) Since F;CF; U Fyand FyCF; U Fy, c(F;)Sc(F; U Fy) and c(Fy)Sc(Fg U Fy).
Therefore c(F;) U c(Fy) € c(F; U Fy).m

Theorem 3.28. Let (Fa, u)be a SGTS and Fg € F,. Then the following hold:
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(1) If a €c(Fg), then every soft u-open set Fg; containing o soft intersect Fg.
(2) Supposing the SGT on Fy is given by a soft basis B. If o €c(Fg), then every soft
basis element Fy containing a soft intersect Fg.
Proof.

(1) First prove that if a €c(Fg), then every soft u-open set F; containing a soft intersect
Fg. It is equivalent to prove that if there exists a soft x-open set F containing o that
does not soft intersect Fg, then o €c(Fg). Assume that Fg N Fg= Fy, where Fg€pu, a
€Fg. Then (F;)¢ is a soft u-closed set and FgS(F;)¢. By the definition of soft -
closure, c(Fg) is the smallest soft u-closed set containing Fg.
Thereforec(Fg) S (F;)“and therefore o cannot be in c(Fg).

(2) If a €c(Fg), then every soft u-open set F; containing a soft intersect Fg. i.e, If a
€c(Fg), then Fg N Fg # Fy, V Fg€w, and o €F;. Since Fg is soft x-open, it can be
expressed as the soft union of some members of the soft basis. So every soft basis
element Fy containing a soft intersect Fg.m

Remark 3.29. The converse of the above theorem need not be true.

Theorem 3.30. Let (Fa, 1) be a SGTS and Fg, Fg € F4. Then

1) c((F)9) = ((Fp)°)°
(@) ((Fe))° = (c(Fe))*
(3) (Fp)° = (c((Fp)))*
(4) c(Fg) = ((Fa))*)°
(5) (Fs \ F5)° < (F5)° \ (F5)°

Proof.

(1) (Fg)° = U{Fg, / Fg, € i, Fg,  Fg,i € J}. ((Fg)°)° =N {(Fp,)°/ Fp, € u, (Fp)° <
(Fg,)¢, i € J}=c((Fp)®), by thedefinition of soft u-closure.

(2) Consider the definitions of soft u-closure and soft w-interior, c(Fg) =n
{Fs, /| (Fs)* € uFg S Fgui €]} (c(Fe)© =[N {Fg, / (Fs)° € wFs S Fg,i €
TN =U{(Fe) ] (Fe)® €, (Fg,) < (F)©,i € J} = ((Fe))°.

(3) Obtained by taking the soft complements of (1)

(4) Obtained by taking the soft complements of (2)

(5) (Fp \ Fe)° = (Fs N (F5)9)? € (Fp)° N ((Fg)9)° = (Fp)° N (c(Fg))® & (Fp)° N
((Fe)*) € (Fp)° \ (F)°.m

Definition 3.31. Let (F4, u)be a SGTS and o €F,. If there is a soft u-open set Fg such that
a EFg, then Fy is called a soft x-open neighborhood or soft x-nbd of a. The set of all soft u-
nbds of a, denoted by y(a), is called the family of soft u-nbds of a. i.e, y(a)= {Fg / Fg€u, a
€EFg}.

Theorem 3.32.Let (Fa, 1) bea SGTS and Fg, Fy € F5. Then
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(1) if Fg€ y(a), then a EF;
(2) if Fg€ y(a) and F;CSFy where Fy € u, then Fy€ y(a)
(3) Fgis a soft u-open if and only if F contains a soft x-nbd of each of its points.

Proof.

(1) Since F; is a soft u -nbd of a, Fg is a soft x -open set such that o EF.

(2) Assume that F; € FyandFy € p. If Fg is a soft u-nbd of a, then a EF;= a EFy.
Therefore Fy is a soft u-nbd of a.

(3) Suppose F; is soft u-open. Then o €F;=F is a soft u-nbd of each o €Fj. Conversely,
if each o €Fg has a soft u-nbdFy , € F, then Fg = {o./ o €Fg} SUger, Fu, S Fo-
Or F; = Uqer, Fu - This implies that F is the soft union of soft u-open sets. Thus
F; is a soft u-open set.m

Definition 3.33. Let (Fa, 1) be a SGTS, Fg € Faand a €F,. If every soft u-nbd of a soft
intersect Fg in some point other than a itself, then a is called soft x-limit point of Fg. The set
of all soft u-limit points of Fg is denoted by (Fg)'. In other words, if (Fa,u) is a SGTS,
Fg, Fg € Fp and o €F,. Then o €(Fg)’ if and only if Fg N (Fg \ {a}) # Fy for all Fgey(w).

Remark 3.34. If a € c(Fg \ {a}), then by theorem 3.28.(1), F; N (Fz \ {a}) # F, forevery
soft u-open set Fg containing o, which implies @ € (Fg)'.

Theorem 3.35. Let (Fa, u) be a SGTS, Fg € Fa. Then c¢(Fg)cFgU(Fg)’

Proof. If a €c(Fg), then either a EFg or o €Fp. First consider o €Fg. Then a EFgU(Fg)’ and
hence c(Fg)cFgU(Fg)'. Next consider if o € Fg. Then the soft sets Fg and (Fg\ {a}) are soft
equal. So a €Ec(Fg)=>Fg N Fg # Fy,VFGE y(a) =F; N (Fg\ {a}) # F3= o €(Fg)'= a
EFgU(Fg)'. So c(Fg)cFgU(Fg)'. Hence in both case c(Fg)cFgU(Fg)'.m

Theorem 3.36. Let (Fa, p) be a SGTS and Fg S Fy. If (Fg)'SFg, then Fy is soft u-closed.

Proof. Assume that (Fg)'SFg. Then Fg = FgU(Fg)'. But by the above
theoremFgU(Fg)'2c(Fg). Therefore Fg2c(Fg)=Fg= c(Fg). Hence Fy is soft u-closed. m

Theorem 3.37.Let (Fa, 1) be a SGTS and Fg;, Fyy € F5. Then

(1) Fg € Fy = (Fg)' € (Fw)'
(2) (Fg n Fy)' < (Fg)' n (Fp)'
() (FeU Fy)' 2 (Fg)'V (F)'

Proof.

(1) Since FgSFy, (Fe\ {o}) € (Fu\ {0}). Suppose a €(Fg)'=Fp N (Fe\ {a}) # Fo,
VFp€ y(a) =Fp N (Fy\ {a}) # Fp, YFp € y(a) = o €(Fy)'. Hence (Fg)' € (Fu)'.

(2) F; N FySFzandF; N FySFy. Then (Fz N Fy)'S(Fg)' and (F; N Fy)'<S(Fy)'.
Therefore(F; N Fy)' € (Fg)' n (Fy)'.
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(3) c((Fg U Fy) \ {a}) = c((Fg VU Fy) n{a}) = c((Fg n{a})u (Fyn
{a}))2c(F; n{a}) Uc(Fy n{a}) = c(F; \ {a}) Uc(Fy \ {a}). Therefore a €
[c(Fe \{aD) Uc(Fy \{aD)] = a € c((Fg U Fy) \{a}). ie, a€c(F;\{a}) or
a € c(Fy\{a})=>a € c((F; UFy) \{a}). ie, o €(F;)" or a €(Fy)'=a € (F; U
Fy)'=a € (F5)' U (Fp)'=a € (FgUFy) = ((Fg)' VU (Fn)) € (Fg U Fy)'.m

Definition 3.38. Let (Fa, ) be a SGTS and Fg € F,. Then the soft u-boundary of Fg,
denoted by (Fg)?, is defined by (Fz)? = c(Fg) N c((Fg)°).

Theorem 3.39.Let (Fa, 1) bea SGTS and Fg € F,. Then

(1) (Fp)’Sc(Fs)
(2) (Fp)” = c(Fp) \ (F5)°

Proof.

(1) (Fp)? = c(Fg) N c((Fp)°) = (Fp)® € c(Fp).
(2) c(Fg) \ (Fp)® = c(Fg) N ((Fp)*)° = c(Fg) N (U rp,crp Fp)*
FBl.Eu,iej
=c(Fg) N (N@Ep)cesye (Fs))=c(Fe) N c((Fp)) = (Fp)".m

Fp,€u, i€]

Theorem 3.40. Let (Fa, p) be a SGTS and Fg, Fy € F,5. Then the following hold:

(1) ((Fa)P)¢ = (Fe)° U ((Fe)9)°

(2) c(Fg) = Fg U (Fg)°

(3) (Fs)° = Fg \ (Fa)b

(4) (Fe)? = c(Fg) N c((Fe)) = c(Fa) \ (Fg)°

Proof.

(D) (Fe)? U ((Fa))°® = (((Fe)®)D U (((FeDD)E = [((Fe)) N ((FDND]e =
[c((F)) nc(Fy)]¢ = ((F;)P)C, by theorem 3.30.(1) and (2).m

(2) Fs U (Fg)P = Fg U [c(Fg) N c((Fg)9)] = [Fe U c(FQ)] N [Fe U c((Fe)9)] =
c(Fg) N [Fg U c((Fg))] = c(Fg) N Fg = c(Fp).

(3) Fo \ (Fg)? = Fg N ((Fg)P)¢ = Fg N [(F5)° U ((F5)€)°1, by (1) = [Fs N (Fg)°] U
[Fe N ((F6))° = (Fe)° U Fy = (F¢)°.

(4) Follows from definition and theorem 3.30.(1).m

Theorem 3.41. Let (Fa, u)be a SGTS and Fg € F,. Then the following hold:

(1) (Fg)? n (F)° = Fy
(2) Fg is soft p-open iff Fg N (F;)? = Fp.
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Theorem 3.42. Let (Fa, u)be a SGTS and F; € F,. Then (F;)? = Fy if and only if Fg is
both soft x-open and soft u-closed.

Proof. Assume that (F;)? = Fy. (F;)? = Fy = c(Fg) N c((Fg)¢) = Fy = F; N ((Fg)0)°¢ =
Fy = F; € (F;)°, by theorem 3.30.(1). This implies that F; is a soft u-open set. Again
by theorem 3.30.(1), (F;)? = Fy = c¢(Fg) N c((F5)¢) = Fy = ¢(Fg) < (c((Fg)©))° =
(Fg)° € F; = c(F;) < Fg. This implies that F;; is a soft u-closed set. Conversely assume
that F; is both soft u-closed and soft u-open. Then (F;)? = c(F;) nc((F;)¢) = Fz n
((Fg)°)¢ = Fz N (F;)¢ = Fy, by theorem 3.30.(1).m

Definition 3.43. Let (F5, u)be a SGTS and Fg € F4. Then the soft u-exterior of Fg is denoted
by (Fg)¢and is defined as (Fz)¢ = ((Fg)¢)°.

Note that the soft u-exterior of Fy is the largest soft x-open set contained in (Fg)€.

Theorem 3.44. Let (Fa, p) be a SGTS and Fg, Fy € F,. Then,

(1) (Fp)° = ((Fp)9)°
(2) (Fg U Fy)® < (Fg)® N (Fp)°
() (Fe N Fy)® 2 (Fg)® U (Fu)°

Proof.

(1) Follows from definition

(2) (Fe U Fy)® = ((Fg U F))? = ((Fo)* N (Fr))° < ((Fe))° n ((Fp)©)° =
(Fo) N (Fu)®.

(3) (Fe) U (Fp)® = ((Fe))° U ((Fr))° < ((Fe)° U (Fu)9)° = ((F N Fy)©)° =
(FgNFy)é.m

Theorem 3.45. Let (Fa, p) be a SGTS and Fg, Fy € Fa. Then

(1) ((F)")° = (Fe)° U (Fe)°.
(2) (F5)° U (Fg)° U (Fg)® = Fg

Proof.

(1) By theorem 3.40.(1), ((F5)?)¢ = (F;)° U ((F;))°. Also (F;)° U ((F;))° =
(Fg)° U (Fo)°.

(2) By theorem 3.45(1), ((F;)P)¢ = (F;)° U (Fg)¢. Therefore (F;)° U (Fg)°uU
(Fg)? = [(F§)° U (F)?1 U (Fe)? = ((Fe)")° U (Fg)® = Fg.m

Theorem 3.46. Let (Fa, u)be a SGTS and F; € Fa. Then,(F;)? N (Fg)€ = Fy.

Theorem 3.47. Let (Fa, u)be a SGTS. Then the collection p. = {fz(e) / there exists Fg€u
such that (e, fz(e)) € Fg} for each e€ E, is a generalized topology on U.
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Proof. Let u. = {f5(e) / there exists Fg€u such that (e, fz(e)) € Fg} for each e€ E. Clearly
DEu,, since Fy€u. Now let {f5 (e)}; be a collection of sets in u.. Then there exists soft sets
Fg,€u, i € Jsuch that (e, f,(e)) € Fg,. Since u is a SGT, {Fp }icj € 4 = U;e; Fp, € p. I8,
(e, Ui f5,(€)) € Uiej Fg, = Uie f,(e) € pe. Hence pisaGT on U.m

The above theorem shows that corresponding to each parameter eeE, we have a GTu.0n U.
Thus a SGT on F4 gives a parameterized family of GT’s on U. The converse of the above
theorem does not hold.

Example 3.48. Let U = {hy, hz, h3, ha}, E = {ey, e2, e3}, A = {e1, e2} € E and F, = {(e1, {hs,
hz, hs, ha}), (62, {h2, h3, ha})}. Letu = {Fy, Fy , Fa,, Fa,}, Where F, ={(e1, {hs}), (e2, {h2})},
Fa,= {(e1, {h2, ha}), (e2, {h2, ha})}, Fa,= {(e1, {h2, h3, ha})}. Then u is not a SGT on Fy,
because Fy, U Fy,= {(e1, {h2, hs, ha}), (€2, {h2, ha})} &u. Also pe, ={®, {hs}, {h2, ha}, {hz,
hs, ha}} and pe,= {@, {h2},{h2, ha}} are GT’s on U. This example shows that any collection
of soft sets need not to be a SGT on Fy, even if the collection corresponding to each parameter
definesa GT on U.

Theorem 3.49. Let (Fa, u)be a SGTS and Fg € F,. Then (ur,). is a subspace of the GT p,
for each e€ E.

Proof. If (Fa, p) isa SGTS, then u. = {fp(e) / there exists Fp€u such that (e, fp(e)) € Fp}
isaGT on U. Now forany e€ E, (ug, ). = {f;(e) / there exists FsEug such that (e, f(e)) €
Fc} ={f;(e) I there exists Fy€u such that F; = Fy N Fg, (e, fung(e)) € Fy N Fg} =

{fu(e) N fg(e) / fu(e) € ue suchthat (e, fy(e) N fz(e)) € Fy N Fg}. i.e, every element of
(urg)e 1s the intersection of an element f (e) in u. with fg(e). Thus (ug,). is a subspace

of the GTS p,.m

4. Soft continuous functions in SGTS

Definition 4.1. Let (Fa,u) and (Fg,n) be two SGTS’s. A soft function ¢, : (Fa,u) -
(Fg,n) is said to be soft (u, n)-continuous (briefly, soft continuous), if for each soft #-open
subset F;of Fg, the inverse image (px_l(FG) is a soft y-open subset of F,.

Theorem 4.2. Every soft function from a discrete SGTS into any SGTS is soft continuous.

Proof. Let (Fa,u) and (Fg,n) be two SGTS’s. Suppose uis a discrete SGT. Let ¢, :
(Fa, 1) = (Fg,n)be asoft function. Then for every soft -open setF;of Fg, the inverse image
@, *(Fg) is soft u-open with respect to the discrete SGT pon Fa. Thus ¢, is soft
continuous. m

Theorem 4.3. Let (Fa, u) and (Fg, 1) be two SGTS’s and ¢, : (Fa, u) = (Fp,n) be a soft
function. Suppose the SGT # on Fg is given by a soft basis B. Then ¢, is soft continuous if
the inverse image of every soft basis element is soft x-open.
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Proof. Suppose that the inverse image of every soft basis element is soft x-open. Let F; be
an arbitrary »#-open subset of Fg. Then by the definition of soft basis, Fgcan be written as the
soft union of members of the soft basis B of 5. i.e, Fg = Up,ep Fp- Then by theorem 2.14.(8),

®y '(Fe) = 9, ' (Uppes Fp) = Uppes @, (Fp) € u. Thusg, is soft continuous. m

Theorem 4.4. Let (Fa,u) and (Fg, 1) be two SGTS’s and ¢, : (Fa, i) — (Fg,m)be a soft
function. Then ¢, is soft continuous if and only if for every soft #-closed subset Fyof Fg, the
soft set ¢, ! (Fy) is soft u-closed in Fy.

Proof. Assume that ¢, is soft continuous. Let Fy be a soft n-closed set of F. Then (Fy) €
n. By hypothesis and theorem 2.14.(7), ¢, '((Fy)) € p. i€, [@, "(Fy)]° € u. Thus
@~ (Fy) is a soft u-closed set of Fy.

Conversely, assume that for every soft #-closed subset Fy;of Fg, the soft set (P)(_l(FH) is soft
u-closed in Fy. Let F; be a soft #-open subset of Fg. Then (Fg)¢ is soft #-closed subset of
Fg. Therefore by hypothesis, ¢, ~'((Fg)°) is a soft u-closed set of F,. i.e,by theorem

2.14.(7), [, (Fg)]€ is a soft u-closed set of Fy. i.e, ¢, " (Fg) is a soft u-open set of Fy.
Thus ¢, is soft continuous. m

Theorem 4.5. Let (Fa,u) and (Fg,n) be two SGTS’s and ¢, : (Fa, ) — (Fg,n)be a soft
function. Then ¢, is soft continuous if and only if for every soft subset F;0f F, ¢, (c(Fg)) <

c(py(Fa))

Proof. Assume that ¢, is soft continuous. Since c(¢, (Fg)) is a soft #-closed set in Fg,
(px_l(c(gox(FG))) is a soft u-closed set in F, containing Fg. Also c(Fg) is the smallest soft
p-closed set in Fycontaining Fg. Hence c(Fg) < ¢, "(c(¢,(Fg))). Therefore by theorem

2.14.(5), 9, (c(Fe)) € c(@y(Fo))-

Conversely, assume that (Fy, 1) and (Fg,n)are two SGTS’s and ¢, : (Fa, ) = (Fg,1) be a
soft function. Suppose for every soft subset Fgof Fy, ¢, (c(Fg)) © c(@,(Fg)). AssumeFy is
a soft #-closed subset of Fg. To show that ¢, ~* (Fy) is soft u-closed in Fy, it suffices to show
that the soft u-closure of gox‘l(FH) is contained in ¢, ' (Fy). If a € c(qox‘l(FH)),then by
hypothesis and by theorem 2.14.(5), ¢, (@) € ¢, (c(@, ' (Fu))) < clo, (o, ' (Fu))] C
c(Fy) = Fy so that a € ¢, *(Fy). Thus c(¢, ' (Fa)) € ¢, '(Fy) as desired. By
theorem4.4.,¢, is soft continuous. m

Theorem 4.6. Let (Fa, 1), (Fg,n) and (F¢, A) be SGTS’s. Then the following hold:

(1) If Fg is asoft subspace of Fy, then the soft function ¢, : F; — Fadefined by ¢, (a) =
a is soft continuous.

(2) If the soft functions ¢, : F, — Fg and 7,: Fg — F¢ are soft continuous, then the soft
composite function 7, o ¢, is also soft continuous.
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Proof.

(1) Suppose Fyis a soft u-open subset of F,, then ¢, ~* (Fy) = Fy N Fg which is soft u -

open in Fg, by definition of the SSGT. Hence ¢, is soft continuous.

(2) If Fy is a soft A-open subset of F, then since 7, is soft continuous, 7,1 (Fy) is a soft

n-open subset of Fg. Again as ¢, is soft continuous,¢, ~*(t, " (Fy)) is a soft u-open
subset of F,. But we have (1,0 ¢,)~"' = ¢, to1,~!, by theorem2.14.(10). So
(75 0 9,) "' (Fn)is soft u-open subset of F whenever Fy is soft A-open subset of F¢.
Hence 7, 0 ¢, is soft continuous.m

5. Conclusion

In the present work, we introduced the concept of SGTS which is defined on an initial soft
set and gave basic definitions and theorems of this concept. We proved that SGT gives a
parameterized family of generalized topologies on the initial universe. We hope that the
findings in this paper will help researcher enhance and promote the further study on SGT.
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