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AbstractIn this paper, a new stronger forms of continuity called
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1 Introduction

General topology plays an important role in mathematics and in applied science. In
analysis the concepts like continuity, separation axioms, compactness, connectedness
etc are generalized by many topologists using generalized forms of open and closed
sets. Recently, Rajamani and Vishwanathan[8] introduced the notion of αgs-closed set
using α-closure operator.
In this paper the new classes of continuous functions called strongly αgs-continuous
functions and perfectly αgs-continuous functions which are stronger than
αgs-continuous functions is presented. Also we apply these continuous functions to
the classes of αgs-compact and αgs-connected spaces which are defined in [7].

2 Preliminary

Throughout this paper (X, τ), (Y, σ)(or simply X, Y )denote topological spaces on
which no separation axioms are assumed unless explicitly stated. For a subset A of
a space X the closure and interior of A with respect to τ are denoted by Cl(A) and
Int(A) respectively.

1Corresponding Author



Journal of New Results in Science 9 (2015) 28-36 29

Definition 2.1. A subset A of a space X is called
(1) semi open set [2] if A ⊂ Cl(Int(A)).
(2) semi closed set [1] if Int(Cl(Int(A))) ⊂ A.
(3) α-open [5]if A ⊂ Int(Cl(Int(A)))

Definition 2.2. [8] A subset A of X is αgeneralized semi-closed(briefly, αgs-closed)set
if αCl(A) ⊂ U whenever A ⊂ U and U is semi open in X. The complement of αgs-
closed set is αgeneralized-semi open (briefly,αgs-open).The family of all αgs-closed sets
of X is denoted by αGSC(X,τ) and αgs-open sets by αGSO(X,τ).

Definition 2.3. [4]:A topological space X is called αgs-T2 if for each pair of distinct
points x and y of X, there exist disjoint αgs-open sets, one containing x and the other
containing y .

Definition 2.4. [9] A function f : X → Y is said to be
(i) αgs-continuous if the inverse image of evey closed set in Y is a αgs-closed set in X.
(ii) αgs-irresolute if the inverse image of αgs-closed set in Y is a αgs-closed set in X.

Definition 2.5. [9] A space X is said to be Tαgs-space if every αgs-closed set in it is
closed set.

3 STRONGLY αGS-CONTINUOUS FUNCTIONS

In this section, the notion of a new class of functions called strongly αgs-continuous
functions is introduced and obtained some of their characterizations and properties.
Also, the relationships with some other related functions are discussed.

Definition 3.1. A function f : X → Y is said to be strongly αgs-continuous if f−1(V )
is closed in X for every αgs-closed set V of Y.

Theorem 3.2. A function f : X → Y is strongly αgs-continuous if and only if f−1(V )
is open in X for every αgs-open set V in Y.

Proof. Let f : X → Y is strongly αgs-continuous and V be a αgs-open set in Y.
Then V c is αgs-closed set in Y. Therefore, f−1(V c) is closed set in X. But f−1(V c) =
(f−1(V ))c and hence f−1(V ) is open in X. Converse is obvious.

Remark 3.3. Every strongly αgs-continuous is αgs-continuous function. But the con-
verse need not to be true from the following example.

Example 3.4. Let X ={a, b, c}= Y, τ = {X,φ, {a} , {b, c}}. We have αgs-closed sets
in X are {{b} , {c} , {a, b} , {a, c} , }. σ = {Y, φ, {a} , {a, b}}.We have αgs-closed sets in
Y are {{c} , {b, c} , }. Define a function f : X → Y by f(a) = b, f(b) = c, f(c) = a.
Then f is αgs-continuous but not strongly αgs-continuous as f−1({b, c}) = {a, b} is not
closed set in X.

Recall that a function f : X → Y is strongly continuous [3] if f−1(V ) is clopen in
X for every subset V of Y.

Remark 3.5. Every strongly contiuous function is strongly αgs-continuous function.
But the converse need not to be true from the following example.
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Example 3.6. Let X ={a, b, c}=Y, τ = {X,φ, {c} , {b, c}}, σ = {Y, φ, {a} , {a, b}}.We
have αgs-closed sets in Y are {{c} , {b, c} , }. Define a function f : X → Y by f(a) =
c, f(b) = b, f(c) = a. Then f is strongly αgs-continuous but not strongly continuous as
f−1({a, b}) = {b, c} is open set but not closed set in X.

Theorem 3.7. The composition of two strongly αgs-continuous functions is strongly
αgs-continuous.

Proof. f : X → Y and g : Y → Z be two stronly αgs-continuous functions. Let V
be a αgs-closed set in Z. Since g is strongly αgs-continuous, g−1(V ) is closed in Y. Then
g−1(V ) is αgs-closed in Y. Since f is strongly αgs-continuous, f−1(g−1(V )) is closed in
X. That is (g ◦ f)−1(V ) is closed in X. Hence g ◦ f is strongly αgs-continuous.

Theorem 3.8. Let Y be Tαgs-space and f : X → Y be any function. Then following
are equivalent
(i) f is strongly αgs-continuous function.
(ii) f is continuous.

Proof: (i) ⇒ (ii) Obvious because every open set is αgs-open set.
(ii) ⇒ (i) Suppose F is αgs-closed set in Y and Y is Tαgs-space. Therefore F is closed
in Y . Since f is continuous, f−1(F ) is closed in X. Hence f is strongly αgs-continuous
function.

Theorem 3.9. The following are equivalent for the function f : X → Y .
(i) The function f is strongly αgs-continuous.
(ii) For each x ∈ X and each αgs-open set V in Y with f(x) ∈ V , there exist an open
set U in X such that x ∈ U and f(U) ⊂ V .
(iii) f−1(V ) ⊂ Int(f−1(V )) for each αgs-open set V of Y .
(iv) f−1(F ) is closed in X for every αgs-closed set F of Y .

Proof: (i)⇒(ii) Suppose (i) holds. Let x ∈ X and V be a αgs-open set in Y containing
f(x). Since f is strongly αgs-continuous, f−1(V ) is an open set in X such that x ∈
f−1(V ). Put U = f−1(V ), then x ∈ U and f(U) = f(f−1(V )) ⊂ V . Thus (ii) holds.
(ii)⇒(iii) Suppose (ii) holds. Let V be any αgs-open set in Y and x ∈ f−1(V ). By
(ii), there exists an open set U in X such that x ∈ U and f(U) ⊂ V . This implies
x ∈ U ⊂ Int(U) ⊂ Int(f−1(V )), which implies x ∈ Int(f−1(V )). Therefore, f−1(V ) ⊂
Int(f−1(V ))
(iii)⇒(iv). Suppose (iii) holds. Let F be any αgs-closed set of Y . Set V = Y − F ,
then V is αgs-open set in Y . By (iii) f−1(V ) ⊂ Int(f−1(V )). That is f−1(Y −
F ) ⊂ Int(f−1(Y − F )). This implies X − f−1(F ) ⊂ X − Cl(f−1(F )). This implies
Cl(f−1(F )) ⊂ f−1(F ). But f−1(F ) ⊂ Cl(f−1(F )) is always true. Therefore, f−1(F ) =
Cl(f−1(F )). This shows that, f−1(F ) is closed in X.
(iv)⇒(i) Suppose (iv) holds. Let V be any αgs-open set of Y . Set F = Y − V . Then
F is αgs-closed set of Y . By (iv), f−1(F ) is closed in X. But f−1(F ) = f−1(Y − V ) =
X − f−1(V ). This implies f−1(V ) is an open set in X. Therefore f is strongly αgs-
continuous.

Theorem 3.10. If f : X → Y is injective strongly αgs-continuous and Y is αgs-T2

space, then X is T2 space.
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Proof: Suppose f : X → Y is injective strongly αgs-continuous and Y is αgs-T2.
Let x and y be any two distinct points in X. Since f is injective f(x) and f(y) are
distinct points in Y . Since Y is αgs-T2, there exist disjoint αgs-open sets G and H in Y
such that f(x) ∈ G and f(y) ∈ H. This implies, x ∈ f−1(G) and y ∈ f−1(H). Again,
since f is strongly gδsαgs-continuous, f−1(G) and f−1(H) are disjoint open sets in X.
Therefore X is T2 space.

4 PERFECTLY αGS-CONTINUOUS FUNCTIONS

Definition 4.1. A function f : X → Y is said to be perfectly αgs-continuous if f−1(V )
is clopen in X for every αgs-closed set V of Y.

Note that f : X → Y is said to be perfectly αgs-continuous if and only if inverse
image of every αgs-closed set of Y is clopen in X. T. Nori[6] introduced the notion of
perfectly continuous function in topological spaces. Recall that a function f : X → Y
is called perfectly continuous[6] if the inverse image of every open set of Y is clopen in
X. Then we have

Theorem 4.2. (i) If f : X → Y is said to be perfectly αgs-continuous, then f is per-
fectly continuous.
(ii) If f : X → Y is said to be perfectly αgs-continuous, then f is strongly αgs-
continuous.

Note that the converses in the theorem above is not necessary true as shown by the
following example.

Example 4.3. (i)The function defined in Example 3.6 is strongly αgs-continuous but
not perfectly continuous, since for an open set {a} f−1({a}) = {c} is open set but not
closed set in X.
(ii) The function defined in Example 3.6 is strongly αgs-continuous but not perfectly
αgs-continuous as for αgs-closed set {b, c}, f−1({b, c}) = {a, b} is closed set but not an
open set in X.

Theorem 4.4. For a function f : X → Y the following statements are eqivalent:
(i) f is perfectly αgs-continuous.
(ii) f is strongly αgs-continuous and inverse images of strongly αgs-open sets are αg-
closed set.

Proof:. Obvious.

Theorem 4.5. A function f : X → Y is perfectly αgs-continuous if the graph function
g : X×X → Y , defined by g(x) = (x, f(x)) for each x ∈ X, is perfectly αgs-continuous.

Proof: Let V be any αgs-open set of Y . Then X × V is a αgs-open set of X × Y .
Since g is perfectly αgs -continuous, f−1(V ) = g−1(X × V ) is clopen in X. Therefore
f is perfectly αgs-continuous.

Theorem 4.6. Let A be any subset of X. If f : X → Y is perfectly αgs-continuous,
then the restriction function f |A : A → Y is perfectly αgs-continuous.
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Proof: Let V be a αgs-open set of Y . Since f is perfectly αgs-continuous, f−1(V )
is clopen set in X. Then, (f |A)−1(V ) = A ∩ f−1(V ) is clopen in A and hence f |A is
perfectly αgs-continuous.

Theorem 4.7. Let f : X → Y and g : Y → Z be two functions.
(i) If f , g are perfectly αgs-continuous functions, then g ◦ f is perfectly αgs-continuous
function.
(ii) If f is perfectly αgs-continuous function and g is αgs-irresolute, then g◦f is perfectly
αgs-continuous function.
(iii) If f is perfectly continuous function and g is strongly continuous, then g ◦ f is
perfectly αgs-continuous function.
(iv) If f is perfectly αgs-continuous function and g is αgs-continuous, then g ◦ f is
perfectly continuous function.
(v) If f is αgs-continuous and g is strongly continuous then g ◦ f is αgs-continuous.
(vi) If f is αgs-irresolute and g is perfectly αgs-continuous, then g ◦ f is αgs-irresolute
function.

Proof: Obvious.

Theorem 4.8. Every perfectly αgs-continuous function in to finite T1 space is strongly
continuous.

Proof: Obvious because every finite T1 space is discrete space. Therefore every
subset of X is open and hence αgs-open. Since f is perfectly αgs-continuous function,
f−1(A) is clopen for every subset of Y . Therefore f is strongly continuous.

Theorem 4.9. Let X be a discrete topological space, Y be any topological space and
f : X → Y be a function. Then the following are equivalent.
(i) f is perfectly αgs-continuous.
(ii)f is strongly αgs-continuous.

Proof: (i)⇒ (ii) Obvious because every clopen set is open.
(ii)⇒(i) Let V is a αgs-open in Y . By hypothesis, f−1(V ) is open in X. Since X is
discrete space, f−1(V ) is also closed set in X. Therefore f is perfectly continuous.

Theorem 4.10. If f : X → Y is perfectly αgs-continuous injection and Y is αgs-T2

space, then X is ultra Hausdorff space.

Proof: Suppose f : X → Y is perfectly αgs-continuous injection and Y is αgs-T2 space.
Let a and b be any pair of distinct points of X. Since f is injective f(a) and f(b) are
distinct points in Y . Since Y is αgs-T2 space, there exist disjoint αgs-open sets U and
V in Y such that f(a) ∈ U and f(b) ∈ V . This implies, a ∈ f−1(U) and b ∈ f−1(V ).
Since f is perfectly αgs-continuous, f−1(U) and f−1(V ) are disjoint clopen sets in X.
Therefore X is ultra Hausdorff space.

Remark 4.11. The following diagram is obtained from definitions.

Strongly Continuity → Strongly αgs-Continuity → Continuity → αgs-Continuity
↑

Perfectly Continuity ← Perfectly αgs-Continuity
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5 αGS-COMPACT SPACES

The concepts of αgs-compact and αgs-connnected spaces defined in [7]. In this section
we discuss some of their characterizations and properties.

Definition 5.1. A topological space X is said to be αgs-compact[7] if it cannot be
written as the union of two non-empty disjoint αgs-open sets.

Definition 5.2. A subset A of a space X is called αgs-compact relative to X if every
collection {Ui : i ∈ I} of αgs-open subsets of X such that A ⊂ ⋃ {Ui : i ∈ I}, there exists
a finite subset Io of I such thatA ⊂ ⋃ {Ui : i ∈ Io}.
Definition 5.3. [7] A subset A of space X is called αgs-compact if A is αgs-compact
as a subspace of X.

Theorem 5.4. Every αgs-compact space is compact.

Proof: Let X be a αgs-compact space and {Ai : i ∈ I} be an open cover of X.
Then {Ai : i ∈ I} is a αgs-open cover of X as every open set is αgs-open set. Since
X is αgs-compact, the αgs-open cover {Ai : i ∈ I} of X has a finite subcover say
{Ai : i = 1...n} for X. This shows that every open cover {Ai : i ∈ I} of X has a finite
subcover.Therefore X is compact.

Theorem 5.5. If X is compact and Tαgs-space, then X is αgs-compact.

Proof: Let {Ai : i ∈ I} be a αgs-open cover of X. As X is Tαgs-space, {Ai : i ∈ I}
is an open cover of X. Since X is compact, the open cover {Ai : i ∈ I} of X has a finite
subcover say {Ai : i = 1, ..., n}. This shows that every gδs-open cover {Ai : i ∈ I} of
X has a finite subcover. Therefore X is αgs-compact.

Theorem 5.6. A topological space X is αgs-compact if and only if every family of
αgs-closed sets of X having finite intersection property has a nonempty intersection.

Proof: Suppose X is αgs-compact. Let {Ai : i ∈ I} be a family of αgs-closed sets
with finite intersection property. To prove, ∩i∈IAi 6= φ. Suppose ∩i∈IAi = φ. Then,
X−∩i∈IAi = X. This implies, ∪i∈I(X−Ai) = X. Thus the cover {X−Ai : i ∈ I} is a
αgs-open cover of X. Since X is αgs-compact, the αgs-open cover {X −Ai : i ∈ I} has
a finite subcover say {X−Ai : X = X−∩n

i=1Ai which implies X−X = X−[X−∩n
i=1Ai]

implies that ∩i∈IAi = φ. This contradicts the hypothesis. Therefore, ∩i∈IAi 6= φ.

Conversely, suppose every family of αgs-closed sets of X with finite intersection
property has a nonempty intersection and if possible, let X be not compact, then there
exists a αgs-open cover of X say {Gi : i ∈ I} having no finite subcover. This implies
for any finite sub family {Gi : i = 1...n} of {Gi : i ∈ I}, ∪Gn

i=1 6= X which implies that
X − ∪n

i=1 6= X −X, this implies ∩n
i=1(X −Gi) 6= φ. Then the family {X −Gi : i ∈ I}

of αgs-closed sets has a finite intersection property. Therefore ∩(X − Gi) 6= φ, which
implies, ∩(X − Gi) is an infinite collection of αgs-closed sets with f.i.p. Also, by
hypothesis {Gi : i ∈ I} being a αgs-open covering of X. Therefore X = ∪i∈IGi. Taking
complements, φ = X − ∪i∈IGi = ∩i∈I(X − Gi), which is an infinite collection of αgs-
closed subsets of X having f.i.p with empty intersection. This is a contradiction due to
the fact that X is not compact. Hence X is αgs-compact.
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Theorem 5.7.
(i) Every αgs-closed subset of αgs-compact space is αgs-compact relative to X.
(ii) The surjective αgs-continuous image of a αgs-compact space is compact.
(iii) If f : X → Y is αgs-irresolute and a subset A of X αgs-compact relative to X, then
its image f(A) is αgs-compact relative to Y.

Proof: (i) Let A be a αgs-closed subset of a αgs-compact space X. Let {Ui : i ∈ I}
be a cover of A by αgs-open subsets of X. So A ⊂ ⋃ {Ui : i ∈ I} and then (X − A) ∪
(
⋃ {Ui : i ∈ I}) = X. Since X is αgs-compact, there exists a finite subset Io of I such

that (X − A) ∪ (
⋃ {Ui : i ∈ Io}) = X. Then A ⊂ ⋃ {Ui : i ∈ Io}. Hence A is αgs-

compact relative to X.
(ii) Let X be a αgs-compact space and f : X → Y be surjective αgs-continuous function.
Let {Ui : i ∈ I} be a cover of X by open sets. Then {f−1(Ui) : i ∈ I} is a cover of
X by αgs-open sets, since f is αgs-continuous. By αgs-compactness of X, there is
fininte subset Io of I such that X =

⋃ {f−1(Ui) : i ∈ Io}. Since f is surjective, Y =⋃ {f−1(Ui) : i ∈ Io} and hence Y is compact.
(iii) is similar to (ii).

Theorem 5.8. If a function f : X → Y is strongly αgs-continuous from a compact
space X onto a topological space Y, then Y is αgs-compact.

Proof:. Let {Ai : i ∈ I} be a αgs-open cover of Y. Since f is strongly αgs-continuous,
{f−1(Ai) : i ∈ I} is an open cover of X. Again since X is compact space, the open
cover {f−1(Ai) : i ∈ I} of X has a finite subcover say {f−1(Ai) : i = 1...n}. Therefore
X =

⋃ {f−1(Ai) : i = 1, 2, ..., n} which implies f(X) =
⋃

Ai : i = 1, 2..., n so that
Y =

⋃
Ai : i = 1, 2, ..., n. That is {A1, A2, .....An} is a finite subcover of {Ai : i ∈ I} for

Y. Hence Y is αgs-compact.

Theorem 5.9. If a function f : X → Y is perfectly αgs-continuous from a compact
space X onto a topological space Y, then Y is αgs-compact.

Proof: Similar to the above proof.

Theorem 5.10. Let f : X → Y be a perfectly αgs-continuous surjection. If X is
mildly compact, then Y is αgs-compact.

Proof: Let f : X → Y be a perfectly αgs-continuous function and let {Ai : i ∈ I} be
a αgs-open cover of Y . Since f is perfectly αgs-continuous, {f−1(Ai) : i ∈ I} is clopen
cover of X. Again since X is mildly compact space, the clopen cover {f−1(Ai) : i ∈ I}
of X has a finite subcover say {f−1(Ai) : i = 1..., n}. Therefore X = ∪n

i=1f
−1(Ai) which

implies f(X) = Y = ∪n
i=1Ai. That is {A1, A2..., An} is a finite subcover of {Ai : i ∈ I}

for Y . Hence Y is αgs-compact.

6 αGS-CONNECTED SPACES

Definition 6.1. A topological space X is said to be αgs-connected[7] if it cannot be
written as the union of two non-empty disjoint αgs-open sets.
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Theorem 6.2. For a topological space X, the following are equivalent:
(i) X is αgs-connected.
(ii) The only subsets of X which are both αgs-open and αgs-closed are the empty set φ
and X.
(iii) Each αgs-continuous function of X into a discrete space Y with at least two points
is a constant function.

Proof: (i) → (ii) Suppose (i) holds and F is a proper subset of X, which is both
αgs-open and αgs-closed. Then X-F is also both αgs-open and αgs-closed. Therefore
X = F ∪ (X −F ) is a disjoint union of two non empty αgs-open sets. This contradicts
the fact that X is αgs-connected. Hence F = φ or X

(ii) → (i) Suppose (ii) holds. If possible X is not αgs-connected, then X = A ∪ B,
where A and B are disjoint non empty αgs-open sets in X. Since A=X-B, implies A
is αgs-closed set. But by assumption, A = φ or X, which is contradiction. Hence (i)
holds.

(ii) → (iii) Let f : X → Y be a αgs-continuous function, where Y is a discrete space
with at least two points. Then f−1({y})is both αgs-open and αgs-closed for each y ∈ Y
and X = {f−1({y}) : y ∈ Y }. By assumptipon, f−1({y}) = X or φ. If f−1({y}) = φ
for all y ∈ Y , then f will not be a function. Also there cannot exist more than one
point y ∈ Y such that f−1({y}) = X. Hence there exists only one y ∈ Y such that
f−1(y) = X and f−1({y1}) = φ where y 6= y1 ∈ Y . This shows that f is constant
function.

(iii) → (ii) Let F be both αgs-open and αgs-closed in X. Suppose F 6= φ. Let
f : X → Y be a αgs-continuous function defined by f(F ) = {a} and f(X − F ) = {b}
for some distinct points a and b in Y. By assumption, f is constant function. Therefore
F = X.

Theorem 6.3. If X is Tαgs-space and connected, then X is αgs-connected.

Proof: Suppose X is not αgs-connected. Then X = A∪B where A and B are dis-
joint nonempty αgs-open sets in X. Since X is Tαgs-space, implies A and B are disjoint
non empty open sets in X, implies X is not connected space. This is contradiction to
the hypothesis. Therefore X is αgs-connected.

Theorem 6.4. If f : X → Y is a αgs-irresolute, surjection and X is αgs-connected,
then Y is αgs-connected.

Proof: Suppose Y is not αgs-connected. Then Y = A ∪ B where A and B are
disjoint nonempty αgs-open sets in Y . Since f is a αgs-irresolute, surjection, X =
f−1(A) ∪ f−1(B) are disjoint non empty αgs-open subsets of X, implies X is not αgs-
connected space. This is contradiction to the hypothesis. Therefore Y is αgs-connected.

Theorem 6.5. If f : X → Y is a strongly αgs-continuous surjection and X is connected,
then Y is αgs-connected.

Proof:Suppose Y is not αgs-connected. Then Y = A ∪ B where A and B are
disjoint nonempty αgs-open sets in Y. Since f is a strongly αgs-continuous surjection,
X = f−1(A) ∪ f−1(B) are disjoint non empty open subsets of X, implies X is not
connected space. This is contradiction to the hypothesis. Therefore Y is αgs-connected.
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