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1. Introduction 
 

Molodtsov [10] in 1999, initiated the concept of soft set theory as a mathematical tool for 

modeling uncertainties. A soft set is a collection of approximate descriptions of an object. 

Later other researchers like Maji et al. [8] have further improved the theory of soft sets. 

NaimCagman et al. [4] modified the definition of soft sets which is similar to that of 

Molodtsov. Csaszar [6] in 2002 introduced the concept of generalized topology and also 

studied some of its basic properties. Let X be a nonempty set and ξ be a collection of subsets 

of X. Then ξ is called a generalized topology (briefly GT) on X if and only if ∅∈ ξ and 𝐺𝑖∈ 

ξ for i ∈ J implies⋃ 𝐺𝑖𝑖∈𝐽  ∈ ξ. In this paper, we begin with the basic definitions and results 

related to soft set theory which are useful for subsequent sections. Basic notions and concepts 

of soft generalized topological spaces such as soft basis, subspace soft generalized topology, 

soft μ-interior, soft μ-closure, soft μ-neighborhood, soft μ-limit point, soft μ-boundary, soft 

μ-exterior and soft continuity of soft functions are defined and studied their basic properties. 

We then define soft generalized topology on an initial soft set and see that soft generalized 

topology gives a parameterized family of generalized topologies on the initial universe. 
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2. Preliminaries 
 

In this section we recall some definitions and results defined and discussed in [4, 7, 8, 10]. 

Throughout this paper U denotes initial universe, E denotes the set of all possible parameters, 

𝒫(U) is the power set of U and A is a nonempty subset of E. 

Definition 2.1.A soft set 𝐹A on the universe U is defined by the set of ordered pairs 𝐹A =
 {(𝑒, 𝑓𝐴(𝑒)) / 𝑒 ∈ 𝐸, 𝑓𝐴(𝑒) ∈ 𝒫(𝑈)}, where 𝑓𝐴 ∶ 𝐸 → 𝒫(𝑈) such that 𝑓𝐴(𝑒)= ∅ if e∉ A. Here 

𝑓𝐴 is called an approximate function of the soft set 𝐹A. The value of 𝑓𝐴(𝑒) may be arbitrary. 

Some of them may be empty, some may have nonempty intersection. The set of all soft sets 

over U with E as the parameter set will be denoted by S(U)E or simply S(U). 

 

Definition 2.2.Let 𝐹A ∈S(U). If 𝑓𝐴(𝑒) = ∅ for all e ∈ E, then 𝐹Ais called an empty soft set, 

denoted by 𝐹∅. 𝑓𝐴(𝑒) = ∅ means that there is no element in U related to the parameter e in E. 

Therefore we do not display such elements in the soft sets as it is meaningless to consider 

such parameters. 

Definition 2.3.Let 𝐹A ∈S(U). If 𝑓𝐴(𝑒) = U for all e ∈ E, then 𝐹A is called an A-universal soft 

set, denoted by 𝐹Ã. If A = E, then the A-universal soft set is called an universal soft set, 

denoted by 𝐹Ẽ. 

Definition 2.4.Let 𝐹A, 𝐹B ∈S(U). Then 𝐹B is a soft subset of 𝐹A, denoted by 𝐹B ⊆ 𝐹A, if 

𝑓𝐵(𝑒) ⊆ 𝑓𝐴(𝑒), for all e∈ E. 

Definition 2.5.Let 𝐹A, 𝐹B ∈S(U). Then 𝐹B and  𝐹A are soft equal, denoted by 𝐹B =  𝐹A, if 

𝑓𝐵(𝑒) = 𝑓𝐴(𝑒), for all e∈ E. 

Definition 2.6. Let 𝐹A, 𝐹B ∈S(U). Then, the soft union of 𝐹Aand 𝐹B,denoted by 𝐹𝐴 ∪  𝐹B, is 

defined by the approximate function 𝑓𝐴∪𝐵(𝑒) =  𝑓𝐴(𝑒)  ∪  𝑓𝐵(𝑒). 

Definition 2.7. Let 𝐹A, 𝐹B ∈S(U). Then, the soft intersection of 𝐹Aand 𝐹B, denoted by 𝐹𝐴 ∩

 𝐹B, is defined by the approximate function 𝑓𝐴∩𝐵(𝑒) =  𝑓𝐴(𝑒)  ∩  𝑓𝐵(𝑒). 

Definition 2.8. Let 𝐹A, 𝐹B ∈S(U). Then, the soft difference of 𝐹Aand 𝐹B,denoted by 𝐹𝐴 ∖ 𝐹B, 

is defined by the approximate function 𝑓𝐴∖𝐵(𝑒) =  𝑓𝐴(𝑒)  ∖  𝑓𝐵(𝑒). 

Definition 2.9. Let 𝐹A ∈S(U). Then, the soft complement of 𝐹A,denoted by (𝐹A)𝑐, is defined 

by the approximate function 𝑓𝐴𝑐(𝑒) = (𝑓𝐴(𝑒))𝑐, where (𝑓𝐴(𝑒))𝑐 is the complement of the set 

𝑓𝐴(𝑒), that is, (𝑓𝐴(𝑒))𝑐 = 𝑈 ∖  𝑓𝐴(𝑒)for all e∈ E. 

Cleary ((𝐹A)𝑐)c =  𝐹Aand(𝐹∅)𝑐 =  𝐹Ẽ. 

Definition 2.10.Let 𝐹A∈S(U). The soft power set of 𝐹A, denoted by 𝒫(𝐹A), is defined by 

𝒫(𝐹A) =  {𝐹𝐴𝑖
 / 𝐹𝐴𝑖

⊆ 𝐹𝐴, 𝑖 ∈ 𝐽 ⊆ 𝑁}. 

Theorem 2.11. Let 𝐹A, 𝐹B,  𝐹C ∈S(U). Then, 

(1) 𝐹𝐴 ∪ 𝐹A =  𝐹A. 



Journal of New Results in Science 4 (2014) 01-15                                                                          3 
 

(2) 𝐹𝐴 ∩ 𝐹A =  𝐹A. 

(3) 𝐹𝐴 ∪ 𝐹∅ =  𝐹A. 

(4) 𝐹𝐴 ∩ 𝐹∅ =  𝐹∅. 

(5) 𝐹𝐴 ∪ 𝐹Ẽ =  𝐹Ẽ. 

(6) 𝐹𝐴 ∩ 𝐹Ẽ =  𝐹A. 

(7) 𝐹𝐴 ∪ (𝐹A)𝑐 =  𝐹Ẽ. 

(8) 𝐹𝐴 ∩ (𝐹A)𝑐 =  𝐹∅. 

(9) 𝐹𝐴 ∪ 𝐹B =  𝐹B ∪ 𝐹𝐴. 

(10) 𝐹𝐴 ∩ 𝐹B =  𝐹B ∩ 𝐹𝐴. 

(11) (𝐹𝐴 ∪ 𝐹B)𝑐 =  (𝐹A)𝑐 ∩  (𝐹B)𝑐. 

(12) (𝐹𝐴 ∩ 𝐹B)𝑐 =  (𝐹A)𝑐 ∪  (𝐹B)𝑐. 

(13) (𝐹𝐴 ∪ 𝐹B)  ∪  𝐹C =  𝐹𝐴 ∪ (𝐹B  ∪  𝐹C). 

(14) (𝐹𝐴 ∩ 𝐹B)  ∩  𝐹C =  𝐹𝐴 ∩ (𝐹B  ∩  𝐹C). 

(15) 𝐹𝐴 ∪ (𝐹B  ∩  𝐹C)  =  (𝐹𝐴 ∪  𝐹B) ∩ (𝐹A  ∪  𝐹C). 

(16) 𝐹𝐴 ∩ (𝐹B  ∪  𝐹C)  =  (𝐹𝐴 ∩  𝐹B) ∪ (𝐹A  ∩  𝐹C). 

 

Definition 2.12.[7] Let S(U)E and S(V)K be the families of all soft sets over U and V, 

respectively. Let 𝜑 : U  V and 𝜒 : E  K be two mappings. The soft mapping  𝜑𝜒: 

S(U)ES(V)K is defined as: 

(1) Let 𝐹A be a soft set in S(U)E. The image of 𝐹A under the soft mapping𝜑𝜒 is the soft 

set over V, denoted by  𝜑𝜒(𝐹A) and is defined by 𝜑𝜒(𝑓A)(𝑘) =

 {
⋃    𝜑(𝑓A(𝑒)),      if    𝜒−1(𝑘) ∩  𝐴 ≠  ∅;𝑒 ∈ 𝜒−1(𝑘) ∩ 𝐴

∅,                        otherwise
for all 𝑘 ∈ 𝐾. 

 

(2) Let 𝐺B be a soft set in S(V)K. The inverse image of 𝐺B under the soft mapping𝜑𝜒 is 

the soft set over U, denoted by  𝜑𝜒
−1(𝐺B) and is defined by 

 

𝜑𝜒
−1(𝑔B)(𝑒) =  {

𝜑−1(𝑔B(𝜒(𝑒))),        if 𝜒(𝑒)  ∈ 𝐵;
∅,                             otherwise

for all 𝑒 ∈ 𝐸. 

 

The soft mapping 𝜑𝜒 is called injective, if 𝜑 and 𝜒 are injective. The soft mapping 𝜑𝜒 is 

called surjective, if 𝜑 and 𝜒 are surjective. 

Definition 2.13. Let 𝜑𝜒: S(U)ES(V)K and 𝜏𝜎: S(V)KS(W)L, then the soft composition of 

the soft mappings 𝜑𝜒 and 𝜏𝜎, denoted by 𝜑𝜒 𝑜 𝜏𝜎, is defined by 𝜑𝜒 𝑜 𝜏𝜎 = (𝜑 𝑜 𝜏)(𝜒 𝑜 𝜎). 

Theorem 2.14. [7]Let S(U)E and S(V)K be the families of all soft sets over U and V, 

respectively. Let 𝐹𝐴, 𝐹𝐵,  𝐹𝐴𝑖
∈ S(U)Eand𝐺𝐴, 𝐺𝐵 , 𝐺𝐵𝑖

∈ S(V)K. For a soft mappings𝜑𝜒: 

S(U)ES(V)K and 𝜏𝜎: S(V)KS(W)Lthe following statements are true: 

(1) If 𝐹𝐵 ⊆ 𝐹𝐴, then𝜑𝜒(𝐹𝐵) ⊆ 𝜑𝜒(𝐹𝐴). 

(2) 𝜑𝜒(⋃ 𝐹𝐴𝑖
) = ⋃ 𝜑𝜒(𝐹𝐴𝑖

)𝑖∈𝐽𝑖∈𝐽 . 
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(3) 𝜑𝜒(⋂ 𝐹𝐴𝑖
) ⊆ ⋂ 𝜑𝜒(𝐹𝐴𝑖

)𝑖∈𝐽𝑖∈𝐽 , equality holds if 𝜑𝜒 is injective. 

(4) 𝐹𝐴 ⊆ 𝜑𝜒
−1(𝜑𝜒(𝐹𝐴)), equality holds if 𝜑𝜒 is injective. 

(5) 𝜑𝜒(𝜑𝜒
−1(𝐹𝐴)) ⊆ 𝐹𝐴, equality holds if 𝜑𝜒 is surjective. 

(6) If 𝐺𝐵 ⊆ 𝐺𝐴, then𝜑𝜒
−1(𝐺𝐵) ⊆ 𝜑𝜒

−1(𝐺𝐴). 

(7) 𝜑𝜒
−1((𝐺𝐵)𝑐) =  (𝜑𝜒

−1(𝐺𝐵))𝑐 

(8) 𝜑𝜒
−1(⋃ 𝐺𝐵𝑖

) = ⋃ 𝜑𝜒
−1(𝐺𝐵𝑖

)𝑖∈𝐽𝑖∈𝐽 . 

(9) 𝜑𝜒
−1(⋂ 𝐺𝐵𝑖

) = ⋂ 𝜑𝜒
−1(𝐺𝐵𝑖

)𝑖∈𝐽𝑖∈𝐽 . 

(10) (𝜏𝜎 𝑜 𝜑𝜒)−1 =  𝜑𝜒
−1𝑜 𝜏𝜎

−1. 

 

 

3. Soft generalized topological spaces 
 

Definition 3.1.Let 𝐹A∈S(U). A Soft Generalized Topology (SGT) on 𝐹A, denoted by μ or 

𝜇𝐹𝐴
 is a collection of soft subsets of 𝐹A having the following properties: 

(1) 𝐹∅ ∈ 𝜇 

(2) {𝐹𝐴𝑖
⊆ 𝐹𝐴 / 𝑖 ∈ J ⊆ N}  ⊆  𝜇 ⇒ ⋃ 𝐹𝐴𝑖𝑖∈J ∈ 𝜇  

The pair (𝐹A, 𝜇) is called a Soft Generalized Topological Space (SGTS) 

Observe that 𝐹A ∈ 𝜇 must not hold. 

Definition 3.2. Let 𝐹𝐴 ∈S(U) and 𝜇 be the collection of all possible soft subsets of 𝐹𝐴, then 

𝜇 is a SGT on 𝐹𝐴, and is called the discrete SGT on 𝐹𝐴. 

Definition 3.3. A soft generalized topology 𝜇on 𝐹𝐴is said to be strong if 𝐹A ∈ 𝜇.  

Definition3.4. Let (𝐹A, 𝜇)be a SGTS. Then, every element of μ is called a soft μ–open set. 

Note: clearly 𝐹∅ is a soft μ–open set. 

Definition 3.5. Let (𝐹𝐴, 𝜇1)and (𝐹𝐴, 𝜇2) be SGTS’s. Then  

(1) If 𝜇2⊇𝜇1, then 𝜇2 is soft finer than 𝜇1 

(2) If𝜇2⊃𝜇1, then 𝜇2 is soft strictly finer than 𝜇1 

(3) If either 𝜇2⊇𝜇1 or 𝜇1⊇𝜇2 then 𝜇1 is comparable with 𝜇2. 

 

Theorem 3.6. Let 𝐹𝐴 be a soft set and {𝜇𝑗}j∈J be an indexed family of SGT’s on 𝐹𝐴.Then 

⋂ 𝜇𝑗𝑗∈𝐽  is a SGT on 𝐹A and each 𝜇𝑗  , j ∈ J is soft finer than ⋂ 𝜇𝑗𝑗∈𝐽 . 

Proof. Since each 𝜇𝑗 , j ∈ J is a SGT on 𝐹𝐴, the empty soft set𝐹∅belongs to each 𝜇𝑗 , j ∈ J and 

so 𝐹∅ ∈ ⋂ 𝜇𝑗𝑗∈𝐽 . Let {𝐹𝐵𝑖
}i∈I be a family of soft sets in ⋂ 𝜇𝑗𝑗∈𝐽 . Then each 𝐹𝐵𝑖

belongs to each 

𝜇𝑗. But 𝜇𝑗, being a SGT on 𝐹𝐴, is closed under arbitrary soft unions. So ⋃ 𝐹𝐵𝑖𝑖∈𝐼 ∈ 𝜇𝑗 for 

each j ∈ J. Thus ⋃ 𝐹𝐵𝑖𝑖∈𝐼 ∈ ⋂ 𝜇𝑗𝑗∈𝐽 . Hence⋂ 𝜇𝑗𝑗∈𝐽  is a SGT on 𝐹A.Clearly each𝜇𝑗 , j ∈ J is 

soft finer than ⋂ 𝜇𝑗𝑗∈𝐽 .∎ 
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Remark 3.7. Let (𝐹𝐴, 𝜇1)and (𝐹𝐴, 𝜇2)be SGTS’s on 𝐹A. Then (𝐹𝐴, 𝜇1 ∪ 𝜇2) may not be a 

SGTSon 𝐹A. 

Example 3.8. Let U = {h1, h2, h3, h4, h5}, A = E = {e1, e2}, 𝐹A = {(e1, {h1, h2, h3, h4}), (e2, 

{h2, h3})}. Let (𝐹𝐴, 𝜇1) and (𝐹𝐴, 𝜇2)be two SGTS’s on 𝐹A where μ1= {𝐹∅, 𝐹𝐴1
, 𝐹𝐴2

}, μ2 = 

{𝐹∅, 𝐹𝐴3
, 𝐹𝐴4

}, where 𝐹𝐴1
 = {(e1, {h1, h2}), (e2, {h2})}, 𝐹𝐴2

 = {(e1, {h1}), (e2, {h2})}, 𝐹𝐴3
 = 

{(e1, {h3, h4})}, 𝐹𝐴4
 = {(e1, {h3, h4}), (e2, {h3})}. Now define μ = 𝜇1 ∪ 𝜇2 = 

{𝐹∅, 𝐹𝐴1
, 𝐹𝐴2

, 𝐹𝐴3
, 𝐹𝐴4

}. Then 𝐹𝐴1
∪ 𝐹𝐴3

= {(e1, {h1, h2, h3, h4}), (e2, {h2})} ∉μ. Hence μ is not 

a SGT on 𝐹A. 

Theorem 3.9. Let 𝐹A be a soft set and η be a family of soft subsets of 𝐹A. Then there exists 

a unique SGT μ on 𝐹A such that it is the smallest SGT on 𝐹A containing η. 

Proof. Consider the collection of all SGT’s on 𝐹A which contains η (as subsets of 𝒫(𝐹𝐴)). 

This family is non-empty, for the discrete SGT (i.e, the entire power set 𝒫(𝐹𝐴)) surely 

contains η. Now let μ be the intersection of the members of this collection. By theorem3.6, μ 

is a SGT on 𝐹A, it contains η and clearly it is the smallest SGT containing η, for any such 

SGT will be a member of the collection of SGT’s just considered and hence soft finer than 

its intersections viz, μ. Uniqueness of μ is trivial.∎ 

Definition 3.10. Let (𝐹A, 𝜇) be a SGTS. A sub family 𝔅 of μ is said to be a soft basis for μ 

if every member of μ can be expressed as the soft union of some members of 𝔅. 

Theorem 3.11. Let (𝐹A, 𝜇)be a SGTS and 𝔅⊆μ. Then 𝔅 is a soft basis for μ if and only if 

for each soft μ-open set𝐹𝐺 , and each α ∈𝐹𝐺 , there exists 𝐹𝐵∈𝔅 such that α ∈𝐹𝐵 and 𝐹𝐵 ⊆ 𝐹𝐺. 

Proof. First suppose that 𝔅 is a soft basis for μ. Let 𝐹𝐺  be a soft μ-open set and α ∈𝐹𝐺 . Then 

𝐹𝐺  can be written as the soft union of some members of 𝔅, say, 𝐹𝐺 = ⋃ 𝐹𝐵𝑖i∈J  where J is an 

index set and 𝐹𝐵𝑖
∈𝔅, ∀ i. Since α ∈𝐹𝐺 , there exists j ∈ J such that α ∈𝐹𝐵𝑗

. Take this 𝐹𝐵𝑗
 as 

the set 𝐹𝐵 required in the assertion. 

Conversely, suppose that the given condition holds. Let 𝐹𝐷 be a soft μ-open set of 𝐹𝐴. For 

each α ∈𝐹𝐷, there exists 𝐹𝐵𝛼
∈𝔅 such that α ∈𝐹𝐵𝛼

 and 𝐹𝐵𝛼
⊆ 𝐹𝐷. Clearly 𝐹𝐷 = ⋃ 𝐹𝐵𝛼𝛼∈𝐹𝐷

. 

Thus every member of μ can be expressed as the soft union of some members of 𝔅. Hence 

𝔅 is a soft basis for μ.∎ 

Theorem 3.12.Two distinct SGT’s can never have the same family of soft subsets as a soft 

basis for both of them. 

Proof. Let 𝜇1 and 𝜇2 be two SGT’s on a soft set 𝐹𝐴 and each have 𝔅 as a soft basis. If 𝐹𝐺∈𝜇1, 

then 𝐹𝐺  can be expressed as the soft union of some members of 𝔅; these members are also 

members of 𝜇2, since 𝔅⊆𝜇2. But 𝜇2, being a SGT, is closed under arbitrary soft unions, 

𝐹𝐺∈𝜇2. Thus 𝜇1⊆𝜇2. Similarly 𝜇2⊆𝜇1 and hence 𝜇1= 𝜇2.∎ 
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Theorem3.13. Let (𝐹𝐴, 𝜇1) and (𝐹𝐴, 𝜇2) be two SGTS’s for a soft set 𝐹𝐴 having soft basis 𝔅1 

and 𝔅2 respectively. Then 𝜇2 is soft finer than 𝜇1 if and only if every member of 𝔅1 can be 

expressed as the soft union of some members of 𝔅2. 

Theorem 3.14. Let 𝐹𝐴 be a soft set and 𝔅 be a family of its soft subsets. Then there exists a 

SGT on 𝐹𝐴 with 𝔅 as a soft basis. 

Proof. Let 𝔅= {𝐹𝐵𝑖
/ 𝐹𝐵𝑖

⊆  𝐹𝐴, 𝑖 ∈ 𝐽} ∪ 𝐹∅ ⊆ 𝒫(𝐹𝐴). Define μ = {𝐹𝐺⊆𝐹𝐴 / ∀ α ∈𝐹𝐺 , there 

exists 𝐹𝐵𝑖
∈𝔅 such that α ∈𝐹𝐵𝑖

 and 𝐹𝐵𝑖
⊆𝐹𝐺}.i.e,μ = {⋃𝐹𝐵𝑖

/ 𝐹𝐵𝑖
∈𝔅}. We assert that μ is a SGT 

on 𝐹𝐴. Clearly 𝐹∅∈μ. Let {𝐹𝐻𝑗
}j∈J∈μ and assume that𝐹𝐻 = ⋃ 𝐹𝐻𝑗j∈J . To show 𝐹𝐻∈μ. Now, 

since each 𝐹𝐻𝑗
∈ 𝜇, 𝐹𝐻𝑗

= ⋃ 𝐹𝐵𝑖,i∈I 𝐹𝐵𝑖
∈ 𝔅. Then 𝐹𝐻 = ⋃ (⋃ 𝐹𝐵𝑖

)i∈Ij∈J ∈ 𝜇. Hence μ is a 

SGTon 𝐹𝐴. By theorem 3.11, it follows that 𝔅 is a soft basis for μ.∎ 

Definition 3.15. Let (𝐹A, 𝜇) be a SGTS and𝐹B ⊆ 𝐹A. Then the collection 𝜇𝐹𝐵
= {𝐹𝐷 ∩

𝐹B / 𝐹𝐷 ∈ 𝜇} is called a Subspace Soft Generalized Topology (SSGT) on 𝐹B. The pair (𝐹B,

𝜇𝐹𝐵
) is called a Soft Generalized Topological Subspace (SGTSS) of 𝐹A. 

Theorem 3.16. Let (𝐹A, 𝜇)be a SGTS and 𝐹B ⊆ 𝐹A. Then a SSGT on 𝐹B is a SGT. 

Proof. Since 𝐹∅ ∈ 𝜇, 𝐹∅ ∩ 𝐹B = 𝐹∅ ∈ 𝜇𝐹𝐵
. Suppose {𝐹𝐺𝑖

}i∈J ∈ 𝜇𝐹𝐵
. Since each 𝐹𝐺𝑖

∈ 𝜇𝐹𝐵
⇒

𝐹𝐺𝑖
= 𝐹𝐷𝑖

∩ 𝐹B where 𝐹𝐷𝑖
∈μ. Now consider ⋃ 𝐹𝐺𝑖𝑖∈𝐽 = ⋃ (𝐹𝐷𝑖

∩ 𝐹B)𝑖∈𝐽 = (⋃ 𝐹𝐷𝑖
) ∩ 𝐹B𝑖∈𝐽 ∈

𝜇𝐹𝐵
, since μ is closed under arbitrary soft unions.∎ 

Theorem 3.17. Let (𝐹A, 𝜇)be a SGTS. If 𝔅 is a soft basis for μ, then the collection 𝔅𝐹B
=

{𝐹𝐷𝑖
∩ 𝐹B / 𝐹𝐷𝑖

∈ 𝔅, 𝑖 ∈ 𝐽} is a soft basis for the SSGT 𝜇𝐹𝐵
on 𝐹B. 

Proof. Let 𝐹G be an arbitrary element of the SSGT on 𝐹B. Then 𝐹G = 𝐹H ∩ 𝐹B where 

𝐹H∈μ.Because 𝐹H∈μ, 𝐹H can be expressed as the soft union of some elements of 𝔅.i.e, 𝐹H =

⋃ 𝐹𝐷𝑖𝐹𝐷𝑖
∈𝔅 . Therefore𝐹G = (⋃ 𝐹𝐷𝑖𝐹𝐷𝑖

∈𝔅 ) ∩ 𝐹B = ⋃ (𝐹𝐷𝑖
∩ 𝐹B)𝐹𝐷𝑖

∈𝔅 . Thus each element of 

the SSGT 𝜇𝐹𝐵
 on 𝐹B is the soft union of members of 𝔅𝐹B

. Hence 𝔅𝐹B
 is a soft basis for the 

SSGT on 𝐹B.∎ 

Definition3.18. Let (𝐹A, 𝜇)  be a SGTS and 𝐹B ⊆ 𝐹A. Then the soft μ-interior of 𝐹B denoted 

by (𝐹𝐵)𝑜 is defined as the soft union of all soft μ-open subsets of 𝐹B. 

Note that (𝐹𝐵)𝑜 is the largest soft μ-open set that is contained in 𝐹B. 

Theorem 3.19. Let (𝐹A, 𝜇) be a SGTS and 𝐹B ⊆ 𝐹A. Then 𝐹B is a soft μ-open set if and only 

if 𝐹𝐵= (𝐹𝐵)𝑜. 

Proof. Assume that 𝐹𝐵 is a soft μ-open set. Then the largest soft μ-open set contained in 𝐹𝐵 

is 𝐹𝐵 itself. Therefore (𝐹𝐵)𝑜= 𝐹𝐵. 

Conversely, assume that 𝐹𝐵= (𝐹𝐵)𝑜. Since (𝐹𝐵)𝑜 is the soft union of all soft μ-open subsets 

of 𝐹𝐵 and μ is closed under arbitrary soft union, (𝐹𝐵)𝑜 is soft μ-open. If (𝐹𝐵)𝑜= 𝐹𝐵, then 𝐹𝐵 

is a soft μ-open set.∎ 
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Theorem 3.20. Let (𝐹A, 𝜇) be a SGTS and 𝐹𝐺 , 𝐹𝐻 ⊆ 𝐹A. Then  

(1) ((𝐹𝐺)𝑜)𝑜 = (𝐹𝐺)𝑜 

(2) 𝐹𝐺 ⊆ 𝐹𝐻 ⇒ (𝐹𝐺)𝑜 ⊆ (𝐹𝐻)𝑜 

(3) (𝐹𝐺)𝑜 ∩ (𝐹𝐻)𝑜 ⊇ (𝐹𝐺 ∩ 𝐹𝐻)𝑜 

(4) (𝐹𝐺)𝑜 ∪ (𝐹𝐻)𝑜 ⊆ (𝐹𝐺 ∪ 𝐹𝐻)𝑜 

(5) (𝐹𝐺)𝑜 ⊆ 𝐹𝐺  

 

Proof. 

(1) Let (𝐹𝐺)𝑜= 𝐹𝐷, then 𝐹𝐷∈μ if and only if 𝐹𝐷 = (𝐹𝐷)𝑜. Therefore ((𝐹𝐺)𝑜)𝑜 = (𝐹𝐺)𝑜 

(2) Let 𝐹𝐺⊆𝐹𝐻. Since the soft μ-interior of a soft set is the largest soft μ-open set 

contained in that soft set. Therefore (𝐹𝐺)𝑜⊆𝐹𝐺  and (𝐹𝐻)𝑜⊆𝐹𝐻. The largest soft μ-

open set that is contained in 𝐹𝐻is (𝐹𝐻)𝑜. Hence 𝐹𝐺⊆𝐹𝐻⇒(𝐹𝐺)𝑜⊆(𝐹𝐻)𝑜. 

(3) 𝐹𝐺 ∩ 𝐹𝐻⊆𝐹𝐺and𝐹𝐺 ∩ 𝐹𝐻⊆𝐹𝐻. Then (𝐹𝐺 ∩ 𝐹𝐻)𝑜⊆(𝐹𝐺)𝑜 and (𝐹𝐺 ∩ 𝐹𝐻)𝑜⊆(𝐹𝐻)𝑜. 

Therefore (𝐹𝐺 ∩ 𝐹𝐻)𝑜⊆(𝐹𝐺)𝑜 ∩ (𝐹𝐻)𝑜. 

(4) (𝐹𝐺)𝑜⊆𝐹𝐺and(𝐹𝐻)𝑜⊆𝐹𝐻. Then (𝐹𝐺)𝑜 ∪ (𝐹𝐻)𝑜⊆𝐹𝐺 ∪ 𝐹𝐻. (𝐹𝐺 ∪ 𝐹𝐻)𝑜is the largest 

soft μ-open set that is contained in 𝐹𝐺 ∪ 𝐹𝐻. Hence (𝐹𝐺)𝑜 ∪ (𝐹𝐻)𝑜 ⊆ (𝐹𝐺 ∪ 𝐹𝐻)𝑜. 

(5) Trivial.∎ 

 

Definition 3.21. Let (𝐹A, 𝜇) be a SGTS and 𝐹B ⊆ 𝐹A. Then 𝐹B is said to be a soft μ-closed 

set if its soft complement (𝐹B)𝑐 is a soft μ-open set. 

Theorem 3.22. Let (𝐹A, 𝜇) be a SGTS and 𝐹B ⊆ 𝐹A. Then the following conditions hold: 

(1) The universal soft set 𝐹Ẽ is soft μ–closed.  

(2) Arbitrary soft intersections of the soft μ–closed sets are soft μ–closed. 

 

Proof. 

(1) (𝐹Ẽ)𝑐 = 𝐹∅ ∈ 𝜇. That is, the soft complement of the universal soft set 𝐹Ẽ is the soft 

empty set 𝐹∅ and 𝐹∅∈μ. Therefore 𝐹Ẽ is soft μ–closed 

(2) {𝐹𝐺𝑖
}i∈Jbe a given collection of soft μ–closed sets. To show ⋂ 𝐹𝐺𝑖𝑖∈𝐽  is soft μ–closed. 

Now(⋂ 𝐹𝐺𝑖𝑖∈𝐽 )𝑐 = ⋃ (𝐹𝐺𝑖
)𝑐

𝑖∈𝐽 ∈ 𝜇, since each 𝐹𝐺𝑖
 is soft μ-closed, its soft 

complement (𝐹𝐺𝑖
)𝑐 is soft μ-open. Therefore ⋂ 𝐹𝐺𝑖𝑖∈𝐽  is a soft μ-closed set.∎ 

 

Theorem 3.23. Let (𝐹A, 𝜇) be a SGTS and (𝐹B, 𝜇𝐹𝐵
) a SGTSS of 𝐹A. Then, 

(1) 𝐹Gis soft 𝜇𝐹𝐵
-open if and only if 𝐹G = 𝐹H ∩ 𝐹B for some soft μ-open set 𝐹H. 

(2) 𝐹Gis soft 𝜇𝐹𝐵
-closed if and only if 𝐹G = 𝐹H ∩ 𝐹Bfor some soft μ-closed set 𝐹H. 

 

Proof. 

(1) Follows from the definition of a SSGT. 
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(2) 𝐹Gis soft 𝜇𝐹𝐵
-closed ⇔𝐹G = 𝐹B ∖ 𝐹M for some 𝐹M∈𝜇𝐹𝐵

. Now 𝐹M ∈ 𝜇𝐹𝐵
⇒ 𝐹M =

 𝐹D ∩ 𝐹B for some 𝐹D∈μ. Therefore 𝐹G is soft 𝜇𝐹𝐵
-closed ⇔𝐹G = 𝐹B ∖ (𝐹D ∩ 𝐹B)for 

some 𝐹D ∈ 𝜇 ⇔ 𝐹G = 𝐹B ∖ 𝐹D ⇔ 𝐹G = 𝐹B ∩ (𝐹D)𝑐 ⇔ 𝐹G = 𝐹B ∩ 𝐹H where 𝐹H = 

(𝐹D)𝑐 is a soft μ-closed set. Hence 𝐹G is soft 𝜇𝐹𝐵
-closed if and only if 𝐹G = 𝐹H ∩ 𝐹B 

for some soft μ-closed set 𝐹H.∎ 

 

Definition 3.24. Let (𝐹A, 𝜇)be a SGTS and 𝐹B ⊆ 𝐹A. Then the soft μ-closure of 𝐹B, denoted 

by𝑐(𝐹B)is defined as the soft intersection of all soft μ-closed super sets of 𝐹B. 

Note that 𝑐(𝐹B) is the smallest soft μ-closed set that containing 𝐹B. 

Theorem 3.25. Let (𝐹A, 𝜇) be a SGTS and 𝐹B ⊆ 𝐹A.𝐹Bis a soft μ-closed set if and only if 𝐹B 

= 𝑐(𝐹B). 

Proof. The proof is trivial. 

Theorem 3.26. Let (𝐹A, 𝜇)  be a SGTS and 𝐹B ⊆ 𝐹A. Then (𝐹𝐵)𝑜⊆𝐹B⊆𝑐(𝐹B) 

Proof. Indeed(𝐹𝐵)𝑜 = ⋃ {𝐹𝐵𝑖
 / 𝐹𝐵𝑖

∈ 𝜇, 𝐹𝐵𝑖
⊆ 𝐹𝐵, 𝑖 ∈  𝐽}.            

Then 𝑓𝐵𝑖
(𝑒) ⊆ 𝑓𝐵(𝑒)and⋃ 𝑓𝐵𝑖

(𝑒) ⊆ 𝑓𝐵(𝑒), ∀ 𝑒 ∈ E𝑖∈𝐽 .  

So(𝐹𝐵)𝑜 ⊆ 𝐹𝐵.𝑐(𝐹B) = ∩ {𝐹𝐵𝑖
 / 𝐹𝐵𝑖

𝑐 ∈ 𝜇, 𝐹𝐵 ⊆ 𝐹𝐵𝑖
, 𝑖 ∈ 𝐽}. Then 𝑓𝐵(𝑒) ⊆ 𝑓𝐵𝑖

(𝑒)and 

𝑓𝐵(𝑒) ⊆ ∩ 𝑓𝐵𝑖
(𝑒), ∀ 𝑒 ∈ E. So 𝐹B⊆𝑐(𝐹B). Hence (𝐹𝐵)𝑜⊆𝐹B⊆𝑐(𝐹B).∎ 

Theorem 3.27. Let (𝐹A, 𝜇) be a SGTS and 𝐹𝐺 , 𝐹𝐻 ⊆ 𝐹A. Then  

(1) 𝑐(𝑐(𝐹𝐺)) = 𝑐(𝐹𝐺) 

(2) 𝐹𝐺 ⊆ 𝐹𝐻 ⇒ 𝑐(𝐹𝐺) ⊆ 𝑐(𝐹𝐻) 

(3) 𝑐(𝐹𝐺) ∩ 𝑐(𝐹𝐻) ⊇ 𝑐(𝐹𝐺 ∩ 𝐹𝐻) 

(4) 𝑐(𝐹𝐺) ∪ 𝑐(𝐹𝐻) ⊆ 𝑐(𝐹𝐺 ∪ 𝐹𝐻) 

 

Proof. 

(1) Let 𝑐(𝐹𝐺)= 𝐹𝐷. Then 𝐹𝐷 is a soft μ-closed set. Therefore 𝐹𝐷 and 𝑐(𝐹𝐷) are soft equal. 

i.e, 𝐹𝐷= 𝑐(𝐹𝐷). Hence 𝑐(𝑐(𝐹𝐺)) = 𝑐(𝐹𝐺). 

(2) Let 𝐹𝐺 ⊆ 𝐹𝐻. By the definition of soft μ-closure, 𝐹𝐺⊆𝑐(𝐹𝐺) and 𝐹𝐻⊆𝑐(𝐹𝐻) and the 

smallest soft μ-closed set that containing 𝐹𝐺is 𝑐(𝐹𝐺). Hence𝑐(𝐹𝐺)⊆𝑐(𝐹𝐻). 

(3) 𝑐(𝐹𝐺)and𝑐(𝐹𝐻) are soft μ-closed sets. So their soft intersection 𝑐(𝐹𝐺) ∩ 𝑐(𝐹𝐻) is a 

soft μ-closed set. Since 𝑐(𝐹𝐺 ∩ 𝐹𝐻) is the smallest soft μ-closed set that containing 

𝐹𝐺 ∩ 𝐹𝐻 and 𝐹𝐺 ∩ 𝐹𝐻⊆𝑐(𝐹𝐺) ∩ 𝑐(𝐹𝐻), 𝑐(𝐹𝐺) ∩ 𝑐(𝐹𝐻) ⊇ 𝑐(𝐹𝐺 ∩ 𝐹𝐻). 

(4) Since 𝐹𝐺⊆𝐹𝐺 ∪ 𝐹𝐻and 𝐹𝐻⊆𝐹𝐺 ∪ 𝐹𝐻, 𝑐(𝐹𝐺)⊆𝑐(𝐹𝐺 ∪ 𝐹𝐻) and 𝑐(𝐹𝐻)⊆𝑐(𝐹𝐺 ∪ 𝐹𝐻). 

Therefore 𝑐(𝐹𝐺) ∪ 𝑐(𝐹𝐻) ⊆ 𝑐(𝐹𝐺 ∪ 𝐹𝐻).∎ 

 

Theorem 3.28. Let (𝐹A, 𝜇)be a SGTS and 𝐹B ⊆ 𝐹A. Then the following hold: 
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(1) If α ∈𝑐(𝐹B), then every soft μ-open set 𝐹G containing α soft intersect 𝐹B. 

(2) Supposing the SGT on 𝐹A is given by a soft basis 𝔅. If α ∈𝑐(𝐹B), then every soft  

basis element 𝐹H containing α soft intersect 𝐹B. 

Proof. 

(1) First prove that if α ∈𝑐(𝐹B), then every soft μ-open set 𝐹G containing α soft intersect 

𝐹B. It is equivalent to prove that if there exists a soft μ-open set 𝐹G containing α that 

does not soft intersect 𝐹B, then α ∉𝑐(𝐹B). Assume that 𝐹G ∩ 𝐹B= 𝐹∅, where 𝐹G∈μ, α 

∈𝐹G. Then (𝐹𝐺)𝑐 is a soft μ-closed set and 𝐹B⊆(𝐹𝐺)𝑐. By the definition of soft μ-

closure, 𝑐(𝐹B) is the smallest soft μ-closed set containing 𝐹B. 

Therefore𝑐(𝐹B)⊆(𝐹𝐺)𝑐and therefore α cannot be in 𝑐(𝐹B). 

(2) If α ∈𝑐(𝐹B), then every soft μ-open set 𝐹G containing α soft intersect 𝐹B. i.e, If α 

∈𝑐(𝐹B), then 𝐹G ∩ 𝐹B ≠ 𝐹∅, ∀ 𝐹G∈μ, and α ∈𝐹G. Since 𝐹G is soft μ-open, it can be 

expressed as the soft union of some members of the soft basis. So every soft basis 

element 𝐹H containing α soft intersect 𝐹B.∎ 

 

Remark 3.29. The converse of the above theorem need not be true. 

Theorem 3.30. Let (𝐹A, 𝜇) be a SGTS and 𝐹B, 𝐹G ⊆ 𝐹A. Then 

(1) 𝑐((𝐹B)𝑐) =  ((𝐹B)𝑜)𝑐 

(2) ((𝐹G)𝑐)𝑜 =  (𝑐(𝐹G))𝑐 

(3) (𝐹𝐵)𝑜 = (𝑐((𝐹B)𝑐))𝑐 

(4) 𝑐(𝐹G) = (((𝐹G)𝑐)𝑜)𝑐 

(5) (𝐹𝐵 ∖ 𝐹G)𝑜 ⊆ (𝐹𝐵)𝑜 ∖ (𝐹𝐺)𝑜 

 

Proof. 

(1) (𝐹𝐵)𝑜 = ⋃{𝐹𝐵𝑖
 / 𝐹𝐵𝑖

∈ 𝜇, 𝐹𝐵𝑖
⊆ 𝐹𝐵, 𝑖 ∈ 𝐽}. ((𝐹𝐵)𝑜)𝑐 = ∩ {(𝐹𝐵𝑖

)𝑐 / 𝐹𝐵𝑖
∈ 𝜇, (𝐹𝐵)𝑐 ⊆

(𝐹𝐵𝑖
)𝑐, 𝑖 ∈ 𝐽}=𝑐((𝐹B)𝑐), by thedefinition of soft μ-closure. 

(2) Consider the definitions of soft μ-closure and soft μ-interior, 𝑐(𝐹G) = ∩

{𝐹𝐺𝑖
 / (𝐹𝐺𝑖

)𝑐 ∈ 𝜇, 𝐹𝐺 ⊆ 𝐹𝐺𝑖
, 𝑖 ∈ 𝐽}. (𝑐(𝐹G))𝐶 = [∩ {𝐹𝐺𝑖

 / (𝐹𝐺𝑖
)𝑐 ∈ 𝜇, 𝐹𝐺 ⊆ 𝐹𝐺𝑖

, 𝑖 ∈

𝐽}]𝐶 = ∪ {(𝐹𝐺𝑖
)𝑐 / (𝐹𝐺𝑖

)𝑐 ∈ 𝜇, (𝐹𝐺𝑖
)𝑐 ⊆ (𝐹𝐺)𝑐, 𝑖 ∈  𝐽} = ((𝐹𝐺)𝑐)𝑜. 

(3) Obtained by taking the soft complements of (1) 

(4) Obtained by taking the soft complements of (2) 

(5) (𝐹𝐵 ∖ 𝐹G)𝑜 =  (𝐹𝐵 ∩ (𝐹G)𝑐)𝑜 ⊆ (𝐹𝐵)𝑜 ∩ ((𝐹G)𝑐)𝑜 = (𝐹𝐵)𝑜 ∩ (𝑐(𝐹G))𝑐 ⊆ (𝐹𝐵)𝑜 ∩

((𝐹𝐺)𝑜)𝑐 ⊆ (𝐹𝐵)𝑜 ∖ (𝐹𝐺)𝑜.∎ 

 

Definition 3.31. Let (𝐹A, 𝜇)be a SGTS and α ∈𝐹A. If there is a soft μ-open set 𝐹B such that   

α ∈𝐹B, then 𝐹B is called a soft μ-open neighborhood or soft μ-nbd of α. The set of all soft μ-

nbds of α, denoted by ψ(α), is called the family of soft μ-nbds of α. i.e, ψ(α)= {𝐹B / 𝐹B∈μ, α 

∈𝐹B}. 

Theorem 3.32.Let (𝐹A, 𝜇) be a SGTS and 𝐹G, 𝐹H ⊆ 𝐹A. Then 
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(1) if 𝐹G∈ ψ(α), then α ∈𝐹G 

(2) if 𝐹G∈ ψ(α) and 𝐹G⊆𝐹H where 𝐹H ∈  𝜇, then 𝐹H∈ ψ(α) 

(3) 𝐹Gis a soft μ-open if and only if 𝐹G contains a soft μ-nbd of each of its points. 

 

Proof. 

(1) Since 𝐹G is a soft μ -nbd of α, 𝐹G is a soft μ -open set such that α ∈𝐹G. 

(2) Assume that 𝐹G ⊆ 𝐹Hand𝐹H ∈  𝜇. If 𝐹G is a soft μ-nbd of α, then α ∈𝐹G⇒ α ∈𝐹H. 

Therefore 𝐹H is a soft μ-nbd of α. 

(3) Suppose 𝐹G is soft μ-open. Then α ∈𝐹G⇒𝐹G is a soft μ-nbd of each α ∈𝐹G. Conversely, 

if each α ∈𝐹G has a soft μ-nbd𝐹𝐻𝛼
⊆ 𝐹𝐺 , then 𝐹G = {α / α ∈𝐹G} ⊆⋃ 𝐹𝐻𝛼𝛼∈𝐹𝐺

⊆ 𝐹𝐺 . 

Or 𝐹𝐺 = ⋃ 𝐹𝐻𝛼𝛼∈𝐹𝐺
. This implies that 𝐹G is the soft union of soft μ-open sets. Thus 

𝐹G is a soft μ-open set.∎ 

 

Definition 3.33. Let (𝐹A, 𝜇) be a SGTS, 𝐹B ⊆ 𝐹Aand α ∈𝐹A. If every soft μ-nbd of α soft 

intersect 𝐹B in some point other than α itself, then α is called soft μ-limit point of 𝐹B. The set 

of all soft μ-limit points of 𝐹B is denoted by (𝐹B)′. In other words, if (𝐹A, 𝜇) is a SGTS, 

𝐹B, 𝐹G ⊆ 𝐹A and α ∈𝐹A. Then α ∈(𝐹B)′ if and only if 𝐹G ∩ (𝐹B ∖ {α}) ≠ 𝐹∅  for all 𝐹G∈ψ(α). 

Remark 3.34. If 𝛼 ∈ 𝑐(𝐹𝐵 ∖ {𝛼}), then by theorem 3.28.(1), 𝐹𝐺 ∩ (𝐹𝐵 ∖ {𝛼}) ≠  𝐹∅ for every 

soft μ-open set 𝐹G containing α, which implies 𝛼 ∈ (𝐹B)′. 

Theorem 3.35. Let (𝐹A, 𝜇) be a SGTS, 𝐹B ⊆ 𝐹A. Then 𝑐(𝐹B)⊂𝐹B∪(𝐹B)′ 

Proof. If α ∈𝑐(𝐹B), then either α ∈𝐹B or α ∉𝐹B. First consider α ∈𝐹B. Then α ∈𝐹B∪(𝐹B)′ and 

hence 𝑐(𝐹B)⊂𝐹B∪(𝐹B)′. Next consider if α ∉𝐹B. Then the soft sets 𝐹B and (𝐹B∖ {α}) are soft 

equal. So α ∈𝑐(𝐹B)⇒𝐹G ∩ 𝐹B ≠ 𝐹∅,∀𝐹G∈ ψ(α) ⇒𝐹G ∩ (𝐹B∖ {α}) ≠ 𝐹∅⇒ α ∈(𝐹B)′⇒ α 

∈𝐹B∪(𝐹B)′. So 𝑐(𝐹B)⊂𝐹B∪(𝐹B)′. Hence in both case 𝑐(𝐹B)⊂𝐹B∪(𝐹B)′.∎ 

Theorem 3.36. Let (𝐹A, 𝜇) be a SGTS and 𝐹B ⊆ 𝐹A. If (𝐹B)′⊆𝐹B, then 𝐹B is soft μ-closed. 

Proof. Assume that (𝐹B)′⊆𝐹B. Then 𝐹B = 𝐹B∪(𝐹B)′. But by the above 

theorem𝐹B∪(𝐹B)′⊇𝑐(𝐹B). Therefore 𝐹B⊇𝑐(𝐹B)⇒𝐹B= 𝑐(𝐹B). Hence 𝐹B is soft μ-closed.∎ 

Theorem 3.37.Let (𝐹A, 𝜇) be a SGTS and 𝐹𝐺 , 𝐹𝐻 ⊆ 𝐹A. Then 

(1) 𝐹𝐺 ⊆ 𝐹𝐻  ⇒  (𝐹G)′  ⊆  (𝐹H)′ 

(2) (𝐹𝐺 ∩  𝐹𝐻)′  ⊆  (𝐹G)′  ∩  (𝐹H)′ 

(3) (𝐹𝐺 ∪  𝐹𝐻)′ ⊇  (𝐹G)′ ∪ (𝐹H)′ 

 

Proof. 

(1) Since 𝐹𝐺⊆𝐹𝐻, (𝐹𝐺∖ {α}) ⊆ (𝐹𝐻∖ {α}). Suppose α ∈(𝐹G)′⇒𝐹𝐷 ∩ (𝐹𝐺∖ {α}) ≠ 𝐹∅, 

∀𝐹𝐷∈ ψ(α) ⇒𝐹𝐷 ∩ (𝐹𝐻∖ {α}) ≠ 𝐹∅, ∀𝐹𝐷∈ ψ(α) ⇒ α ∈(𝐹H)′. Hence (𝐹G)′ ⊆ (𝐹H)′. 

(2) 𝐹𝐺 ∩ 𝐹𝐻⊆𝐹𝐺and𝐹𝐺 ∩ 𝐹𝐻⊆𝐹𝐻. Then (𝐹𝐺 ∩  𝐹𝐻)′⊆(𝐹G)′ and (𝐹𝐺 ∩ 𝐹𝐻)′⊆(𝐹H)′. 

Therefore(𝐹𝐺 ∩ 𝐹𝐻)′  ⊆  (𝐹G)′ ∩  (𝐹H)′. 
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(3) 𝑐((𝐹𝐺 ∪ 𝐹𝐻)  ∖ {𝛼}) =  𝑐((𝐹𝐺 ∪ 𝐹𝐻) ∩ {𝛼}𝑐) = 𝑐((𝐹𝐺 ∩ {𝛼}𝑐) ∪ (𝐹𝐻 ∩

{𝛼}𝑐))⊇𝑐(𝐹𝐺 ∩ {𝛼}𝑐) ∪ 𝑐(𝐹𝐻 ∩ {𝛼}𝑐) = 𝑐(𝐹𝐺 ∖ {𝛼}) ∪ 𝑐(𝐹𝐻 ∖ {𝛼}). Therefore 𝛼 ∈

[𝑐(𝐹𝐺 ∖ {𝛼}) ∪ 𝑐(𝐹𝐻 ∖ {𝛼})] ⇒ 𝛼 ∈ 𝑐((𝐹𝐺 ∪ 𝐹𝐻)  ∖ {𝛼}). i.e, 𝛼 ∈ 𝑐(𝐹𝐺 ∖ {𝛼}) or 

𝛼 ∈ 𝑐(𝐹𝐻 ∖ {𝛼})⇒𝛼 ∈ 𝑐((𝐹𝐺 ∪ 𝐹𝐻)  ∖ {𝛼}). i.e, α ∈(𝐹G)′ or α ∈(𝐹H)′⇒𝛼 ∈ (𝐹𝐺 ∪

𝐹𝐻)′⇒𝛼 ∈ (𝐹G)′ ∪ (𝐹H)′⇒𝛼 ∈ (𝐹𝐺 ∪ 𝐹𝐻)′ ⇒ ((𝐹G)′  ∪ (𝐹H)′) ⊆ (𝐹𝐺 ∪ 𝐹𝐻)′.∎ 

 

Definition 3.38. Let (𝐹A, 𝜇) be a SGTS and 𝐹B ⊆ 𝐹A. Then the soft μ-boundary of 𝐹B, 

denoted by (𝐹𝐵)𝑏, is defined by (𝐹𝐵)𝑏 = 𝑐(𝐹B) ∩ 𝑐((𝐹B)𝑐). 

Theorem 3.39.Let (𝐹A, 𝜇) be a SGTS and 𝐹B ⊆ 𝐹A. Then 

(1) (𝐹𝐵)𝑏⊆𝑐(𝐹B) 

(2) (𝐹𝐵)𝑏 = 𝑐(𝐹B) ∖ (𝐹𝐵)𝑜 

 

Proof. 

(1) (𝐹𝐵)𝑏 = 𝑐(𝐹B) ∩ 𝑐((𝐹B)𝑐) ⇒ (𝐹𝐵)𝑏 ⊆ 𝑐(𝐹B). 

(2) 𝑐(𝐹B) ∖ (𝐹𝐵)𝑜 = 𝑐(𝐹B) ∩ ((𝐹𝐵)𝑜)𝑐 = 𝑐(𝐹B) ∩ (⋃ 𝐹𝐵𝑖𝐹𝐵𝑖
⊆𝐹𝐵

𝐹𝐵𝑖
∈𝜇,𝑖∈𝐽

)𝑐 

= 𝑐(𝐹B) ∩ (⋂    (𝐹𝐵𝑖(𝐹𝐵)𝑐⊆(𝐹𝐵𝑖
)𝑐

𝐹𝐵𝑖
∈ 𝜇,   𝑖∈𝐽

)𝑐)=𝑐(𝐹B) ∩ 𝑐((𝐹B)𝑐) =  (𝐹𝐵)𝑏.∎ 

 

Theorem 3.40. Let (𝐹A, 𝜇) be a SGTS and 𝐹G, 𝐹H ⊆ 𝐹A. Then the following hold: 

(1) ((𝐹𝐺)𝑏)𝑐 = (𝐹𝐺)𝑜 ∪ ((𝐹𝐺)𝑐)𝑜 

(2) 𝑐(𝐹𝐺)  =  𝐹𝐺 ∪ (𝐹𝐺)𝑏 

(3) (𝐹𝐺)𝑜 = 𝐹𝐺 ∖ (𝐹𝐺)𝑏 

(4) (𝐹𝐺)𝑏 = 𝑐(𝐹𝐺) ∩ 𝑐((𝐹𝐺)𝑐) = 𝑐(𝐹𝐺) ∖ (𝐹𝐺)𝑜 

 

Proof. 

(1) (𝐹𝐺)𝑜 ∪ ((𝐹𝐺)𝑐)𝑜 = (((𝐹𝐺)𝑜)𝑐)𝑐 ∪ ((((𝐹𝐺)𝑐)𝑜)𝑐)𝑐 = [((𝐹𝐺)𝑜)𝑐 ∩ (((𝐹𝐺)𝑐)𝑜)𝑐]𝑐 = 

[𝑐((𝐹𝐺)𝑐) ∩ 𝑐(𝐹𝐺)]𝑐 = ((𝐹𝐺)𝑏)𝑐 , by theorem 3.30.(1) and (2).∎ 

(2) 𝐹𝐺 ∪ (𝐹𝐺)𝑏 = 𝐹𝐺 ∪ [𝑐(𝐹G) ∩ 𝑐((𝐹G)𝑐)] = [𝐹𝐺 ∪ 𝑐(𝐹G)] ∩ [𝐹𝐺 ∪  𝑐((𝐹G)𝑐)] =

𝑐(𝐹G) ∩ [𝐹𝐺 ∪ 𝑐((𝐹G)𝑐)] = 𝑐(𝐹G) ∩ 𝐹Ẽ = 𝑐(𝐹𝐺). 

(3) 𝐹𝐺 ∖ (𝐹𝐺)𝑏 = 𝐹𝐺 ∩ ((𝐹𝐺)𝑏)𝑐 = 𝐹𝐺 ∩ [(𝐹𝐺)𝑜 ∪ ((𝐹𝐺)𝑐)𝑜], by (1) = [𝐹𝐺 ∩ (𝐹𝐺)𝑜] ∪

 [𝐹𝐺 ∩ ((𝐹𝐺)𝑐)𝑜 = (𝐹𝐺)𝑜 ∪ 𝐹∅ =  (𝐹𝐺)𝑜. 

(4) Follows from definition and theorem 3.30.(1).∎ 

 

Theorem 3.41. Let (𝐹A, 𝜇)be a SGTS and 𝐹G ⊆ 𝐹A. Then the following hold: 

(1) (𝐹𝐺)𝑏 ∩ (𝐹𝐺)𝑜 = 𝐹∅ 

(2) 𝐹G is soft 𝜇-open iff 𝐹G ∩ (𝐹𝐺)𝑏  = 𝐹∅. 
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Theorem 3.42. Let (𝐹A, 𝜇)be a SGTS and 𝐹G ⊆ 𝐹A. Then (𝐹𝐺)𝑏 = 𝐹∅ if and only if 𝐹G is 

both soft μ-open and soft μ-closed. 

Proof. Assume that (𝐹𝐺)𝑏 = 𝐹∅. (𝐹𝐺)𝑏 = 𝐹∅ ⇒ 𝑐(𝐹𝐺) ∩ 𝑐((𝐹𝐺)𝑐) = 𝐹∅ ⇒ 𝐹𝐺 ∩ ((𝐹𝐺)𝑜)𝑐 =

𝐹∅ ⇒ 𝐹𝐺 ⊆ (𝐹𝐺)𝑜, by theorem 3.30.(1). This implies that 𝐹𝐺  is a soft μ-open set. Again 

by theorem 3.30.(1), (𝐹𝐺)𝑏 = 𝐹∅ ⇒ 𝑐(𝐹𝐺) ∩ 𝑐((𝐹𝐺)𝑐) = 𝐹∅ ⇒ 𝑐(𝐹𝐺) ⊆ (𝑐((𝐹𝐺)𝑐))𝑐 =

(𝐹𝐺)𝑜 ⊆ 𝐹𝐺 ⇒ 𝑐(𝐹𝐺) ⊆ 𝐹𝐺 . This implies that 𝐹𝐺  is a soft μ-closed set. Conversely assume 

that 𝐹𝐺  is both soft μ-closed and soft μ-open. Then (𝐹𝐺)𝑏 = 𝑐(𝐹𝐺) ∩ 𝑐((𝐹𝐺)𝑐) = 𝐹𝐺 ∩

((𝐹𝐺)𝑜)𝑐 = 𝐹𝐺 ∩ (𝐹𝐺)𝑐 = 𝐹∅, by theorem 3.30.(1).∎ 

Definition 3.43. Let (𝐹A, 𝜇)be a SGTS and 𝐹B ⊆ 𝐹A. Then the soft μ-exterior of 𝐹B is denoted 

by (𝐹𝐵)𝑒and is defined as (𝐹𝐵)𝑒 = ((𝐹B)𝑐)𝑜. 

Note that the soft μ-exterior of 𝐹B is the largest soft μ-open set contained in (𝐹B)𝑐. 

Theorem 3.44. Let (𝐹A, 𝜇) be a SGTS and 𝐹G, 𝐹H ⊆ 𝐹A. Then, 

(1) (𝐹𝐵)𝑒 = ((𝐹B)𝑐)𝑜 

(2) (𝐹G ∪ 𝐹H)𝑒 ⊆ (𝐹G)𝑒 ∩ (𝐹H)𝑒 

(3) (𝐹G ∩ 𝐹H)𝑒 ⊇  (𝐹G)𝑒 ∪ (𝐹H)𝑒 

 

Proof. 

(1) Follows from definition 

(2) (𝐹G ∪ 𝐹H)𝑒 = ((𝐹G ∪ 𝐹H)𝑐)𝑜 = ((𝐹G)𝑐 ∩ (𝐹H)𝑐)𝑜 ⊆ ((𝐹G)𝑐)𝑜 ∩ ((𝐹H)𝑐)𝑜 =

(𝐹G)𝑒 ∩ (𝐹H)𝑒. 

(3) (𝐹G)𝑒 ∪ (𝐹H)𝑒 = ((𝐹G)𝑐)𝑜 ∪ ((𝐹H)𝑐)𝑜 ⊆ ((𝐹G)𝑐 ∪ (𝐹H)𝑐)𝑜 = ((𝐹G ∩ 𝐹H)𝑐)𝑜 =

(𝐹G ∩ 𝐹H)𝑒.∎ 

 

Theorem 3.45. Let (𝐹A, 𝜇) be a SGTS and 𝐹G, 𝐹H ⊆ 𝐹A. Then 

(1) ((𝐹𝐺)𝑏)𝑐 = (𝐹𝐺)𝑜 ∪ (𝐹G)𝑒. 

(2) (𝐹𝐺)𝑜 ∪ (𝐹G)𝑒 ∪ (𝐹𝐺)𝑏 = 𝐹Ẽ 

 

Proof. 

(1) By theorem 3.40.(1), ((𝐹𝐺)𝑏)𝑐 = (𝐹𝐺)𝑜 ∪ ((𝐹𝐺)𝑐)𝑜. Also (𝐹𝐺)𝑜 ∪ ((𝐹𝐺)𝑐)𝑜 =

(𝐹𝐺)𝑜 ∪ (𝐹G)𝑒. 

(2) By theorem 3.45(1), ((𝐹𝐺)𝑏)𝑐 = (𝐹𝐺)𝑜 ∪ (𝐹G)𝑒. Therefore (𝐹𝐺)𝑜 ∪ (𝐹G)𝑒 ∪

(𝐹𝐺)𝑏 = [(𝐹𝐺)𝑜 ∪ (𝐹G)𝑒] ∪ (𝐹𝐺)𝑏 = ((𝐹𝐺)𝑏)𝑐 ∪ (𝐹𝐺)𝑏 = 𝐹Ẽ.∎ 

 

Theorem 3.46. Let (𝐹A, 𝜇)be a SGTS and 𝐹G ⊆ 𝐹A. Then,(𝐹𝐺)𝑏 ∩ (𝐹G)𝑒 = 𝐹∅. 

Theorem 3.47. Let (𝐹A, 𝜇)be a SGTS. Then the collection 𝜇e = {𝑓𝐵(𝑒) / there exists 𝐹B∈μ 

such that (𝑒, 𝑓𝐵(𝑒)) ∈ 𝐹B} for each e∈ E, is a generalized topology on U. 
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Proof. Let 𝜇e = {𝑓𝐵(𝑒) / there exists 𝐹B∈μ such that (𝑒, 𝑓𝐵(𝑒)) ∈ 𝐹B} for each e∈ E. Clearly 

∅∈𝜇e, since 𝐹∅∈μ. Now let {𝑓𝐵𝑖
(𝑒)}i∈J be a collection of sets in 𝜇e. Then there exists soft sets 

𝐹𝐵𝑖
∈μ, i ∈ J such that (𝑒, 𝑓𝐵𝑖

(𝑒)) ∈ 𝐹𝐵𝑖
. Since μ is a SGT, {𝐹𝐵𝑖

}i∈J ∈ 𝜇 ⇒ ⋃ 𝐹𝐵𝑖𝑖∈𝐽 ∈ 𝜇. i.e, 

(𝑒, ⋃ 𝑓𝐵𝑖
(𝑒)𝑖∈𝐽 ) ∈ ⋃ 𝐹𝐵𝑖𝑖∈𝐽 ⇒ ⋃ 𝑓𝐵𝑖

(𝑒)𝑖∈𝐽 ∈ 𝜇e. Hence 𝜇eis a GT on U.∎ 

The above theorem shows that corresponding to each parameter e∈E, we have a GT𝜇eon U. 

Thus a SGT on 𝐹A gives a parameterized family of GT’s on U. The converse of the above 

theorem does not hold. 

Example 3.48. Let U = {h1, h2, h3, h4}, E = {e1, e2, e3}, A = {e1, e2} ⊆ E and 𝐹A = {(e1, {h1, 

h2, h3, h4}), (e2, {h2, h3, h4})}. Let 𝜇 =  {𝐹∅, 𝐹𝐴1
, 𝐹𝐴2

, 𝐹𝐴3
}, where 𝐹𝐴1

= {(e1, {h3}), (e2, {h2})}, 

𝐹𝐴2
= {(e1, {h2, h4}), (e2, {h2, h4})}, 𝐹𝐴3

= {(e1, {h2, h3, h4})}. Then μ is not a SGT on 𝐹A, 

because 𝐹𝐴1
∪ 𝐹𝐴2

= {(e1, {h2, h3, h4}), (e2, {h2, h4})} ∉μ. Also 𝜇e1
 = {∅, {h3}, {h2, h4}, {h2, 

h3, h4}} and 𝜇e2
= {∅, {h2},{h2, h4}} are GT’s on U. This example shows that any collection 

of soft sets need not to be a SGT on 𝐹A, even if the collection corresponding to each parameter 

defines a GT on U. 

Theorem 3.49. Let (𝐹A, 𝜇)be a SGTS and 𝐹B ⊆ 𝐹A. Then (𝜇𝐹𝐵
)𝑒 is a subspace of the GT 𝜇e 

for each e∈ E. 

Proof. If (𝐹A, 𝜇) is a SGTS, then 𝜇e = {𝑓𝐷(𝑒) / there exists 𝐹D∈μ such that (𝑒, 𝑓𝐷(𝑒)) ∈ 𝐹D} 

is a GT on U. Now for any e∈ E, (𝜇𝐹𝐵
)𝑒 = {𝑓𝐺(𝑒) / there exists 𝐹G∈𝜇𝐹𝐵

such that (𝑒, 𝑓𝐺(𝑒)) ∈

𝐹G} ={𝑓𝐺(𝑒) / there exists 𝐹H∈μ  such that 𝐹G = 𝐹H ∩ 𝐹B, (𝑒, 𝑓𝐻∩𝐵(𝑒)) ∈ 𝐹H ∩ 𝐹B} =
{𝑓𝐻(𝑒) ∩ 𝑓𝐵(𝑒) / 𝑓𝐻(𝑒) ∈ 𝜇e  such that (𝑒, 𝑓𝐻(𝑒) ∩ 𝑓𝐵(𝑒)) ∈ 𝐹H ∩ 𝐹B}. i.e, every element of 

(𝜇𝐹𝐵
)𝑒 is the intersection of an element 𝑓𝐻(𝑒) in 𝜇e with 𝑓𝐵(𝑒). Thus (𝜇𝐹𝐵

)𝑒 is a subspace 

of the GTS 𝜇e.∎ 

 

 

4. Soft continuous functions in SGTS 
 

Definition 4.1. Let (𝐹A, 𝜇) and (𝐹B, 𝜂) be two SGTS’s. A soft function 𝜑𝜒 ∶ (𝐹A, 𝜇) →

(𝐹B, 𝜂) is said to be soft (𝜇, 𝜂)-continuous (briefly, soft continuous), if for each soft η-open 

subset 𝐹Gof 𝐹B, the inverse image 𝜑𝜒
−1(𝐹G) is a soft μ-open subset of 𝐹A. 

Theorem 4.2. Every soft function from a discrete SGTS into any SGTS is soft continuous. 

Proof. Let (𝐹A, 𝜇) and (𝐹B, 𝜂) be two SGTS’s. Suppose μis a discrete SGT. Let 𝜑𝜒 ∶

(𝐹A, 𝜇) → (𝐹B, 𝜂)be a soft function. Then for every soft η-open set𝐹Gof 𝐹B, the inverse image 

𝜑𝜒
−1(𝐹G) is soft μ-open with respect to the discrete SGT μon 𝐹A. Thus 𝜑𝜒 is soft 

continuous.∎ 

Theorem 4.3. Let (𝐹A, 𝜇) and (𝐹B, 𝜂) be two SGTS’s and 𝜑𝜒 ∶ (𝐹A, 𝜇) → (𝐹B, 𝜂) be a soft 

function. Suppose the SGT η on 𝐹B is given by a soft basis 𝔅. Then 𝜑𝜒 is soft continuous if 

the inverse image of every soft basis element is soft μ-open. 
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Proof. Suppose that the inverse image of every soft basis element is soft μ-open. Let 𝐹G be 

an arbitrary η-open subset of 𝐹B. Then by the definition of soft basis, 𝐹Gcan be written as the 

soft union of members of the soft basis 𝔅 of η. i.e, 𝐹G = ⋃ 𝐹D𝐹D∈𝔅 . Then by theorem 2.14.(8), 

𝜑𝜒
−1(𝐹G) = 𝜑𝜒

−1(⋃   𝐹D𝐹D∈𝔅 ) = ⋃   𝜑𝜒
−1(𝐹D)𝐹D∈𝔅 ∈ 𝜇 . Thus𝜑𝜒 is soft continuous.∎ 

Theorem 4.4. Let (𝐹A, 𝜇) and (𝐹B, 𝜂) be two SGTS’s and 𝜑𝜒 ∶ (𝐹A, 𝜇) → (𝐹B, 𝜂)be a soft 

function. Then 𝜑𝜒 is soft continuous if and only if for every soft η-closed subset 𝐹Hof 𝐹B, the 

soft set 𝜑𝜒
−1(𝐹H) is soft μ-closed in 𝐹A. 

Proof. Assume that 𝜑𝜒 is soft continuous. Let 𝐹H be a soft 𝜂-closed set of 𝐹B. Then (𝐹H)𝑐 ∈

𝜂. By hypothesis and theorem 2.14.(7), 𝜑𝜒
−1((𝐹H)𝑐) ∈ 𝜇. i.e, [𝜑𝜒

−1(𝐹H)]𝑐 ∈ 𝜇. Thus 

𝜑𝜒
−1(𝐹H) is a soft μ-closed set of 𝐹A. 

Conversely, assume that for every soft η-closed subset 𝐹Hof 𝐹B, the soft set 𝜑𝜒
−1(𝐹H) is soft 

μ-closed in 𝐹A. Let 𝐹G be a soft η-open subset of 𝐹B. Then (𝐹G)𝑐 is soft η-closed subset of 

𝐹B. Therefore by hypothesis, 𝜑𝜒
−1((𝐹G)𝑐) is a soft μ-closed set of 𝐹A. i.e,by theorem 

2.14.(7), [𝜑𝜒
−1(𝐹G)]𝑐 is a soft μ-closed set of 𝐹A. i.e, 𝜑𝜒

−1(𝐹G) is a soft μ-open set of 𝐹A. 

Thus 𝜑𝜒 is soft continuous.∎ 

Theorem 4.5. Let (𝐹A, 𝜇) and (𝐹B, 𝜂) be two SGTS’s and 𝜑𝜒 ∶ (𝐹A, 𝜇) → (𝐹B, 𝜂)be a soft 

function. Then 𝜑𝜒 is soft continuous if and only if for every soft subset 𝐹Gof 𝐹A, 𝜑𝜒(𝑐(𝐹G)) ⊂

𝑐(𝜑𝜒(𝐹G)) 

Proof. Assume that 𝜑𝜒 is soft continuous. Since 𝑐(𝜑𝜒(𝐹G)) is a soft η-closed set in 𝐹B, 

𝜑𝜒
−1(𝑐(𝜑𝜒(𝐹G))) is a soft μ-closed set in 𝐹A containing 𝐹G. Also 𝑐(𝐹G) is the smallest soft 

μ-closed set in 𝐹Acontaining 𝐹G. Hence 𝑐(𝐹G) ⊂ 𝜑𝜒
−1(𝑐(𝜑𝜒(𝐹G))). Therefore by theorem 

2.14.(5), 𝜑𝜒(𝑐(𝐹G)) ⊂ 𝑐(𝜑𝜒(𝐹G)).  

Conversely, assume that (𝐹A, 𝜇) and (𝐹B, 𝜂)are two SGTS’s and 𝜑𝜒 ∶ (𝐹A, 𝜇) → (𝐹B, 𝜂) be a 

soft function. Suppose for every soft subset 𝐹Gof 𝐹A, 𝜑𝜒(𝑐(𝐹G)) ⊂ 𝑐(𝜑𝜒(𝐹G)). Assume𝐹H is 

a soft η-closed subset of 𝐹B. To show that 𝜑𝜒
−1(𝐹H) is soft μ-closed in 𝐹A, it suffices to show 

that the soft μ-closure of 𝜑𝜒
−1(𝐹H) is contained in 𝜑𝜒

−1(𝐹H). If 𝛼 ∈ 𝑐(𝜑𝜒
−1(𝐹H)),then by 

hypothesis and by theorem 2.14.(5), 𝜑𝜒(𝛼) ∈ 𝜑𝜒(𝑐(𝜑𝜒
−1(𝐹H)))  ⊂  𝑐[𝜑𝜒(𝜑𝜒

−1(𝐹H))]  ⊂

𝑐(𝐹H) = 𝐹H so that 𝛼 ∈ 𝜑𝜒
−1(𝐹H). Thus 𝑐(𝜑𝜒

−1(𝐹H)) ⊂ 𝜑𝜒
−1(𝐹H) as desired. By 

theorem4.4.,𝜑𝜒 is soft continuous.∎ 

Theorem 4.6. Let (𝐹A, 𝜇), (𝐹B, 𝜂) and (𝐹C, 𝜆) be SGTS’s. Then the following hold: 

(1) If 𝐹G is a soft subspace of 𝐹A, then the soft function 𝜑𝜒 ∶ 𝐹G → 𝐹Adefined by 𝜑𝜒(𝛼) =

𝛼 is soft continuous. 

(2) If the soft functions 𝜑𝜒 ∶ 𝐹A → 𝐹B and 𝜏𝜎: 𝐹B → 𝐹C are soft continuous, then the soft 

composite function 𝜏𝜎  𝑜 𝜑𝜒 is also soft continuous. 
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Proof. 

(1) Suppose 𝐹His a soft μ-open subset of 𝐹A, then 𝜑𝜒
−1(𝐹H) = 𝐹H ∩ 𝐹G which is soft 𝜇𝐹𝐺

-

open in 𝐹G, by definition of the SSGT. Hence 𝜑𝜒 is soft continuous. 

(2) If 𝐹H is a soft λ-open subset of 𝐹C, then since 𝜏𝜎 is soft continuous, 𝜏𝜎
−1(𝐹H) is a soft 

η-open subset of 𝐹B. Again as 𝜑𝜒 is soft continuous,𝜑𝜒
−1(𝜏𝜎

−1(𝐹H)) is a soft μ-open 

subset of 𝐹A. But we have (𝜏𝜎 𝑜 𝜑𝜒)−1 =  𝜑𝜒
−1𝑜 𝜏𝜎

−1, by theorem2.14.(10). So 

(𝜏𝜎 𝑜 𝜑𝜒)−1(𝐹H)is soft μ-open subset of 𝐹A whenever 𝐹H is soft λ-open subset of 𝐹C. 

Hence 𝜏𝜎  𝑜 𝜑𝜒 is soft continuous.∎ 

 

 

5. Conclusion 

 

In the present work, we introduced the concept of SGTS which is defined on an initial soft 

set and gave basic definitions and theorems of this concept. We proved that SGT gives a 

parameterized family of generalized topologies on the initial universe. We hope that the 

findings in this paper will help researcher enhance and promote the further study on SGT. 
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