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Abstract - In this study, we define a new triangle matrix Ĝ =
{gu,v
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spaces such as Schauder basis, isomorphism and α−, β − γ− du-
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1 Introduction

Let ω be the space of complex sequences. By a sequence space, we understand a linear
subspace of the space ω. We write `∞, c, c0 and `p for the classical sequence spaces of
all bounded, convergent, null and absolutely p-summable sequences, respectively, where
1 ≤ p < ∞. Also by bs and cs, we denote the spaces of all bounded and convergent
series, respectively. We assume throughout unless stated otherwise that p, q > 1 with
p−1 + q−1 = 1 and use the convention that any term with negative subscript is equal to
zero. We denote throughout that the collection of all finite subsets of N by F .

Let A = (ank) be an infinite matrix of complex numbers ank where n, k ∈ N. Then,
A defines a matrix mapping from X to Y and is denote by A : X → Y if for every
sequence x = (xk) ∈ X the sequence Ax = {(Ax)n}n∈N, the A-transform of x, is in Y
where

(Ax)n =
∑

k

ankxk, (n ∈ N) (1)

1Corresponding Author
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By (X : Y ), denote the class of all matrices A such that A : X → Y . Thus, A ∈ (X : Y )
if and only if the series on the right hand side of (1) converges for each n ∈ N and x ∈ X,
and we have Ax = {(Ax)n}n∈N ∈ Y for all x ∈ X. A sequence x ∈ ω is said to be
A-summable to l if Ax converges to l, which is called the A-limit of x.

A matrix A = (ank) is called a triangle if ank = 0 for k > n and ann 6= 0 for all
n, k ∈ N. It is trivial that A(Bx) = (AB)x holds for the triangle matrices A,B and a
sequence x. Further, a triangle matrix U has a unique inverse U−1 = V which is also
triangle matrix. Then, x = U(V x) = V (Ux) holds for all x ∈ ω.

Let q = (qk) be a sequence of positive reals and write

Qn =
n∑

k=0

qk, (n ∈ N).

Then the Cesàro mean of order one, Riesz mean with respect to the sequence q = (qk),
which are triangle limitation matrices, are respectively defined by the matrices C =
(cnk) and Rq = (rq

nk) ; where

cnk =

{ 1

n + 1
, (0 ≤ k ≤ n),

0, (k > n),
rq
nk =

{ qk

Qn

, (0 ≤ k ≤ n),

0, (k > n),

for all k, n ∈ N. Also, we define the summation matrix S = (snk), the difference matrix

∆ = (∆
(1)
nk ), Ar

u = {ar
nk(u)} and ∆(m) = (∆

(m)
nk ) by

snk =

{
1, (0 ≤ k ≤ n),
0, (k > n),

∆
(1)
nk =

{
(−1)n−k, (n− 1 ≤ k ≤ n),
0, (0 ≤ k < n− 1 or k > n),

ar
nk(u) =





1 + rk

n + 1
uk, (0 ≤ k ≤ n),

0, (k > n),

and

∆
(m)
nk =





(−1)n−k

(
m

n− k

)
, (max{0, n−m} ≤ k ≤ n)

0, (0 ≤ k < n− 1 or k > n)

for all k, n ∈ N.
For a sequence space X, the matrix domain XA of an infinite matrix A is defined

by
XA = {x = (xk) ∈ ω : Ax ∈ X}, (2)

which is a sequence space. If A is triangle, then one can easily observe that the sequence
space XA and X are linearly isomorphic, i.e., XA

∼= X.
By U , we denote for the set of all sequences u = (uk) such that uk 6= 0 for all k ∈ N.

For u ∈ U , let 1/u = (1/uk). Let u, v ∈ U and define the matrix G(u, v) = (gnk) by

gnk =

{
unvk, (0 ≤ k ≤ n),
0, (k > n),

for all k, n ∈ N, where un and vk depend only on n and k, respectively. The G(u, v)
matrix is called as generalized weighted mean or factorable matrix.
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Let r, s and t be non-zero real numbers, and define the generalized difference matrix
B̂ = B(r, s, t) = (bnk) by

bnk =





r, (k = n)
s, (k = n− 1)
t, (k = n− 2)
0, (0 ≤ k < n− 1 or k > n)

(3)

for all n, k ∈ N.
The approach constructing a new sequence space by means of the matrix domain of

a particular limitation method has recently been employed by Wang [1], Ng and Lee [2],
Malkowsky [3], Altay and Başar [5], Malkowsky and Savaş [9], Başarır [10], Aydın and
Başar [11], Başar et al. [12], Şengönül and Başar [13], Altay [14], Polat and Başar [15],
and Malkowsky et al. [16]. ∆, ∆2 and ∆m are the transposes of the matrices ∆(1), ∆(2)

and ∆(m), respectively, and c0(u, p) are the spaces consisting of the sequences x = (xk)
such that ux = (ukxk) in the spaces c0(p) and c(p) for u ∈ U , respectively, studied by
Başarır [10]. Also, the generalized difference matrix B(r, s, t) = (bnk) has been used
by Sönmez [42] for defining the some new sequence spaces. Finally, the new technique
for deducing certain topological properties, for example AB−, KB−, AD− properties,
etc., and determining the β− and γ− duals of the domain of a triangle matrix in a
sequence space has been given by Altay and Başar [20].

The main purpose of the present paper is to introduce the sequence space µu,v(Ĝ)
and to determine the α−, β− and γ− duals of this space, where µ denotes the any of
the classical spaces `∞, c, c0 or `p, and Ĝ = G(u, v)B̂ . Furthermore, the Schauder bases

for the spaces cu,v
0 (Ĝ), cu,v(Ĝ) and `u,v

p (Ĝ) are given, and some topological properties of

the spaces cu,v
0 (Ĝ), cu,v(Ĝ), `u,v

∞ (Ĝ) and `u,v
p (Ĝ) are examined. Finally, some classes of

matrix mappings on the space µu,v(Ĝ) are characterized.

2 The Difference Sequence Spaces µu,v(Ĝ) of Non-

Absolute Type for µ ∈ {c0, c, `∞, `p}
In the present section, we introduce the spaces cu,v

0 (Ĝ), cu,v(Ĝ), `u,v
∞ (Ĝ) and `u,v

p (Ĝ)
derived by the generalized weighted mean G(u, v) and generalized difference matrix
B(r, s, t) and show that these spaces are BK− spaces of non-absolute type which are
norm isomorphic to the spaces c0, c, `∞ and `p, respectively. Furthermore, we give the

bases of the spaces cu,v
0 (Ĝ), cu,v(Ĝ) and `u,v

p (Ĝ).
Recently, using the generalized weighted mean G(u, v), some new sequence spaces

have been defined by several authors. For example, Malkowsky and Savaş[9], Başar and
Altay [6], Polat, Karakaya and Şimşek [7] and Başarır and Kara [37].

Following [9, 6, 7, 37], we define the sequences spaces µu,v(Ĝ) for µ ∈ {c0, c, `∞, `p}
by

µu,v(Ĝ) = {x = (xk) ∈ ω : y = ((Ĝx)k) ∈ µ}
where the sequence y = (yk) is the Ĝ = G(u, v)B̂−transform of a sequence x = (xk),
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that is,

yk = (Ĝx)k = uk

( k∑
i=0

vi(rxi + sxi−1 + txi−2)

)
(4)

for all k ∈ N. It is natural that the spaces µu,v(Ĝ) may also be defined with the notation
of (2) that

µu,v(Ĝ) = µ bG. (5)

On the other hands we define the triangle matrix Ĝ = GB̂ = (ĝnk) by

ĝnk =





unvkr + unvk+1s + unvk+2t, (k < n− 1)
unvn−1r + unvns, (k = n− 1)
unvnr, (k = n)
0, (otherwise)

(6)

for all k, n ∈ N. Also, it can be easily seen that, which will be frequently used, the
Ĝ−transform of a sequence x = (xk) is

y0 = ru0v0x0, y1 = u1(rv0 + sv1)x0 + ru1v1x1 and

yk = uk

k−2∑
i=0

(rvi + svi+1 + tvi+2)xi + uk(rvk−1 + svk)xk−1 + ukvkrxk for k > 1. (7)

The definition in (5) includes the following special cases:

(i) If v = (λk − λk−1) and u = (1/λn) then µu,v(Ĝ) = µλ(B̂) (cf[18]).

(ii) If v = (λk − λk−1), u = (1/λn), r = 1, s = 1 and t = 0 then cu,v(Ĝ) = cλ(B) and

cu,v
0 (Ĝ) = cλ

0(B) (cf[32]).

(iii) If v = (λk − λk−1), u = (1/λn), r = 1, s = −1 and t = 0 then cu,v(Ĝ) = cλ(∆) and

cu,v
0 (Ĝ) = cλ

0(∆) (cf[7]).
Since the proof may also be obtained in the similar way as for the other spaces, to

avoid the repetition of the similar statements, we give the proof only for one of those
spaces. Now, we may begin with the following theorem which is essential in the study.

Theorem 2.1. (i) The difference sequence spaces cu,v
0 (Ĝ), cu,v(Ĝ) and `u,v

∞ (Ĝ) are BK−
spaces with the norm ‖x‖cu,v

0 ( bG) = ‖x‖cu,v( bG) = ‖x‖`u,v
∞ ( bG) = ‖Ĝ(x)‖∞, that is ,

‖x‖cu,v
0 ( bG) = ‖x‖cu,v( bG) = ‖x‖`u,v

∞ ( bG) = sup
n∈N

∣∣Ĝn(x)
∣∣.

(ii) Let 1 ≤ p < ∞. Then `u,v
p (Ĝ) is a BK− space with the norm ‖x‖`u,v

p ( bG) = ‖Ĝx‖p,
that is,

‖x‖`u,v
p ( bG) =

( ∑
n

|Ĝn(x)|p
)1/p

.

Proof: Since (5) holds and c0, c and `∞ are BK− spaces with respect to their

natural norms (see [43, pp. 16-17]) and the matrix Ĝ is a triangle, Theorem 4.3.12

Wilansky [44, pp. 63] gives the fact that cu,v
0 (Ĝ), cu,v(Ĝ) and `u,v

∞ (Ĝ) are BK− spaces
with the given norms. This completes the proof .
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Theorem 2.2. The sequence spaces cu,v
0 (Ĝ), cu,v(Ĝ), `u,v

∞ (Ĝ) and `u,v
p (Ĝ) of non-absolutely

type are norm isomorphic to the spaces c0, c, `∞ and `p , respectively, that is, cu,v
0 (Ĝ) ∼=

c0, cu,v(Ĝ) ∼= c, `u,v
∞ (Ĝ) ∼= `∞ and `u,v

p (Ĝ) ∼= `p .

Proof: We prove the theorem for the space cu,v
0 (Ĝ). To prove our assertion we

should show the existence of a linear bijection between the spaces cu,v
0 (Ĝ) and c0. Let

T : cu,v
0 (Ĝ) → c0 be defined by (4) . Then, y = T (x) = Ĝ(x) ∈ c0 for every x ∈ cu,v

0 (Ĝ)
and the linearity of T is clear. Further, it is trivial that x = 0 whenever Tx = θ and
hence T is injective .

Moreover, let y = (yk) ∈ c0 and we define the sequence x = (xk) by

xk =
k∑

j=0

dkj

j∑
i=j−1

(−1)j−i 1

vjui

yi (8)

for k ∈ N where dnk = 0 for k > n and

dnk =
1

r

n−k∑
v=0

(−s +
√

s2 − 4tr

2r

)n−k−v(−s−√s2 − 4tr

2r

)v

(9)

for 0 ≤ k ≤ n. Then we obtain

rxk + sxk−1 + txk−2 =
k∑

j=k−1

(−1)k−j 1

vkuj

yj for all k ∈ N.

Hence, for every n ∈ N we get by (4)

Ĝn(x) = un

n∑

k=0

vk(rxk + sxk−1 + txk−2) = un

n∑

k=0

vk

k∑

j=k−1

(−1)k−j 1

vkuj

yj = yn.

This show that Ĝ(x) = y and since y ∈ c0, we conclude that Ĝ(x) ∈ c0. Thus, we

deduce that x ∈ cu,v
0 (Ĝ) and Tx = y. Hence T is surjective.

Moreover one can easily see for every x ∈ cu,v
0 (Ĝ) that

‖Tx‖∞ = ‖Ĝx‖∞ = ‖x‖cu,v
0 ( bG)

which means that T is norm preserving. Consequently T is a linear bijection which
show that the spaces cu,v

0 (Ĝ) and c0 are linearly isomorphic, as desired.
Let (X, ‖.‖) be a normed space. A sequence (bk) of elements of X is called a Schauder

basis for X if and only if, for each x ∈ X there exists a unique sequence (αk) of scalars
such that x =

∑
k αkbk, i.e.

lim
n→∞

‖x−
n∑

k=0

αkbk‖ = 0.
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Lemma 2.3. [4] Let T be a triangle and S be its inverse. If (b(n)) is a basis of the
normed sequence space X, then (S(b(n))) is a basis of XT .

The Schauder basis of the sequence spaces cu,v
0 (Ĝ), cu,v(Ĝ) and `u,v

p (Ĝ) can be derived
by using Lemma 2.3, as follows:

Corollary 2.4. Let αk = Ĝk(x) for all k ∈ N and limk→∞ Ĝk(x) = l. Define the

sequence b(k) = {b(k)
n }n∈N for every fixed k ∈ N by

b(k)
n =





dnk

ukvk

− dn,k+1

ukvk+1

, (n > k)

1

rukvk

, (n = k)

0, (n < k).

(10)

Then, the following statements hold:

(i) The sequence {b(k)
n }n∈N is a basis for the spaces cu,v

0 (Ĝ) and any x ∈ cu,v
0 (Ĝ) has

a unique representation of the form x =
∑

k αkb
(k).

(ii) The sequence {b(k)
n }n∈N is a basis for the spaces `u,v

p (Ĝ) and any x ∈ `u,v
p (Ĝ) has

a unique representation of the form x =
∑

k αkb
(k).

(iii) The sequence {b, b(0), b(0), b(1), ...} is a basis for the space cu,v(Ĝ), where b =

(bk) =

( ∑k
j=0 dkj

)
, and any x ∈ cu,v(Ĝ) has a unique representation of the form

x = lb +
∑

k

[αk − l]b(k).

3 The α-, β- and γ-Duals of the Spaces µu,v(Ĝ) of

Non-Absolute Type for µ ∈ {c0, c, `∞, `p}
In this section, we determine the α-, β- and γ-duals of the generalized difference se-
quence spaces cu,v

0 (Ĝ), cu,v(Ĝ), `u,v
∞ (Ĝ) and `u,v

p (Ĝ) of non-absolute type.
Firstly, we must give the definition of α-, β- and γ-duals of a sequences space. For

the sequence spaces λ and µ, define the set S(λ, µ) by

S(λ, µ) = {z = (zk) ∈ w : xz = (xkzk) ∈ µ for all x ∈ λ}. (11)

With the notation of (11), the α-, β- and γ-duals of a sequences space λ, which are
respectively denoted by

λα = S(λ, `1), λβ = S(λ, cs) and λγ = S(λ, bs).

Lemma 3.1. (i) A ∈ (c0 : `1) = (c : `1) = (`∞ : `1) if and only if

sup
K∈F

∑
n

∣∣∣∣
∑

k∈K

ank

∣∣∣∣ < ∞.
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(ii) Let 1 < p < ∞ and 1
p

+ 1
q

= 1. Then A ∈ (`p : `1) if and only if

sup
N∈F

∑

k

∣∣∣∣
∑
n∈N

ank

∣∣∣∣
q

< ∞.

Lemma 3.2. A ∈ (c0 : c) if and only if

lim
n→∞

ank = αk for each fixed k ∈ N, (12)

sup
n∈N

∑

k

|ank| < ∞. (13)

Lemma 3.3. A ∈ (c : c) if and only if (12) and (13) hold, and

lim
n→∞

∑

k

ank exists. (14)

Lemma 3.4. A ∈ (`∞ : c) if an only if (12) holds and

lim
n→∞

∑

k

|ank| =
∑

k

|αk|.

Lemma 3.5. Let 1 < p < ∞. Then, A ∈ (`p : c) if and only if (12) hold and

sup
n∈N

∑

k

|ank|q < ∞
(

1

p
+

1

q
= 1

)
. (15)

Lemma 3.6. A ∈ (c : `∞) = (c0 : `∞) = (`∞ : `∞) if and only if (13) holds.

Lemma 3.7. Let 1 < p < ∞. Then, A ∈ (`p : `∞) if and only if (15) holds.

Now we consider the following sets:

f1 =

{
a = (an) ∈ w : sup

K∈F

∑
n

∣∣∣∣
∑

k∈K

fnk

∣∣∣∣ < ∞
}

,

f2 =

{
a = (an) ∈ w :

∞∑

j=k

djkaj exists for each k ∈ N.

}
,

f3 =

{
a = (an) ∈ w : sup

n∈N

n−1∑

k=0

|ĝk(n)|q < ∞
}

,

f4 =

{
a = (an) ∈ w : sup

n∈N

∣∣∣∣
1

r

an

unvn

∣∣∣∣ < ∞
}

,

f5 =

{
a = (an) ∈ w : lim

n→∞

n∑

k=0

[ k∑
j=0

dkj

]
ak exists},

f6 =

{
a = (an) ∈ w : sup

N∈F

∞∑

k=0

∣∣∣∣
∑
n∈N

fnk

∣∣∣∣
q

< ∞
}

,

f7 =

{
a = (an) ∈ w : lim

n→∞

∑

k

|vnk| =
∑

k

| lim
n→∞

vnk|
}

,
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where the matrices F = (fnk) and V = (vnk) are defined as follows,

fnk =





dnkan

ukvk

− dn,k+1an

ukvk+1

, (k < n)

an

runvn

, (k = n)

0, (k > n)

and

vnk =





ĝk(n), (k < n)
an

runvn

, (k = n)

0, (k > n)

for all k, n ∈ N and the ĝk(n) is defined as follows

ĝk(n) =
1

uk

[∑n
j=k djkaj

vk

−
∑n

j=k+1 dj,k+1aj

vk+1

]
for k < n.

Theorem 3.8. (i) {cu,v
0 (Ĝ)}α = {cu,v(Ĝ)}α = {`∞u, v(Ĝ)}α = f1.

(ii) Let 1 < p < ∞ and 1
p

+ 1
q

= 1. Then, {`λ
p(B̂u, v(Ĝ))}α = f6.

Proof: We prove the theorem for the space cu,v
0 (Ĝ). Let a = (an) ∈ w. Then, we

obtain the equality

anxn =
n∑

k=0

dnk

k∑

j=k−1

(−1)k−j 1

vkuj

anyj

=
n−1∑

k=0

(
dnk

vk

− dn,k+1

vk+1

)
an

uk

yk +
an

runvn

yn

= Fn(y) (16)

by relation (8). Thus we observe by (16) that ax = (anxn) ∈ `1 whenever x = (xk) ∈
cu,v
0 (Ĝ) if and only if Fy ∈ `1 whenever y = (yk) ∈ c0 . This means that the sequence

a = (an) ∈ {cu,v
0 (Ĝ)}α if and only if F ∈ (c0 : `1). Therefore we obtain by Lemma 3.1

with F instead of A that a = (an) ∈ {cu,v
0 (Ĝ)}α if and only if

sup
K∈F

∑
n

∣∣∣∣
∑

k∈K

fnk

∣∣∣∣ < ∞

which leads us to the consequence that {cu,v
0 (Ĝ)}α = f1. This completes the proof.

Theorem 3.9. (i) {cu,v
0 (Ĝ)}β = f2 ∩ f3 ∩ f4 (with q = 1).

(ii) {cu,v(Ĝ)}β = f2 ∩ f3 ∩ f4 ∩ f5 (with q = 1).

(iii) {`u,v
∞ (Ĝ)}β = f2 ∩ f4 ∩ f7

(iv) Let 1 < p < ∞ and 1
p

+ 1
q

= 1. Then, {`u,v
p (Ĝ)}β = f2 ∩ f3 ∩ f4.
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Proof: Consider the equality

n∑

k=0

akxk =
n∑

k=0

[ k∑
j=0

dkj

i∑
i=j−1

(−1)j−i 1

vjui

yi

]
ak

=
n∑

k=0

(
yk

uk

− yk−1

uk−1

)(
1

vk

n∑

j=k

djkaj

)

=
n−1∑

k=0

1

uk

[∑n
j=k djkaj

vk

−
∑n

j=k+1 dj,k+1aj

vk+1

]
yk +

1

r

an

unvn

yn

=
n−1∑

k=0

ĝk(n)yk +
1

r

an

unvn

yn

= Vn(y); (n ∈ N). (17)

Then we deduce by (17) that ax = (akxk) ∈ cs whenever x = (xk) ∈ cu,v
0 (Ĝ) if and only

if V y ∈ c whenever y = (yk) ∈ c0. This means that a = (ak) ∈ {cu,v
0 (Ĝ)}β if and only if

V ∈ (c0 : c). Therefore, by using Lemma 3.2, we obtain :

∞∑

j=k

djkaj exists for each k ∈ N, (18)

sup
n∈N

n−1∑

k=0

|ĝk(n)| < ∞, (19)

sup
k∈N

∣∣∣∣
1

r

an

unvn

yn

∣∣∣∣ < ∞. (20)

Hence, we conclude that {cu,v
0 (Ĝ)}β = f2 ∩ f3 ∩ f4.

Finally, we ended up this section with the following theorem which determines the
γ-duals of sequence spaces cu,v

0 (Ĝ), cu,v(Ĝ), `u,v
∞ (Ĝ) and `u,v

p (Ĝ) .

Theorem 3.10. (i) {µu,v(Ĝ)}γ = f3 ∩ f4 (with q = 1), where µ ∈ {c0, c, `∞}.
(ii) Let 1 < p < ∞ and 1

p
+ 1

q
= 1. Then, {`λ

p(B̂)}γ = fλ
3 ∩ fλ

4 .

4 Some Matrix Transformations Related to the Spaces

µu,v(Ĝ) of Non-Absolute Type for µ ∈ {c0, c, `∞, `p}
In this final section, we state some results which characterize various matrix mappings
on the spaces cu,v

0 (Ĝ), cu,v(Ĝ), `u,v
∞ (Ĝ) and `u,v

p (Ĝ). We shall write throughout for brevity
that

ânk(m) =
1

uk

[∑m
j=k djkaj,k

vk

−
∑m

j=k+1 dj,k+1aj,k+1

vk+1

]
for k < m

and

ânk =
1

uk

[∑∞
j=k djkaj,k

vk

−
∑∞

j=k+1 dj,k+1aj,k+1

vk+1

]
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for all k, m, n ∈ N provided the series on the right hand to be convergent.

Theorem 4.1. Let λ be any given sequence space and µ ∈ {c0, c, `∞, `p}. Then, A =

(ank) ∈ (µu,v(Ĝ) : λ) if and only if B ∈ (µ : λ) and

B(n) ∈ (µ : c) (21)

for every fixed n ∈ N, where bnk = ânk and B(n) = (b
(n)
mk)

b
(n)
mk =





ânk(m), (k < n)
anm

rumvm

, (k = n)

0, (k > n)

for all k, m ∈ N.

Proof: This result can be proved similarly as the proof of Theorem 3.1 in [8].

We will have several consequences by using Theorem 4.1. But we must give firstly
some relations which are important for corollaries:

sup
n∈N

∑

k

|ank| < ∞ (22)

lim
n→∞

ank = 0 for each fixed k ∈ N (23)

lim
n→∞

ank = αk exists for each fixed k ∈ N (24)

lim
n→∞

∑

k

ank exists (25)

sup
K∈F

∑
n

∣∣∣∣
∑

k∈K

ank

∣∣∣∣ < ∞ (26)

lim
n→∞

∑

k

ank = 0 (27)

lim
n→∞

∑

k

|ank| =
∑

k

|αk| (28)

sup
n∈N

∑

k

|ank|q < ∞
(

1

p
+

1

q
= 1

)
(29)

sup
N∈F

∑

k

∣∣∣∣
∑
n∈N

ank

∣∣∣∣
q

< ∞ (30)

lim
n→∞

∑

k

|ank| = 0 (31)

Now, we can give the corollaries:

Corollary 4.2. A = (ank) be any infinite matrix. Then the following statements hold:

(i) A = (ank) ∈ (cu,v
0 (Ĝ) : `∞) if and only if (22) holds with ânk instead of ank and

(21) also holds.
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(ii) A = (ank) ∈ (cu,v
0 (Ĝ) : c) if and only if (24) and (25) hold with ânk instead of ank

and (21) also holds.

(iii) A = (ank) ∈ (cu,v
0 (Ĝ) : c0) if and only if (22) and (23) hold with ânk instead of ank

and (21) also holds.

(iv) A = (ank) ∈ (cu,v
0 (Ĝ) : `1) if and only if (26) holds with ânk instead of ank and

(21) also holds.

Corollary 4.3. A = (ank) be any infinite matrix. Then the following statements hold:

(i) A = (ank) ∈ (cu,v(Ĝ) : `∞) if and only if (22) holds with ânk instead of ank and
(21) also holds.

(ii) A = (ank) ∈ (cu,v(Ĝ) : c) if and only if (22), (24) and (25) hold with ânk instead
of ank and (21) also holds.

(iii) A = (ank) ∈ (cu,v(Ĝ) : c0) if and only if (23) and (27) hold with ânk instead of ank

and (21) also holds.

(iv) A = (ank) ∈ (cu,v(Ĝ) : `1) if and only if (26) holds with ânk instead of ank and
(21) also holds.

Corollary 4.4. A = (ank) be any infinite matrix. Then the following statements hold:

(i) A = (ank) ∈ (`u,v
∞ (Ĝ) : `∞) if and only if (22) holds with ânk instead of ank and (21)

also holds.
(ii) A = (ank) ∈ (`u,v

∞ (Ĝ) : c) if and only if (24) and (28) hold with ânk instead of ank

and (21) also holds.

(iii) A = (ank) ∈ (`u,v
∞ (Ĝ) : c0) if and only if (31) holds with ânk instead of ank and

(21) also holds.

(iv) A = (ank) ∈ (`u,v
∞ (Ĝ) : `1) if and only if (26) holds with ânk instead of ank and

(21) also holds.

Corollary 4.5. Let A = (ank) be any infinite matrix, 1 < p < ∞ and 1
p
+ 1

q
= 1. Then

the following statements hold:
(i) A = (ank) ∈ (`u,v

p (Ĝ) : `∞) if and only if (29) holds with ânk instead of ank and (21)
also holds.
(ii) A = (ank) ∈ (`u,v

p (Ĝ) : c) if and only if (24) and (29) hold with ânk instead of ank

and (21) also holds.

(iii) A = (ank) ∈ (`u,v
p (Ĝ) : c0) if and only if (23) and (29) hold with ânk instead of ank

and (21) also holds.

(iv) A = (ank) ∈ (`u,v
p (Ĝ) : `1) if and only if (30) holds with ânk instead of ank and

(21) also holds.
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[19] M. Kirişçi, F. Başar, Some new sequence spaces derived by the domain of general-
ized difference matrix, Comput. Math. Appl. 60(5)(2010) 1299-1309.
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[23] C. Aydın, F. Başar, Some new sequence spaces which include the spaces `p and
`∞, Demonstratio Math. 38(3)(2005) 641-656.
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