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Abstract - In this study, we define a new triangle matrix G =

{9, (r,s,t)} which derived by using multiplication of weighted Keywords - Matriz domain

mean matrix G = (gnx) with triple band matrix B(r,s,t) . Also, )
of a sequence space, Matriz

we examine some topological properties of this new sequence .
o ) transformations , Schauder ba-
spaces such as Schauder basis, isomorphism and a—, 8 — y— du- .
. . W A . . sis, a—, B— and y— duals.
als . Finally, we characterize the classes (1" (G) : pe) of infinite

matrices , where (1 € {c,co,¢p} and po € {loc, ¢, co,4p}.

1 Introduction

Let w be the space of complex sequences. By a sequence space, we understand a linear
subspace of the space w. We write {, ¢, ¢y and ¢, for the classical sequence spaces of
all bounded, convergent, null and absolutely p-summable sequences, respectively, where
1 < p < oo. Also by bs and c¢s, we denote the spaces of all bounded and convergent
series, respectively. We assume throughout unless stated otherwise that p,q > 1 with
p ' +¢ ! =1 and use the convention that any term with negative subscript is equal to
zero. We denote throughout that the collection of all finite subsets of N by F.

Let A = (an) be an infinite matrix of complex numbers a,; where n, k € N. Then,
A defines a matrix mapping from X to Y and is denote by A : X — Y if for every
sequence x = (xy) € X the sequence Ar = {(Ax), }nen, the A-transform of z, is in Y

where
(Az), = Z ankxr, (n € N) (1)

!Corresponding Author
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By (X :Y), denote the class of all matrices A such that A: X — Y. Thus, A € (X :Y)
if and only if the series on the right hand side of (1) converges for each n € Nand z € X,
and we have Ax = {(Ax),}neny € Y for all z € X. A sequence x € w is said to be
A-summable to [ if Az converges to [, which is called the A-limit of x.

A matrix A = (a,) is called a triangle if a,;, = 0 for £ > n and a,, # 0 for all
n,k € N. It is trivial that A(Bxz) = (AB)x holds for the triangle matrices A, B and a
sequence x. Further, a triangle matrix U has a unique inverse U~ = V which is also
triangle matrix. Then, x = U(Vx) = V(Uz) holds for all z € w.

Let ¢ = (gx) be a sequence of positive reals and write

k=0

Then the Cesaro mean of order one, Riesz mean with respect to the sequence ¢ = (qx),
which are triangle limitation matrices, are respectively defined by the matrices C' =
(¢nx) and RT = (rl,) ; where

1 gk

<k< —, (0<k<n),

B et (0<k<n), D o) ( )
0, (k >n),

for all k,n € N. Also, we define the summation matrix S = (s,), the difference matrix

A= (AD), A7 = {az, (u)} and A = (AUV) by

o L (0<k<n), AW D (n—1<k <n),
"0, (k> n), nk 0, (0<k<n-—1ork>n),
1+ 7k
r k<
pp(u) = n+1 w, (0<k<n),
0, (k> mn),
and
(—1k (™ (max{0,n —m} < k < n)
A = n—k)’ | .
0, (0<k<n-—1lork>n)

for all k,n € N.
For a sequence space X, the matrix domain X4 of an infinite matrix A is defined
by
Xa={z=(xp) €w: Ax € X}, (2)

which is a sequence space. If A is triangle, then one can easily observe that the sequence
space X4 and X are linearly isomorphic, i.e., X, = X.

By U, we denote for the set of all sequences u = (uy) such that uy # 0 for all £ € N.
Foru e U, let 1/u = (1/uy). Let u,v € U and define the matrix G(u,v) = (gnx) by

o Un Vg, (0 S k S TL),
Gnk = 0, (k >n),

for all k,n € N, where wu,, and v, depend only on n and k, respectively. The G(u,v)
matrix is called as generalized weighted mean or factorable matrix.
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_ Let 7, s and ¢ be non-zero real numbers, and define the generalized difference matrix
B = B(r,s,t) = (bux) by

w3

bnk =

O &
e e R

for all n, k € N.

The approach constructing a new sequence space by means of the matrix domain of
a particular limitation method has recently been employed by Wang [1], Ng and Lee [2],
Malkowsky [3], Altay and Basar [5], Malkowsky and Savas [9], Basarir [10], Aydin and
Basar [11], Basar et al. [12], Sengoniil and Basar [13], Altay [14], Polat and Bagar [15],
and Malkowsky et al. [16]. A, A% and A™ are the transposes of the matrices A1), A
and A respectively, and cy(u, p) are the spaces consisting of the sequences x = (z)
such that uz = (ugxy) in the spaces ¢o(p) and ¢(p) for u € U, respectively, studied by
Bagarir [10]. Also, the generalized difference matrix B(r,s,t) = (b,x) has been used
by Sénmez [42] for defining the some new sequence spaces. Finally, the new technique
for deducing certain topological properties, for example AB—, K B—, AD— properties,
etc., and determining the f— and y— duals of the domain of a triangle matrix in a
sequence space has been given by Altay and Bagar [20].

The main purpose of the present paper is to introduce the sequence space u™ (é)
and to determine the a—, f— and y— duals of this space, where u denotes the any of
the classical spaces (o, ¢, cg or £, and G= G(u, U)B Furthermore, the Schauder bases
for the spaces c*(G), ¢* v(@) and £ °(G) are given, and some topological properties of
the spaces cg’v(@), c”’”(@),ﬁ&”(@) and 55’”(@) are examined. Finally, some classes of
matrix mappings on the space /ﬂ“’(@) are characterized.

2 The Difference Sequence Spaces ;"(G) of Non-
Absolute Type for p € {cy,c,lx, lp}

In the present section, we introduce the spaces cv*(G),c**(G), (%*(G) and Eg”}(é)
derived by the generalized weighted mean G(u,v) and generalized difference matrix
B(r,s,t) and show that these spaces are BK — spaces of non-absolute type which are
norm isomorphic to the spaces ¢y, ¢, {« and ¢, respectively. Furthermore, we give the
bases of the spaces cﬁ’”(@), ¢(G) and E;’”(CAJ).

Recently, using the generalized weighted mean G(u,v), some new sequence spaces
have been defined by several authors. For example, Malkowsky and Savag[9], Basar and
Altay [6], Polat, Karakaya and Simsek [7] and Bagarir and Kara [37].

Following [9, 6, 7, 37], we define the sequences spaces u“’”(@) for p € {co, ¢, b, p}
by R R

p(G) ={x = (zp) e w:y = (Ga)) € p}

where the sequence y = (yi) is the G = G(u, U)E—transform of a sequence = = (zy),



Journal of New Results in Science 6 (2014) 1-14 4

that is,
k

yr = (Gz)y = uy ( > vilra; + sz + m”)) (4)

=0

for all k € N. It is natural that the spaces (@) may also be defined with the notation
of (2) that

~

pG) = g ()
On the other hands we define the triangle matrix G = GB = (Gui) by

UpVET + UpVk1S + UpUpiot, (kK <mn—1)

) upvpar Uy, (k=n-1)

Gnk = UpUn T, ( ) (6)
0, (otherwise)

for all k,n € N. Also, it can be easily seen that, which will be frequently used, the
G—transform of a sequence = = () is

Yo = TUGVTo, Y1 = Ui(rvg + sv1)xg + rujviz; and

k—2
Yp = Ug Z(Wi + sV + tvie)m; + uk(rvg_1 + svg)xg_1 + ugvgray for k>1. (7)
=0
The definition in (5) includes the following special cases:
(i) If v = (A, — Me—1) and uw = (1/),,) then p*¥(G) = p*(B) (cf[18]).
(i) If v = A\ — A1), u = (1/X\,), r =1, s =1 and t = 0 then ¢“*(G) = *(B) and
¢ (G) = &3(B) (cf[32). R
(111) Ifo=A\—M1), u=(1/\,), r=1,5s=—1and t =0 then ¢“*(G) = ¢*(A) and
" (G) = (D) (ef[7)).
Since the proof may also be obtained in the similar way as for the other spaces, to
avoid the repetition of the similar statements, we give the proof only for one of those
spaces. Now, we may begin with the following theorem which is essential in the study.

Theorem 2.1. (i) The difference sequence spaces ¢y (G ) (e ) and ego“(@) are BK —
spaces with the norm ||x||cg,v(@) = 1zl cu iy = 2l @y = 1G (@)oo, that is

Hl’”cgﬂ“(@) = |2l oty = Nl gy i) = Sgg |Ga(2)].

(11) Let 1 < p < co. Then KZ’U(CA;) is a BK — space with the norm ||z v &) = ||CA¥x||p,

that 1s,
R 1/p
el = (L 1Gul)

Proof: Since (5) holds and cg,c and ¢, are BK— spaces with respect to their
natural norms (see [43, pp. 16-17]) and the matrix G is a triangle, Theorem 4.3.12
Wilansky [44, pp. 63] gives the fact that ¢*(G), c**(G) and £%¥(G) are BK— spaces
with the given norms. This completes the proof .
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Theorem 2.2. The sequence spaces cg*“(@), (@G), é“’”(G) and £, (G ) of non-absolutely

Y

type are norm zsomorphzc to the spaces €05 G U and C, , Tespectively, that is, ¢y’ ((A;) =
Co, c“”(G) >, é“”(G) > ( and E“”(G) =/,

Proof: We prove the theorem for the space cg’v(@). To prove our assertion we
should show the existence of a linear bijection between the spaces cg’”(é) and cy. Let
T : " (G) — ¢y be defined by (4) . Then, y = T(z) = G(z) € ¢, for every z € c»*(G)
and the linearity of T is clear. Further, it is trivial that z = 0 whenever Tx = # and
hence T is injective .

Moreover, let y = (yi) € ¢o and we define the sequence = = (z) by

T = dej Z - ivjlui Yi (8)

i=j—1

for k € N where d,,;;, = 0 for £ > n and

n—k n—k—v v
1 —5 4+ /82 — 4dtr —5 — /82 — 4dtr
g 13 ( v ) ( g ) )

2r T
v=0

for 0 < k <n. Then we obtain

k

rTy + STp_1 + trp_o = Z (—1)k_j
j=k—1

1

ViUj

Yj for all k € N.

Hence, for every n € N we get by (4)

n k
Gn(z) = uy, ka(mk + STy +tap_o) = uy, Uk Z (—1)k

k=0 k=0  j=k—1

Yj = Yn.
ViUj

This show that G(z) = y and since y € ¢, we conclude that G(z) € ¢o. Thus, we
deduce that = € ¢;’(G) and Tx = y. Hence T is surjective.
Moreover one can easily see for every = € ¢y"(G) that

1Tl = 1Calloe = 2] o ey

which means that 7" is norm preserving. Consequently 7' is a linear bijection which
show that the spaces ¢y’ (G) and ¢ are linearly isomorphic, as desired.

Let (X, ||.]|) be a normed space. A sequence (by) of elements of X is called a Schauder
basis for X if and only if, for each x € X there exists a unique sequence («y) of scalars
such that z = ", ayby, i.e.

n
lim Hx — Z Oékka =0.
n—oo P
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Lemma 2.3. [}] Let T be a triangle and S be its inverse. If (b(n)) is a basis of the
normed sequence space X, then (S(b(n))) is a basis of Xr.

The Schauder basis of the sequence spaces cg’v(@ ), c“’“(@ ) and E;"“(CA}) can be derived
by using Lemma 2.3, as follows:

Corollary 2.4. Let oy = CA}k(m) for all k € N and limy_ CAJk(x) = 1. Define the
sequence b*¥) = {bﬁ{‘“)}neN for every fized k € N by

dnk N dn,k+1

, (n>k)
») Uk?llk ULVE41
b, = , (n — k) (10)
TULVE
0, (n < k).

Then, the following statements hold:

(i) The sequence {b Y nen is a basis for the spaces ¢ (G) and any x € ¢*°(G) has
a unique representation of the form x =3, ayb®).

(ii) The sequence {bq(f)}neN is a basis for the spaces E;"”(@) and any x € E}j’”(@) has
a unique representation of the form x =5, ab®) .
(iii) The sequence {b,b© b® bMWY} is a basis for the space ¢**(G), where b =

(br) = Z?:o di; |, and any x € c“’”(@) has a unique representation of the form

=10+ [og— .
k

AN

3 The a-, §- and y-Duals of the Spaces u""(G) of
Non-Absolute Type for u € {cy, ¢, l, )}

In this section, we determine the a-, - and 7-duals of the generalized difference se-
quence spaces ¢, (G), " (G), £ (G) and £"(G) of non-absolute type.

Firstly, we must give the definition of a-, #- and y-duals of a sequences space. For
the sequence spaces A and p, define the set S(\, u) by

S\ p)={z=(z) €Ew:xz= (z2) € p for all x € \}. (11)

With the notation of (11), the a-, 8- and ~-duals of a sequences space A, which are
respectively denoted by

A" =S\ 4), N =S(\ecs) and N = S(\,bs).

Lemma 3.1. (i) A€ (co:l) = (c:l) =l : l1) if and only if

sup 37| 3

Ker ™ kK

< OQ.
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(ii) Let 1 <p < oo andi—%%:l. Then A € (¢, : £y) if and only if

q
< Q.

Lemma 3.2. A € (¢ : ¢) if and only if

lim a,, = oy for each fixed k € N,

n—oo

supz |ank| < o0.
neN &

Lemma 3.3. A€ (c:c) if and only if (12) and (13) hold, and
lim Zank exists.
n—oo k/.
Lemma 3.4. A € ({y : ¢) if an only if (12) holds and
lim Y fane| =) lowl.
k k

Lemma 3.5. Let 1 <p < oo. Then, A€ ({,:c) if and only if (12) hold and

1 1
supZ|ank|q<oo (——i——:l).
- P g

neN
Lemma 3.6. A€ (c: ) = (c0: le) = (oo : l) if and only if (13) holds.
Lemma 3.7. Let 1 <p < oo. Then, A€ ({,:l) if and only if (15) holds.

<o},

Now we consider the following sets:

fi = {a:(an)Ew:SUpZ

KeF n

ank

keK
fa = {a = (an) €Ew: Zdjkaj exists for each k € N.},
=k
n—1
fi = { — (an) €w:sup S ()l < oo},
neN =0
1 a,
fi = {a:(an)szsup— <oo}7
neN | T UpUp
n k
s = {a = (a,) € w: lim Z [de} ap exists},
=0 Li=o
oo q
fo = fo=@i w35 gl <ol
NeF k=0 I nen
fr = {a = (ap) € w: lim Z|vnk| = Z| lim vnk|},
k i

(12)

(13)

(14)
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where the matrices F' = (fx) and V = (v,) are defined as follows,

dnk:a'n . dn,k—i—l ap,

, (k<n)
Ugvk Uk Vg+1
fnk = n_ (k =n)
TUpUp
0, (k>mn)
and
= L k: -
Unk ru”v”’ ( ’l’L)
0, (k >n)
for all k,n € N and the gx(n) is defined as follows
/g\k(n) _ Z]_k Jk®g Zg_kJrl J,k+1%5 for k < n.
UL Vg Vk+1

~

Theorem 3.8. (i) {c"(G)}* = {c"*(G)}* = {locu, v(G)}* =
(11) Let 1 < p < oo and % + é = 1. Then, {E;(BU,U(G))}“ =

Proof: We prove the theorem for the space ¢’(G). Let a = (a,) € w. Then, we
obtain the equality

o1
AnTyp = E dnk E - - anY;
. ViU
j=k—1
n—1
o <dnk dn,kJrl) any + an
= E —_— — —— | — Yy
—0 Uy, Vk+1 Uk TUpUp

= Fu(y) (16)

Yn

by relation (8). Thus we observe by (16) that ax = (a,z,) € ¢1 whenever x = () €
cg’”(@) if and only if F'y € ¢; whenever y = (yx) € ¢o . This means that the sequence
a = (a,) € {c¢“"(G)}* if and only if F € (cy : £1). Therefore we obtain by Lemma 3.1
with F instead of A that a = (a,) € {c%"(G)}* if and only if

o 3|3 1] <

KeF kK

o0

which leads us to the consequence that {c**(G)}* = f;. This completes the proof.

Theorem 3.9. (i) (O = fon fsn fi (with q=1).
(ii) {c(G)} = o0 fsn fan fs (with ¢ =1).
(i) {6 G)Y = fo0 fa fr i
() Let 1 < p < oo and % + % = 1. Then, {€%*(G)}’ = fan f3N fu.
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Proof: Consider the equality

k=0 - j=0 i=j—1 7T
n B 1 n
- 2 (i) G Ree)
o \Uk k—1 r—
— 1 [Xkdma; Yy diknay 1 ay
- Z - - Yk + = Yn
k—0 uk’ Uk vk‘-‘rl r nUn
n—1 R 1 a,
k=0 n+v¥n
= Vuly) (neN). (17)

Then we deduce by (17) that az = (azzz) € cs whenever z = (z3) € ¢&*(G) if and only
if Vy € ¢ whenever y = (yx) € ¢o. This means that a = (az) € {cg”(G)}? if and only if
V € (co : ¢). Therefore, by using Lemma 3.2, we obtain :

Z djka; exists for each k € N, (18)
j=k

n—1
sup 3" )] < ox. (19)
neN k=0

1 a,

sup |— Yn| < 00. (20)
keN | T UpUp

Hence, we conclude that {cg,v(@)}g = foN f3N fy.
Finally, we ended up this section with the following theorem which determines the

~ ~ ~

~v-duals of sequence spaces ¢’ (G), ¢ (G), 0¥ (G) and 00 (G)

Theorem 3.10. (i) {u**(G)} = f3N f1 (with ¢ = 1), where p € {co, ¢, lss}.
(11) Let 1 < p < oo and % + % = 1. Then, {£;(B)}" = f3 N f}.

4 Some Matrix Transformations Related to the Spaces
p"'(G) of Non-Absolute Type for u € {cy, ¢, lx,l,}

In this final section, we state some results which characterize various matrix mappings

~ ~ -~

on the spaces cg’v(@), c?(G), 0y (G) and (¥ (G). We shall write throughout for brevity
that

m m
. 1 [Zj:k djpain D5k ikr10ihn

(%3 Vk41

1 for k <m

and

o0 o0
1 [ij distin 2750 dj,k+1aj,k+1]

Vg Vk+1
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for all k,m,n € N provided the series on the right hand to be convergent.

Theorem 4.1. Let X be any given sequence space and ji € {co, ¢, loo, lp}. Then, A =
(ank) € (L (GQ) : A) if and only if B € (u: \) and

B™ € (u:c) (21)

for every fized n € N, where by, = Gpi, and B™ = (b(n))

mk

ane(m), (k<n)
b — " (k=n)
0, (k> n)

for all k,m € N.

Proof: This result can be proved similarly as the proof of Theorem 3.1 in [§].

We will have several consequences by using Theorem 4.1. But we must give firstly
some relations which are important for corollaries:

ilelg Z |ans| < 00 (22)

nlljgl() an, =0 for each fixed k € N (23)

nh_)ngo anr = oy, exists for each fixed k € N (24)

nli_)nolOZank exists (25)
k

pEDBIPBEEES )

nlljgl@ Z ap =0 (27)
k

Tim 3 o] = 3 Jeud (28)
k k

1 1
sup ank|? < 00 (——1——:1) 29
2 lon ST (29)

neN

sup an 30

e 3| o] )

lim Z lank] =0 (31)
k

Now, we can give the corollaries:

Corollary 4.2. A = (a,x) be any infinite matriz. Then the following statements hold:
(i) A= (an) € (cg(G) : ls) if and only if (22) holds with G,y instead of an, and
(21) also holds.
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(ii) A= (am) € (c(G): c) if and only if (24) and (25) hold with Guy instead of an
and (21) also holds.

(iii) A= (an) € (c¥°(G) : co) if and only if (22) and (23) hold with Gy instead of
and (21) also holds.

(iv) A= (an) € (c"(G) : 01) if and only if (26) holds with Gy instead of any, and
(21) also holds.

Corollary 4.3. A = (a,x) be any infinite matriz. Then the following statements hold:
(i) A= (an) € (c“”(@) i ls) if and only if (22) holds with Gy, instead of a,, and
(21) also holds.

(ii) A= (aw) € (**(G) : ¢) if and only if (22), (24) and (25) hold with G, instead
of anx and (21) also holds.

(iii) A= (an) € (“*(G) : o) if and only if (23) and (27) hold with Gy, instead of a
and (21) also holds.

(v) A= (an) € (c““(@) : 0y) if and only if (26) holds with G,y instead of an, and
(21) also holds.

Corollary 4.4. A = (aux) be any infinite matriz. Then the following statements hold:
(i) A= (am) € (= (G): ls) if and only if (22) holds with Gy, instead of any, and (21)
also holds. R

(i1) A= (an) € ({L°(G) : ¢) if and only if (24) and (28) hold with G,y instead of any
and (21) also holds.

(11i)) A = (ank) € (egg’(@) : ¢o) if and only if (31) holds with @,y instead of anx and
(21) also holds.

(iv) A= (aw) € ((“*(G) : 01) if and only if (26) holds with Gy instead of any, and
(21) also holds.

Corollary 4.5. Let A = (anx) be any infinite matriz, 1 < p < oo and % —i—% =1. Then
the following statements hold:

~

(i) A= (an) € ((;°(G) : L) if and only if (29) holds with G,y instead of any and (21)
also holds. R

(i) A= (an) € (;°(Q) : ¢) if and only if (24) and (29) hold with @y, instead of an
and (21) also holds.

(11i)) A= (an) € (E;“’(é) 2 co) if and only if (23) and (29) hold with Gy, instead of an
and (21) also holds.

(iv) A= (an) € (ﬁ;"”(@) 2 0) if and only if (30) holds with @,y instead of anr and
(21) also holds.
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