
Journal of Naval Science and Engineering
2010, Vol. 6 , No.2, pp. 1-33

1

SCENARIO MANAGEMENT PRACTICES IN
HLA-BASED DISTRIBUTED SIMULATION

Okan Topçu
Turkish Naval Academy
Tuzla, Istanbul,Turkiye

otopcu@dho.edu.tr

Halit Oğuztüzün
Middle East Technical University

Ankara,Turkiye
oguztuzn@ceng.metu.edu.tr

Abstract
Training in a distributed simulation generally involves carefully designed and
constructed simulation scenarios to fulfill the training aims. The simulation
scenarios (i.e. federation scenario) play an important role in the federation
design and development as specified in Federation Development and
Execution Process. The simulation scenarios are used in every step in
distributed simulation arena from the beginning (analysis and design) of a
distributed simulation development to the execution. Such an extensive use of
scenarios in a distributed simulation dictates a scenario management. In a
distributed simulation, the scenario management includes the activities of
scenario development, scenario loading, scenario distribution, event
injection, and scenario-related data collection in a distributed training.

This article explains the major concepts of simulation scenarios, introduces a
scenario object model, and discusses the main activities in scenario
management in a distributed simulation with a practical view. This article
also presents a running real-life example of a naval distributed interactive
simulation to illustrate the scenario management activities.

Scenario Management Practices In HLA-Based Distributed Simulation

2

HLA TABANLI DAĞITIK SİMULASYONDA
SENARYO YÖNETİM UYGULAMALARI

Özetçe
Dağıtık simülasyonda eğitim, eğitim amaçlarını karşılamak maksadıyla
genellikle dikkatlice oluşturulmuş ve tasarlanmış simülasyon senaryolarını
içermektedir. Simülasyon senaryoları (diğer bir deyişle federasyon
senaryoları), Federasyon Geliştirme ve Koşturma Prosesi’nde belirtilen
federasyon tasarımı ve geliştirilmesi için önemli bir rol oynamakta ve aynı
zamanda simülasyon senaryoları, dağıtık simülasyon alanında bir
simülasyonun geliştirilmesinin başlangıcından (analiz ve tasarım) icrasına
kadar tüm basamaklarında kullanılmaktadırlar. Dağıtık simülasyonda
senaryoların böylesine yoğun kullanımı senaryo yönetimini zorunlu
kılmaktadır. Dağıtık bir simülasyonda senaryo yönetimi; senaryonun
geliştirilmesi, senaryonun yüklenmesi, senaryonun dağıtımı, olay enjektesi ve
dağıtık eğitimde senaryoya bağımlı veri toplanması aktivitelerini
içermektedir.

Bu makale simülasyon senaryolarının temel kavramlarını açıklamakta, bir
senaryo nesne modeli tanıtmakta ve pratik açıdan dağıtık bir simülasyonda ki
temel senaryo yönetim aktivitelerini tartışmaktadır. Bu makale aynı zamanda
senaryo yönetim aktivitelerini açıklamak için makale boyunca dağıtılmış bir
şekilde gerçek bir deniz dağıtık etkileşimli simülasyon örneği sunmaktadır.

Keywords: Distributed simulation, high level architecture, scenario
management, military scenario definition language, federation development
and execution process
Anahtar Kelimeler: Dağıtık simülasyon, yüksek seviye mimarisi, senaryo
yönetimi, askeri senaryo tanımlama dili, federasyon geliştirme ve koşturma
prosesi

1. INTRODUCTION

High Level Architecture (HLA) [2, 3, and 4] is a distributed
simulation framework emphasizing the interoperability and reuse in
simulation components (i.e. federates in HLA terminology) in a distributed
simulation (i.e. federation). Training in a distributed simulation generally

Okan Topçu & Halit Oğuztüzün

3

involves carefully designed and constructed simulation scenarios1 to fulfill
the training aims. A scenario is the description of an exercise providing
entities and a series of events related to those entities.

The simulation scenarios (i.e. federation scenario) play an important
role in the federation design and development as specified in Federation
Development and Execution Process (FEDEP) [11]. Many activities in
FEDEP are related to the federation scenario. In FEDEP, development of a
federation scenario includes, first, a functional description of the federation
scenario and then transition to an executable scenario instance. The
development of a description of a federation scenario is performed in the
conceptual analysis phase according to the federation objectives, and then
they are used as input to the activity of federation design and establishing
the federation agreements. The scenario instances are constructed as an
output of establishing the federation agreements activity, and then they are
used as input to the activities of implementing the federate designs and
execution planning.

In federation execution, a common scenario is needed to be
synchronized through all the simulation components. In a typical case, a
scenario manager selects a simulation scenario and distributes it to the
participants. Moreover, scenarios are part of testing and validation activities.
For example, see [12] for the ideas how scenarios can be used in validation.

Using scenarios (in non-interactive federations) will help:

 Increase the repeatability of a federation run, and

 Decrease the non-determinism over the event flow.

1 “Scenario” will be used in short to mean “simulation scenario”.

Scenario Management Practices In HLA-Based Distributed Simulation

4

The simulation scenarios are used in every step in distributed
simulation arena from the beginning (analysis and design) of a distributed
simulation development to the execution. Moreover, scenarios are used not
only in distribution simulation, but also in networked or stand-alone games
[10]. Such an extensive use of scenarios in a distributed simulation dictates
a scenario management. As stated in [20], scenario management includes all
activities involved with the development and execution of a scenario. In a
distributed training simulation, major scenario management activities can be
classified in two categorization according to the time of the activity: (1) the
activities in design and development time and (2) the activities at runtime.
There is one major activity in design and development phase of a distributed
simulation: scenario development. In execution of a distributed simulation,
scenario management activities include (1) scenario loading and parsing, (2)
scenario distribution and role casting, (3) event injection, and (4) scenario-
related data collection and logging (see Figure 1).

Figure 1. Scenario Management Activities

Okan Topçu & Halit Oğuztüzün

5

While scenario is an important notion of FEDEP activities, and as
specified, scenario development is a required activity, it still requires further
explanations, specifically in practical usage [7]. Therefore, this article can
be seen as a complimentary study to FEDEP whereas it explains the major
concepts of simulation scenarios, introduces a scenario object model, and
discusses the main activities in scenario management in a distributed
simulation. This article explains each activity of scenario management using
a running example called Naval Surface Tactical Maneuvering Simulation
System (NSTMSS) [1, 6]. One of the main goals of the article is to clarify
and support of utilization of federation scenarios, mentioned in FEDEP, in
practice.

The article is organized as follows. Section 2 provides an
introduction and background to the running example. Section 3 discusses
the major scenario management activities and then explains each with an
example. Section 4 introduces a scenario object model and discusses the
relation between a scenario and FOM. Section 5 concludes the article and
shares some future work.

2. EXAMPLE: NAVAL SURFACE TACTICAL
MANEUVERING SIMULATION

Conceptually, NSTMSS is a distributed virtual environment, where
some of players interactively control the virtual frigates in real time and
some players behave as tactical players that command the groups of the
frigates. All shares a common virtual environment, which its environment
characteristics (e.g., time of day) and parameters (e.g., the wind direction)
are forced by an environment application, obeying a common scenario that
is distributed (e.g., role casting), controlled (e.g., injection messages), and

Scenario Management Practices In HLA-Based Distributed Simulation

6

monitored by an exercise planner. A potential application is training, where
naval cadets can practice formations.

Technically, NSTMSS is an HLA-based distributed simulation
system that is composed of 3-dimensional ship-handling simulators, a
tactical level simulation of operational area, a virtual environment manager,
and simulation management processes.

Software components can be classified into three groups according
to their functionality:

 Simulation Entity Components

 Federation Management Components

 Environment Generation Components

During federation execution a process is created by the host
operating system corresponding to each of the components mentioned.

Simulation Entity Group consists of the counterparts of real life
entities in the virtual environment. There are three kinds of federates in the
simulation entity group:

 Ship Federate: The ships are brought into federation by the
Meko class frigate federate and Knox class frigate federate, which are
platform level simulations allowing a person to steer the ship in (near) real-
time. The ship federates implement a three-dimensional ship handling
interactive simulator of a frigate with a single user interface.

 Helicopter Federate: The helicopter federate is an interactive
simulation that simulates a helicopter operated in the ships. The helicopter
federate is a six degree-of-freedom flight federate, which is controlled by a
user [8].

Okan Topçu & Halit Oğuztüzün

7

 Tactical Picture Federate: The tactical picture federate is a
tactical level interactive simulation that maintains the tactical picture of the
operational area, including task group formations and maneuvers. The
tactical picture federate provides interfaces to the user (i.e., Officer in
Tactical Command) to control and order the formations of the surface task
group to achieve a given operational objective.

Federation Management Group provides facilities for controlling
and monitoring the federation activity as well as distributing roles and
scenarios to players. They are:

 Exercise Planner Federate (ExPFd): The exercise planner
federate, also called Scenario Manager, selects the training scenario and
distributes it to the participants (i.e., the ship federates), injects events
defined in the scenario into the federation execution; collects data and
generates a report about the federation execution. The ExPFd simulates the
Officer Scheduling the Exercise functionality and operates as the orchestra
conductor.

 Federation Monitor Federate (FedMonFd): The federation
monitor federate enables generic data collection and reporting of the HLA
federates about their usage of underlying Run-time Infrastructure (RTI)
services by using the HLA Management Object Model interface [4]. The
FedMonFd is a stealth federate that also controls the federation reporting
behaviors. The FedMonFd provides a basis for implementation of an
observer federate and provides user interfaces to monitor the status of the
federation and the federates. The FedMonFd collects the federate specific
RTI data and presents them in tables. The FedMonFd also provides detailed
reports for review of the monitoring activity. The FedMonFd is not specific
to NSTMSS federation. It can be run in any federations.

Environment Generation Group consists of one federate:

Scenario Management Practices In HLA-Based Distributed Simulation

8

 Environment Generation Federate: The environment federate
enables the user to control the virtual environment atmospheric effects (e.g.,
fog, time of day, sea state), and publishes the weather reports to the entities
in the virtual environment at scheduled intervals specified in the scenario
file.

3. SCENARIO MANAGEMENT ACTIVITIES

3.1. Scenario Development

Scenario development involves a development process and
construction, where simulation scenario construction refers to the
formulation of the scenario in a specific notation such as Military Scenario
Definition Language (MSDL) [5]. The scenario development is generally a
domain specific activity, which is typically carried out by a domain
specialist or trainer. The scenario development process (e.g. finding entities
and relations among them) relates to the analysis of the simulation
conceptual model. The focus of this article is not the process, but the
construction. There are two important issues in scenario construction:
choosing a definition language for the scenario (specification), and a
scenario construction tool.

3.1.1. What is a Scenario?

A scenario is the description of an exercise providing [11]:

 scenario metadata (e.g. scenario id, scenario objectives),

 the initialization and termination data (e.g. starting and
ending geographical locations of simulation entities),

 starting and termination conditions (e.g. a significant check-
point is reached),

Okan Topçu & Halit Oğuztüzün

9

 key parameters (e.g. scenario duration),

 characteristics of the natural and man-made environment (e.g.
time of day, meteorological conditions),

 flow of events (timeline of scenario),

 threats (e.g. red forces) and neutral elements such as ships
belonging to neutral countries),

 the description, the relationships, the type, and the number of
(physical) entities (e.g. ships) that take place in the federation,

 and their behaviors

3.1.2. Scenario Specification

The specification of the scenario has impact over the implementation
of the simulation components where they must implement many operations
for loading, parsing, processing, and interpreting the scenario. The FEDEP
does not force the federation designer to a specific scenario specification
notation. A Scenario Definition Language (SDL) provides a specification
language for the user to develop a simulation scenario that will be played in
a federation execution. The definitions in the scenario file constitute a subset
of the federation application domain. The SDL shall contain constructs for
specifying the characteristics of the physical environment (e.g. geographical
regions, atmospheric conditions, etc.), types and number of entities (e.g.
ships), scenario events and timelines, data to be collected, and computer
generated forces, if any, in detail. An event definition mechanism will be
more useful. For example, it should be possible to inject occurrences for
events to change the flow of the exercise.

Scenario Management Practices In HLA-Based Distributed Simulation

10

There are two approaches that can be used for selecting an SDL. The
first approach is to develop a custom and federation specific format from
scratch specifically for the intended domain. The second approach is to use
a generalized, standardized, and federation independent language if exists
for the intended domain. For instance, Military Scenario Definition
Language (MSDL) is standard [5] for military simulations. Using a
standardized SDL promotes scenario interoperability and reusability.
Although, a custom SDL provides flexibility and simplicity in the
simulation development, it hinders interoperability. Because the format
developed must be adapted to other federations. One of the expected effects
of using MSDL is the enlargement of the scenario definition schemas. The
custom SDL is specific to the application domain therefore it covers only a
specific subset of the intended domain concepts used in the simulation.
However, MSDL is relatively large as it is intended to cover all the military
areas such as command and control.

In the development of an SDL, Extensible Markup Language
(XML), which is fast and practical in data exchange, is used extensively.
For example, the SDL used in the former NSTMSS versions was a custom
SDL specific to only NSTMSS federation and kept as an inline dataset
XML Schema Definition (XSD) file. It is constituted with sections where
sections consist of elements. MSDL is also an XML based language to
develop a military scenario to be used in modeling and simulation. Using
XML also enables the scenario validations. Validation is checking an
instance of a scenario (an XML document) against the SDL (an XML
schema document) whereas if the content of the XML document meets the
structure and content specifications of the XML schema document, it is said
valid.

Okan Topçu & Halit Oğuztüzün

11

3.1.3. Transformation from a Custom SDL to MSDL

We believe that most of the federations use their custom scenario
specifications optimized for the federation intended domain instead of a
general specification covering the whole domain. On the other hand, the
advantage of using a standard SDL is obvious. Therefore, it is generally a
mapping required between a custom SDL and a standard SDL. By adapting
a model driven engineering approach [16], model transformations (e.g.
XML-to-XML with XSLT2) can be developed for automatic mapping
between a custom SDL to MSDL.

The current version of NSTMSS tailored MSDL for its scenario
definitions. The transformation (mapping) from a custom SDL to MSDL
was straightforward in terms of mapping the elements of the custom SDL to
the elements of MSDL due to both are XML-based and more importantly,
the conceptual model remained the same.

Figure 2 depicts mapping the scenario elements from the custom
SDL to MSDL.

2 Extensible Stylesheet Language Transformations

Scenario Management Practices In HLA-Based Distributed Simulation

12

Figure 2. Mapping the Elements of the Custom NSTMSS SDL to MSDL

Another specific case study can be found in [19].

3.1.4. Scenario Construction Tool

Construction is putting together the existing scenario structures to
form a complete scenario, where a scenario construction tool simplifies this
process by hiding the details of the underlying SDL and eliminates an extra
learning phase of an SDL for the domain trainer. The name of a scenario
tool can take different forms such as scenario creator, scenario editor, or
scenario development tool. But, here we name it as a scenario construction
tool whereas construction generally includes / corresponds to the creation
and editing.

Okan Topçu & Halit Oğuztüzün

13

A typical scenario construction environment is depicted in Figure 3.
A scenario can be constructed from scratch or an existing scenario can be
loaded from a scenario data store3 and be reused as it’s or as modified. The
scenario tools, in general, take input both in graphical and textual forms. A
graphical scenario generally includes layers; one for a map and a number of
upper layers for the icons that represent the scenario entities and pinpoints
that mark the paths. Icons, pinpoints or other visual aids (e.g. the military
symbology based on the MIL-STD-2525 standard) are stored in a data store.
Maps can be obtained from a geographical information server (map data
store) or from an internet based mapping service provider such as Microsoft
Bing Maps4 or Google Maps5.

Figure 3. Scenario Construction Environment

3 http://www.bing.com/maps/, last accessed January 13, 2010.
4 A data store can be a database as well as the file system of the host operating system.
5 http://maps.google.com/, last accessed January 13, 2010.

Scenario Management Practices In HLA-Based Distributed Simulation

14

Generic scenario construction tools exist for the MSDL such as a
full-fledged graphical MSDL scenario editor [10], a rapid scenario
generation tool [19], and OneSAF’s MSDL implementation [17]. In
NSTMSS, the Graphical Scenario Editor (GSEd) is a tool that is used to
generate the scenario files for NSTMSS federation using a NSTMSS
specific MSDL that targets at only some part of MSDL by utilizing a
graphical user interface (Figure 4). For example, the generated scenarios by
the GSEd can be reused for other federations that support the standard. In
parallel, the MSDL scenarios developed for other federations can be used in
NSTMSS. Moreover, the GSEd becomes a general-purpose MSDL editor.

Figure 4. GSEd Screenshot

Okan Topçu & Halit Oğuztüzün

15

A graphical interface provides rapid and visual scenario generation
without knowing the details of the scenario definition language. The GSEd
may work with multiple scenario files at the same time. As a contrary
example, the paper in [13] reports a rapid scenario generation using scripts.

3.2. Scenario Loading and Parsing

Each federate does not need to load the entire scenario. Because (1)
the federate does not necessarily need to know the entire scenario, and (2)
simulation scenarios can be dynamic. Dynamic means that the flow or an
element of the scenario can be changed by the user at runtime. For example,
a trainer can inject events (e.g. emergency events). This enforces to
distribute the dynamic elements of the scenario as simulation objects or
interactions. Therefore, it is reasonable to develop a scenario manager
federate specifically to manage the dynamic aspects of scenarios in the
federation.

In NSTMSS, the ExPFd is actually a scenario manager (

Figure 5). One possible sub-module of a scenario manager is the
scenario parser, which selects and loads a (part of) scenario from the
scenario database. The implementation of a scenario parser can be
simplified when the SDL is based on the XML. A generic XML parser can
be used (or customized) as a scenario parser. In NSTMSS, the MS XML
library in .NET [9] is used to implement a scenario parser.

Scenario Management Practices In HLA-Based Distributed Simulation

16

Figure 5. The ExPFd Screenshot

3.3. Scenario Distribution and Role Casting

Initially, prior to a scenario run (execution), scenario distribution and
role casting is used to initialize federation according to the scenario. During
the scenario run, distribution mechanism is used to update the scenario
status. In this respect, scenario distribution activity is the distribution of the
scenario (initialization) data to the relevant simulation entities in the
distributed environment. Role casting is distributing the roles of the scenario
entities specified in the scenario to the actual federates in the federation.

3.3.1. Scenario Distribution

Scenario can be distributed using some distribution patterns
specified in [20]. Using a centralized pattern, a scenario is distributed and
carried to the federation via a specific-purpose federate, Scenario Manager

Okan Topçu & Halit Oğuztüzün

17

(Federate) using the Federation Object Model (FOM) [3]. A FOM is
required for each federation execution. It defines the shared objects6 and
interactions7 of a federation. A typical scenario distribution environment is
seen in Figure 6. A player federate is a federate that uses and needs the
scenario during the federation execution. A computer generated force (CGF)
federate is an implementation of a software agent such as an agent ship. The
data logger federate is explained in Section 3.5.

Simulation
Scenario

Player
Federates

Player
Federates

CGF
Federates

RTI
Scenario
Manager
Federate

Data Logger
Federate

Player
Federates

Player
Federates

Player
Federates

trainer

load

interacts

distribute

FOM objects
and

interactions

Figure 6. Scenario Distribution Using RTI

For distributing the scenario via FOM classes, the types of the
scenario entities must be mapped to the FOM classes. Thus the FOM will
contain the classes of the scenario domain entities and the scenario
management specific elements (see section 4).

6 An HLA object is an instance of an HLA object class, which is “A fundamental element
of a conceptual representation for a federate that reflects the real world at levels of
abstraction and resolution appropriate for federate interoperability” [3].
7 An HLA interaction is “An explicit action taken by a federate that may have some effect
or impact on another federate within a federation execution” [3].

Scenario Management Practices In HLA-Based Distributed Simulation

18

Another approach, instead of distributing of a (part of) scenario at
runtime, is to choose an offline approach, where participating federates load
and parse the entire scenario at start-up. Other ways of distributing a
scenario such that referencing and hard-coding can be found in [20].

In NSTMSS, the scenario distribution is done via the scenario object
class (in form of the HLA object class [3]) over the HLA Runtime
Infrastructure (RTI) [4] after the scenario file is selected in the scenario
manager (i.e. the ExPFd). Whenever a new federate is discovered, the
Scenario object class is updated by the scenario manager through the
federation. So that newly joined federate can set the initialization scenario
data.

3.3.2. Role Casting (Tasking)

Role casting is to decide which roles in the scenario will be played
by which federate and to cast the role to the appropriate federate. For
example, in the scenario, there can be two Meko type frigates, with their
class, name, call sign, location and nationality (e.g. blue vs. red, or neutral)
are defined. When one frigate federate joins the federation, if its frigate class
is Meko, then it must be casted to its role in the specific federation
execution.

Role casting can be done automatically or manually (by the
simulation manager or trainer, respectively). In automatic role casting,
whenever a federate discovered, if it is suitable for the scenario, then role
casting is done automatically by the scenario manager tool. In manual role
casting, the trainer determines which federate will play which role.

Currently, the ExPFd supports only automatic role casting. After a
new simulation entity is discovered, the ExPFd checks that there is an
unassigned scenario element in the scenario or not, and then if there is and
the new entity is eligible for the scenario, it does casting. In more specific
terms, it checks whether the scenario element class and the ship class is the

Okan Topçu & Halit Oğuztüzün

19

same or not based on the enumerated class types. Casting rules are as
follows:

 Casting begins after the scenario file is selected.

 Casting is done immediately (if the ship is eligible), when a
new ship is discovered.

 Roles are encapsulated in the task order message for each
ship.

 Task order messages are sent via data distribution
management interface of RTI [4].

Casting flowchart is presented in Figure 7. The casting activity is
triggered by two parallel signals (i.e. received events from an outside
process). When a ship federate joins to the federation, then A-Ship-
Discovered event is generated. If the scenario is not set (not selected) yet,
the information of the ship is saved in a player list for a future cast till the
scenario is set. Otherwise, casting is done immediately if the discovered
ship meets its role specifications. When the scenario is selected, the first
thing checked is the player list. If there are saved ships, then casting is done
for each until the list gets empty. The whole activity repeats until all
elements in the scenario are casted (i.e. casting is finished).

Scenario Management Practices In HLA-Based Distributed Simulation

20

Figure 7. Role Casting Activity Diagram (for notation, see [14])

On the other hand, role casting is done via sending a message (Task
Order) over the Tactical Messaging System [6] to the federation members in
the form of the HLA interaction classes [3]. A task order message contains
the object id’s of the ships. So, a unique task order is sent for each ship
object. In military applications, role casting, known as tasking can be done
using Coalition-Battle Management Language (C-BML), which allows the
task orders to be sent to the federation members [18].

Okan Topçu & Halit Oğuztüzün

21

3.3.3. Federate States

Scenario management specifically distribution and role casting
activities must account for the state of the federates in the federation. When
a scenario is involved, the states of a federate regarding to the scenario
management are depicted in Figure 8.

Initial
FreeRun

e1

ReadyPlaying

e2

e3e5

e6

ScenarioRun

e4

Resigned

FederationExecution (Joined)

e0

e1

Terminated

Created

Figure 8. Federate State Diagram Regarding to Scenario Management (for notation,
see [14])

The explanation of each state and the transitions are presented in
Table 1 and in Table 2, respectively.

Scenario Management Practices In HLA-Based Distributed Simulation

22

STATES DESCRIPTION

Initial
Federate is initialized and ready for a federation execution, but not joined in a
federation execution.

This state is a compound state formed by FreeRun and ScenarioRun states.
Federation execution is begun.

FreeRun
Federate is joined to a federation execution. Federate is an active
federate and can freely run in the federation execution without
adhering to a specific scenario.

This state is a compound state formed by Ready and Playing
states. Scenario is in execution.

Ready
Federate received the scenario updates and its role
and completed its initialization according to the
scenario and its role. Federate is ready to play.

Federation
Execution

(Joined)

Scenario
Run

Playing
The scenario has begun and the federate is running
the scenario.

Resigned
Federate is resigned. When federate enters this state, it is indicated that the
federate at least one time is joined to a federation execution.

Table 1. Federate States

Okan Topçu & Halit Oğuztüzün

23

TRANSITIONS DESCRIPTION

e0
Trigger event: Federate application process is created.

Activity during transition: Initialize federate application.

e1
Trigger event: Federate joined event is raised.

Guard: Federation execution exists.

e2

Trigger event: Role casting interaction is received.

Guard: Scenario update is received.

Activity during transition: Prepare (by doing federate
specific initialization (e.g. set terrain file) and preparation (e.g. load
the terrain data for rendering) related to the scenario received) and
report the readiness.

e3

Trigger event: BeginToPlay interaction is received.

Activity during transition: Begin the scenario play. Start the
federate clock.

e4

Trigger event: EndToPlay interaction is received.

Activity during transition: Stop federate clock. End scenario
play.

e5
Trigger event: Federate resigned event is raised.

Activity during transition: Delete RTI-specific objects.

e6

Trigger event: Exit (shutdown).

Activity during transition: A typical federate will try to
destroy the federation execution.

Table 2. Transitions for Federate States

Scenario Management Practices In HLA-Based Distributed Simulation

24

As an example, Figure 9 presents an activity diagram that depicts the
preparation activity of the ship federate in transition from the joined
(FreeRun) state to the ready state. When the ship federate receives the
scenario data (scenario object class) and/or the role casting message (task
order interaction class), the federate prepares itself (e.g. a ship
(tele)transports to its scenario location) according to the scenario and sends
a ReadyToPlay (i.e. I am ready) message in transition to the ready state. In
ready state, the federate waits for the scenario to begin. For example, it
waits on a synchronization point and freezes its federate clock. After the
scenario begins, the federate transits to the playing state.

Figure 9. The Ship Federate Activity Diagram for Preparing for the Scenario Run.

Okan Topçu & Halit Oğuztüzün

25

3.4. Event Injection

Event injection is essential for augmenting the training value of an
exercise. The events, generated during the federation execution, change the
course of events in the exercise.

Events can be scheduled (defined in scenario) or unscheduled
(activated by the trainer at runtime). Therefore events are seen as part of the
scenario. It is possible to schedule events at scenario composition time
(scheduled event injection) or to inject them at runtime (unscheduled event
injection). The timeline for events in the scenario can be specified using a
sequence chart such as UML sequence diagrams [4] or live sequence charts
[15]. The scenario manager federate injects the events defined in the
scenario file at their target time of occurrence to the target federate(s). Event
injection is done using the event injection interactions defined in the
scenario management classes (see Section 4) as part of the scenario object
model in FOM. To separate the communication channel of the event
injection interactions for an easier data logging, a special data distribution
region can be created specific to the scenario management.

In NSTMSS, the injected events (e.g., man overboard, engine
failure) are delivered to human player as textual messages using the
NSTMSS Tactical Messaging System. When an event injection message is
received by a ship, the ship loses of her steering capability and the
functionality of the ship is automatically reduced according to the type of
the event. For example, as far as a rudder malfunction emergency event is
received, the helm of the ship becomes unusable. Currently supported
events are man overboard, engine breakdown, rudder malfunction, and radio
failure.

Scenario Management Practices In HLA-Based Distributed Simulation

26

3.5. Data Collection and Logging

Data collection is performed by listening to the activities occurring
during the exercise (i.e., messaging activities).

In NSTMSS, the ExPFd collects simple data about messaging
activities, such as counting the formation messages. Moreover, the ExPFd
provides the interface to monitor the simulation run. The monitor tab
displays the ship status reports that indicate the location of the ships in the
scenario. The simulation clock displays the simulation time and the time
spanned till scenario begin (i.e. physical (exercise) time). The real time
clock displays the current system time. Data logging capability is needed for
an after-action review. In the ExPFd, the user can save the log file in text
format for further logging and investigations on simulation status data. The
ExPFd provides the means to generate various kinds of reports in order to
review the scenario run (after-action review). A typical federation execution
report is seen in Figure 10.

Okan Topçu & Halit Oğuztüzün

27

Figure 10. Federation Execution Report Sample

Scenario Management Practices In HLA-Based Distributed Simulation

28

Replay is also a desirable feature for after-action reviews. The replay
feature affects the data collected. In the current version of NSTMSS, replay
is not available and left as a future work.

There are commercial data loggers that are independent of any
specific federation for an HLA federation execution. However, they collect
generic data related to the usage of the RTI services, not to a specific
scenario. In NSTMSS, the FedMonFd is a stealth federate that monitors and
logs the RTI data (e.g. interactions and objects published and subscribed,
interactions sent and received, objects updated and reflected, etc.). It has a
reporting module that generates two kinds of reports: one is a federate based
report that shows all the RTI services usage per federate and second is the
RTI services based usage report that shows all the RTI services used by the
federates grouped by the service name (e.g. report for object published
service). A sample federate based report is presented in Figure 11.

Okan Topçu & Halit Oğuztüzün

29

Figure 11. Federate Based RTI Services Usage Report Sample

Scenario Management Practices In HLA-Based Distributed Simulation

30

The generic data loggers are very useful for troubleshooting the
federation execution in an RTI-level and can also be used to troubleshoot
the scenario distribution and event injection problems.

4. SCENARIOS and FOM

As already pointed out in the scenario distribution, the scenario or a
part of it is required to be distributed using the HLA classes specified in
FOM. Thus, we hold that a FOM must involve an object model related to
the scenario and its management. We name this model as the Scenario
Object Model (ScOM) as seen in Figure 12. The ScOM includes two parts:
the SDL classes and the scenario management (SM) classes.

 Figure 12. Scenario Object Model

The SM classes include the scenario management specific classes defined
beforehand for all kind of scenarios. They are not specific to a scenario and an
SDL. The SM classes are generally in form of the HLA interaction classes. These
include BeginToPlay, ReadyToPlay, EndToPlay interactions and event injection
interactions such as InjectEmergencyEvent. When necessary, they can be extended

MOM

SDL Classes

SM Classes

SOM

Scenario Object

FOM

Okan Topçu & Halit Oğuztüzün

31

according to the simulation object model requirements. To the best of our
knowledge, there is no standardized set of scenario management classes. Some
proposed sets can be found in [20].

Scenarios and their specifications (i.e. the SDL) can be used to
generate the requirements for the object model. And, then a FOM can be
synthesized to satisfy these requirements. In a broader sense, the main idea
is to use the scenarios in the scope of requirements analysis of FOMs. The
SDL classes can be partially obtained from the scenario and its specification
(i.e. SDL). The SDL provides us the necessary classes, attributes, and
relations among the classes, while the scenario helps to determine the
application specific properties such as the resolution of an object class
attribute. The SDL entities and events can be mapped to the HLA object
classes and interaction classes respectively. When the SDL (schema)
changes, then the SDL classes in the ScOM must reflect the change.

The FOM requirement generation using scenarios can be noted as a
future work where many research questions arise such as what an object
model requirement representation looks like or what an object model
requirement includes.

5. CONCLUSION AND RESEARCH DIRECTIONS

Scenario management in a distributed simulation involves many
activities. The ones emphasized in this article are scenario development,
scenario loading and parsing, scenario distribution, role casting, event
injection, and data collection. The scenario construction involves deciding
the representation of the scenario language and choosing a tool for
automation. The scenario loading is not necessary for all simulation entities
in a distributed simulation but this creates a need for a distribution
mechanism of the scenario elements using the distributed simulation
communication infrastructure (Runtime Infrastructure in HLA). In HLA, the
scenario elements can be distributed using object exchange mechanisms (in
terms of object and interaction classes). This dictates to define the
appropriate scenario objects and interactions in the Federation Object

Scenario Management Practices In HLA-Based Distributed Simulation

32

Model. Role casting can be done manually or automatically. Event injection
increases the effectiveness of training and data collection allows a complete
after-action review. In this article, we explain all these activities using a real
life distributed simulation system, namely, NSTMSS. This article also
explains typical federate states when a scenario is involved. Finally, this
article introduces a scenario object model as a part of a FOM.

There are some other activities in the scenario management that are
not touched upon in this article and left as a future work such as federation
synchronization through scenarios, the design of a scenario pool (e.g.
scenario repository), saving/restoring scenario runs, validation of scenarios,
and composition of scenarios.

REFERENCES
[1] Topçu O. and Oğuztüzün H., “Developing an HLA Based Naval Maneuvering
Simulation”, in Naval Engineers Journal (NEJ) by American Society of Naval Engineers
(ASNE), vol.117 no.1, pp. 23-40, DOI: 10.1111/j.1559-3584.2005.tb00319.x, Winter 2005.
[2] IEEE 1516 Standard for Modeling and Simulation (M&S) High Level Architecture
(HLA)-Framework and Rules, September 21, 2000.
[3] IEEE 1516.2 Standard for Modeling and Simulation (M&S) High Level Architecture
(HLA)-Object Model Template Specification, September 21, 2000.
[4] IEEE 1516.1 Standard for Modeling and Simulation (M&S) High Level Architecture
(HLA)-Federate Interface Specification, September 21, 2000.
[5] Simulation Interoperability Standards Organization (SISO), Standard for Military
Scenario Definition Language (MSDL), SISO-STD-007-2008, October 14, 2008.
[6] Topçu O., “Naval Surface Tactical Maneuvering Simulation System Technical Report
(Draft)”, manuscript, 2010.
[7] Hunt K., and Harten E., “A New Paradigm for Developing and Maintaining Scenarios
for Distributed Simulation Systems”, 99S-SIW-179, in the Proceedings of the SISO Spring
Simulation Interoperability Workshop (SIW), 1999.
[8] Savasan, H. and Oğuztüzün H., "Distributed Simulation of Helicopter Recovery
Operations At Sea", Proceedings of Military, Government, and Aerospace Simulation
(MGA02), Advanced Simulation Technologies Conference Simulation Series Volume 34
number 3 pp.120-125, April 2002.
[9] Microsoft XML Core Services (MSXML), “http://msdn.microsoft.com/en-
us/library/ms760399(VS.85).aspx”, last accessed January 09, 2010.
[10] Ullner F., Lundgren A., Blomberg J., and Andersson N., “The Lessons Learned from
Implementing a MSDL Scenario Editor”, 08F-SIW-001, in the Proceedings of Fall
Simulation Interoperability Workshop (SIW), 2008.

Okan Topçu & Halit Oğuztüzün

33

[11] IEEE 1516.3 Standard for IEEE Recommended Practice for High Level Architecture
(HLA) Federation Development and Execution Process (FEDEP), Apr 23, 2003.
[12] Topçu O., “Development, Representation, and Validation of Conceptual Models in
Distributed Simulation”, Defence R&D Canada – Atlantic (DRDC Atlantic) Technical
Memorandum (TM 2003-142), Halifax, NS, Canada, February 2004.
[13] Macannuco D. and Levan M., “Rapid Scenario Generation through Scripts”, 07S-
SIW-021, in the Proceedings of Spring Simulation Interoperability Workshop (SIW), 2007.
[14] Fowler M., “UML Distilled 3rd Edition A Brief Guide to the Standard Object
Modeling Language”, ISBN: 0-321-19368-7, Addison-Wesley, 2004.
[15] Brill M., Damm W., Klose J., Westphal B., and Wittke H., “Live Sequence Charts: An
Introduction to Lines, Arrows, and Strange Boxes in the Context of Formal Verification”,
Integration of Software Specification Techniques for Applications in Engineering (ISSN:
0302-9743), Springer Berlin Lecture Notes in Computer Science (LNCS) book series,
vol.3147, pp. 374-399, 2004.
[16] Schmidt D.C., “Model-Driven Engineering”, IEEE Computer, vol.39 no.2, pp. 25-32,
2006.
[17] One Semi-Automated Forces, “ OneSAF’s MSDL implementation (Military Scenario
Development Environment)”,
http://www.onesaf.net/community/index.php?option=com_content&task=category§ion
id=5&id=18&Itemid=36#18, last accessed January 30, 2010.
[18] Simulation Interoperability Standards Organization (SISO), Coalition Battle
Management Language (C-BML), SISO-STD-008-20XX,
http://www.sisostds.org/index.php?tg=articles&idx=More&article=439&topics=102,
last accessed January 30, 2010.
[19] Blais C., Dodds R., Pearman J., and Baez F., “Rapid Scenario Generation for Multiple
Simulations: An Application of the Military Scenario Definition Language (MSDL)”, 09S-
SIW-003, in the Proceedings of Spring Simulation Interoperability Workshop (SIW), 2009.
[20] Lofstrand B., Karkkairen V., Strand J., ericsson M., Carmenta J., and Lepp H.,
“Scenario Management – Common Design Principles and Data Interchange Formats”, 04E-
SIW-070, in the Proceedings of European Simulation Interoperability Workshop (SIW),
2004.

Journal of Naval Science and Engineering

2010, Vol. 6 , No.2, pp. 1-33

Scenario Management Practices In HLA-Based Distributed Simulation

Okan Topçu & Halit Oğuztüzün

SCENARIO MANAGEMENT PRACTICES IN
HLA-BASED DISTRIBUTED SIMULATION

Okan Topçu

Turkish Naval Academy

Tuzla, Istanbul,Turkiye

otopcu@dho.edu.tr

Halit Oğuztüzün

Middle East Technical University

Ankara,Turkiye

oguztuzn@ceng.metu.edu.tr

Abstract

Training in a distributed simulation generally involves carefully designed and constructed simulation scenarios to fulfill the training aims. The simulation scenarios (i.e. federation scenario) play an important role in the federation design and development as specified in Federation Development and Execution Process. The simulation scenarios are used in every step in distributed simulation arena from the beginning (analysis and design) of a distributed simulation development to the execution. Such an extensive use of scenarios in a distributed simulation dictates a scenario management. In a distributed simulation, the scenario management includes the activities of scenario development, scenario loading, scenario distribution, event injection, and scenario-related data collection in a distributed training.

This article explains the major concepts of simulation scenarios, introduces a scenario object model, and discusses the main activities in scenario management in a distributed simulation with a practical view. This article also presents a running real-life example of a naval distributed interactive simulation to illustrate the scenario management activities.

HLA TABANLI DAĞITIK SİMULASYONDA SENARYO YÖNETİM UYGULAMALARI

Özetçe

Dağıtık simülasyonda eğitim, eğitim amaçlarını karşılamak maksadıyla genellikle dikkatlice oluşturulmuş ve tasarlanmış simülasyon senaryolarını içermektedir. Simülasyon senaryoları (diğer bir deyişle federasyon senaryoları), Federasyon Geliştirme ve Koşturma Prosesi’nde belirtilen federasyon tasarımı ve geliştirilmesi için önemli bir rol oynamakta ve aynı zamanda simülasyon senaryoları, dağıtık simülasyon alanında bir simülasyonun geliştirilmesinin başlangıcından (analiz ve tasarım) icrasına kadar tüm basamaklarında kullanılmaktadırlar. Dağıtık simülasyonda senaryoların böylesine yoğun kullanımı senaryo yönetimini zorunlu kılmaktadır. Dağıtık bir simülasyonda senaryo yönetimi; senaryonun geliştirilmesi, senaryonun yüklenmesi, senaryonun dağıtımı, olay enjektesi ve dağıtık eğitimde senaryoya bağımlı veri toplanması aktivitelerini içermektedir.

Bu makale simülasyon senaryolarının temel kavramlarını açıklamakta, bir senaryo nesne modeli tanıtmakta ve pratik açıdan dağıtık bir simülasyonda ki temel senaryo yönetim aktivitelerini tartışmaktadır. Bu makale aynı zamanda senaryo yönetim aktivitelerini açıklamak için makale boyunca dağıtılmış bir şekilde gerçek bir deniz dağıtık etkileşimli simülasyon örneği sunmaktadır.

Keywords: Distributed simulation, high level architecture, scenario management, military scenario definition language, federation development and execution process

Anahtar Kelimeler: Dağıtık simülasyon, yüksek seviye mimarisi, senaryo yönetimi, askeri senaryo tanımlama dili, federasyon geliştirme ve koşturma prosesi

1. INTRODUCTION

High Level Architecture (HLA) [2, 3, and 4] is a distributed simulation framework emphasizing the interoperability and reuse in simulation components (i.e. federates in HLA terminology) in a distributed simulation (i.e. federation). Training in a distributed simulation generally involves carefully designed and constructed simulation scenarios
 to fulfill the training aims. A scenario is the description of an exercise providing entities and a series of events related to those entities.

The simulation scenarios (i.e. federation scenario) play an important role in the federation design and development as specified in Federation Development and Execution Process (FEDEP) [11]. Many activities in FEDEP are related to the federation scenario. In FEDEP, development of a federation scenario includes, first, a functional description of the federation scenario and then transition to an executable scenario instance. The development of a description of a federation scenario is performed in the conceptual analysis phase according to the federation objectives, and then they are used as input to the activity of federation design and establishing the federation agreements. The scenario instances are constructed as an output of establishing the federation agreements activity, and then they are used as input to the activities of implementing the federate designs and execution planning.

In federation execution, a common scenario is needed to be synchronized through all the simulation components. In a typical case, a scenario manager selects a simulation scenario and distributes it to the participants. Moreover, scenarios are part of testing and validation activities. For example, see [12] for the ideas how scenarios can be used in validation.

Using scenarios (in non-interactive federations) will help:

· Increase the repeatability of a federation run, and

· Decrease the non-determinism over the event flow.

The simulation scenarios are used in every step in distributed simulation arena from the beginning (analysis and design) of a distributed simulation development to the execution. Moreover, scenarios are used not only in distribution simulation, but also in networked or stand-alone games [10]. Such an extensive use of scenarios in a distributed simulation dictates a scenario management. As stated in [20], scenario management includes all activities involved with the development and execution of a scenario. In a distributed training simulation, major scenario management activities can be classified in two categorization according to the time of the activity: (1) the activities in design and development time and (2) the activities at runtime. There is one major activity in design and development phase of a distributed simulation: scenario development. In execution of a distributed simulation, scenario management activities include (1) scenario loading and parsing, (2) scenario distribution and role casting, (3) event injection, and (4) scenario-related data collection and logging (see Figure 1).

		[image: image1.png]

Figure 1. Scenario Management Activities

While scenario is an important notion of FEDEP activities, and as specified, scenario development is a required activity, it still requires further explanations, specifically in practical usage [7]. Therefore, this article can be seen as a complimentary study to FEDEP whereas it explains the major concepts of simulation scenarios, introduces a scenario object model, and discusses the main activities in scenario management in a distributed simulation. This article explains each activity of scenario management using a running example called Naval Surface Tactical Maneuvering Simulation System (NSTMSS) [1, 6]. One of the main goals of the article is to clarify and support of utilization of federation scenarios, mentioned in FEDEP, in practice.

The article is organized as follows. Section 2 provides an introduction and background to the running example. Section 3 discusses the major scenario management activities and then explains each with an example. Section 4 introduces a scenario object model and discusses the relation between a scenario and FOM. Section 5 concludes the article and shares some future work.

2. EXAMPLE: NAVAL SURFACE TACTICAL MANEUVERING SIMULATION

Conceptually, NSTMSS is a distributed virtual environment, where some of players interactively control the virtual frigates in real time and some players behave as tactical players that command the groups of the frigates. All shares a common virtual environment, which its environment characteristics (e.g., time of day) and parameters (e.g., the wind direction) are forced by an environment application, obeying a common scenario that is distributed (e.g., role casting), controlled (e.g., injection messages), and monitored by an exercise planner. A potential application is training, where naval cadets can practice formations.

Technically, NSTMSS is an HLA-based distributed simulation system that is composed of 3-dimensional ship-handling simulators, a tactical level simulation of operational area, a virtual environment manager, and simulation management processes.

Software components can be classified into three groups according to their functionality:

· Simulation Entity Components

· Federation Management Components

· Environment Generation Components

During federation execution a process is created by the host operating system corresponding to each of the components mentioned.

Simulation Entity Group consists of the counterparts of real life entities in the virtual environment. There are three kinds of federates in the simulation entity group:

· Ship Federate: The ships are brought into federation by the Meko class frigate federate and Knox class frigate federate, which are platform level simulations allowing a person to steer the ship in (near) real-time. The ship federates implement a three-dimensional ship handling interactive simulator of a frigate with a single user interface.

· Helicopter Federate: The helicopter federate is an interactive simulation that simulates a helicopter operated in the ships. The helicopter federate is a six degree-of-freedom flight federate, which is controlled by a user [8].

· Tactical Picture Federate: The tactical picture federate is a tactical level interactive simulation that maintains the tactical picture of the operational area, including task group formations and maneuvers. The tactical picture federate provides interfaces to the user (i.e., Officer in Tactical Command) to control and order the formations of the surface task group to achieve a given operational objective.

Federation Management Group provides facilities for controlling and monitoring the federation activity as well as distributing roles and scenarios to players. They are:

· Exercise Planner Federate (ExPFd): The exercise planner federate, also called Scenario Manager, selects the training scenario and distributes it to the participants (i.e., the ship federates), injects events defined in the scenario into the federation execution; collects data and generates a report about the federation execution. The ExPFd simulates the Officer Scheduling the Exercise functionality and operates as the orchestra conductor.

· Federation Monitor Federate (FedMonFd): The federation monitor federate enables generic data collection and reporting of the HLA federates about their usage of underlying Run-time Infrastructure (RTI) services by using the HLA Management Object Model interface [4]. The FedMonFd is a stealth federate that also controls the federation reporting behaviors. The FedMonFd provides a basis for implementation of an observer federate and provides user interfaces to monitor the status of the federation and the federates. The FedMonFd collects the federate specific RTI data and presents them in tables. The FedMonFd also provides detailed reports for review of the monitoring activity. The FedMonFd is not specific to NSTMSS federation. It can be run in any federations.

Environment Generation Group consists of one federate:

· Environment Generation Federate: The environment federate enables the user to control the virtual environment atmospheric effects (e.g., fog, time of day, sea state), and publishes the weather reports to the entities in the virtual environment at scheduled intervals specified in the scenario file.

3. SCENARIO MANAGEMENT ACTIVITIES

3.1. Scenario Development

Scenario development involves a development process and construction, where simulation scenario construction refers to the formulation of the scenario in a specific notation such as Military Scenario Definition Language (MSDL) [5]. The scenario development is generally a domain specific activity, which is typically carried out by a domain specialist or trainer. The scenario development process (e.g. finding entities and relations among them) relates to the analysis of the simulation conceptual model. The focus of this article is not the process, but the construction. There are two important issues in scenario construction: choosing a definition language for the scenario (specification), and a scenario construction tool.

3.1.1. What is a Scenario?

A scenario is the description of an exercise providing [11]:

· scenario metadata (e.g. scenario id, scenario objectives),

· the initialization and termination data (e.g. starting and ending geographical locations of simulation entities),

· starting and termination conditions (e.g. a significant check-point is reached),

· key parameters (e.g. scenario duration),

· characteristics of the natural and man-made environment (e.g. time of day, meteorological conditions),

· flow of events (timeline of scenario),

· threats (e.g. red forces) and neutral elements such as ships belonging to neutral countries),

· the description, the relationships, the type, and the number of (physical) entities (e.g. ships) that take place in the federation,

· and their behaviors

3.1.2. Scenario Specification

The specification of the scenario has impact over the implementation of the simulation components where they must implement many operations for loading, parsing, processing, and interpreting the scenario. The FEDEP does not force the federation designer to a specific scenario specification notation. A Scenario Definition Language (SDL) provides a specification language for the user to develop a simulation scenario that will be played in a federation execution. The definitions in the scenario file constitute a subset of the federation application domain. The SDL shall contain constructs for specifying the characteristics of the physical environment (e.g. geographical regions, atmospheric conditions, etc.), types and number of entities (e.g. ships), scenario events and timelines, data to be collected, and computer generated forces, if any, in detail. An event definition mechanism will be more useful. For example, it should be possible to inject occurrences for events to change the flow of the exercise.

There are two approaches that can be used for selecting an SDL. The first approach is to develop a custom and federation specific format from scratch specifically for the intended domain. The second approach is to use a generalized, standardized, and federation independent language if exists for the intended domain. For instance, Military Scenario Definition Language (MSDL) is standard [5] for military simulations. Using a standardized SDL promotes scenario interoperability and reusability. Although, a custom SDL provides flexibility and simplicity in the simulation development, it hinders interoperability. Because the format developed must be adapted to other federations. One of the expected effects of using MSDL is the enlargement of the scenario definition schemas. The custom SDL is specific to the application domain therefore it covers only a specific subset of the intended domain concepts used in the simulation. However, MSDL is relatively large as it is intended to cover all the military areas such as command and control.

In the development of an SDL, Extensible Markup Language (XML), which is fast and practical in data exchange, is used extensively. For example, the SDL used in the former NSTMSS versions was a custom SDL specific to only NSTMSS federation and kept as an inline dataset XML Schema Definition (XSD) file. It is constituted with sections where sections consist of elements. MSDL is also an XML based language to develop a military scenario to be used in modeling and simulation. Using XML also enables the scenario validations. Validation is checking an instance of a scenario (an XML document) against the SDL (an XML schema document) whereas if the content of the XML document meets the structure and content specifications of the XML schema document, it is said valid.

3.1.3. Transformation from a Custom SDL to MSDL

We believe that most of the federations use their custom scenario specifications optimized for the federation intended domain instead of a general specification covering the whole domain. On the other hand, the advantage of using a standard SDL is obvious. Therefore, it is generally a mapping required between a custom SDL and a standard SDL. By adapting a model driven engineering approach [16], model transformations (e.g. XML-to-XML with XSLT
) can be developed for automatic mapping between a custom SDL to MSDL.

The current version of NSTMSS tailored MSDL for its scenario definitions. The transformation (mapping) from a custom SDL to MSDL was straightforward in terms of mapping the elements of the custom SDL to the elements of MSDL due to both are XML-based and more importantly, the conceptual model remained the same.

Figure 2
 depicts mapping the scenario elements from the custom SDL to MSDL.

		

[image: image2.emf]NSTMSS SDL

MSDL

Figure 2. Mapping the Elements of the Custom NSTMSS SDL to MSDL

Another specific case study can be found in [19].

3.1.4. Scenario Construction Tool

Construction is putting together the existing scenario structures to form a complete scenario, where a scenario construction tool simplifies this process by hiding the details of the underlying SDL and eliminates an extra learning phase of an SDL for the domain trainer. The name of a scenario tool can take different forms such as scenario creator, scenario editor, or scenario development tool. But, here we name it as a scenario construction tool whereas construction generally includes / corresponds to the creation and editing.

A typical scenario construction environment is depicted in Figure 3. A scenario can be constructed from scratch or an existing scenario can be loaded from a scenario data store
 and be reused as it’s or as modified. The scenario tools, in general, take input both in graphical and textual forms. A graphical scenario generally includes layers; one for a map and a number of upper layers for the icons that represent the scenario entities and pinpoints that mark the paths. Icons, pinpoints or other visual aids (e.g. the military symbology based on the MIL-STD-2525 standard) are stored in a data store. Maps can be obtained from a geographical information server (map data store) or from an internet based mapping service provider such as Microsoft Bing Maps
 or Google Maps
.

		

[image: image3.emf]Scenario

datastore

Map

datastore

Visual Aids

datastore

Scenario

Construction

Tool

select

load

Simulation

Scenario

store

generate

load

İnternet Map Services

(e.g. Google Maps)

load

İnput (online)

Dynamic

Cache

store

File system or a database

E.g. icons, pinpoints

Figure 3. Scenario Construction Environment

Generic scenario construction tools exist for the MSDL such as a full-fledged graphical MSDL scenario editor [10], a rapid scenario generation tool [19], and OneSAF’s MSDL implementation [17]. In NSTMSS, the Graphical Scenario Editor (GSEd) is a tool that is used to generate the scenario files for NSTMSS federation using a NSTMSS specific MSDL that targets at only some part of MSDL by utilizing a graphical user interface (Figure 4). For example, the generated scenarios by the GSEd can be reused for other federations that support the standard. In parallel, the MSDL scenarios developed for other federations can be used in NSTMSS. Moreover, the GSEd becomes a general-purpose MSDL editor.

		[image: image4.png]

Figure 4. GSEd Screenshot

A graphical interface provides rapid and visual scenario generation without knowing the details of the scenario definition language. The GSEd may work with multiple scenario files at the same time. As a contrary example, the paper in [13] reports a rapid scenario generation using scripts.

3.2. Scenario Loading and Parsing

Each federate does not need to load the entire scenario. Because (1) the federate does not necessarily need to know the entire scenario, and (2) simulation scenarios can be dynamic. Dynamic means that the flow or an element of the scenario can be changed by the user at runtime. For example, a trainer can inject events (e.g. emergency events). This enforces to distribute the dynamic elements of the scenario as simulation objects or interactions. Therefore, it is reasonable to develop a scenario manager federate specifically to manage the dynamic aspects of scenarios in the federation.

In NSTMSS, the ExPFd is actually a scenario manager (

Figure 5
). One possible sub-module of a scenario manager is the scenario parser, which selects and loads a (part of) scenario from the scenario database. The implementation of a scenario parser can be simplified when the SDL is based on the XML. A generic XML parser can be used (or customized) as a scenario parser. In NSTMSS, the MS XML library in .NET [9] is used to implement a scenario parser.

		 [image: image5.png]

Figure 5. The ExPFd Screenshot

3.3. Scenario Distribution and Role Casting

Initially, prior to a scenario run (execution), scenario distribution and role casting is used to initialize federation according to the scenario. During the scenario run, distribution mechanism is used to update the scenario status. In this respect, scenario distribution activity is the distribution of the scenario (initialization) data to the relevant simulation entities in the distributed environment. Role casting is distributing the roles of the scenario entities specified in the scenario to the actual federates in the federation.

3.3.1. Scenario Distribution

Scenario can be distributed using some distribution patterns specified in [20]. Using a centralized pattern, a scenario is distributed and carried to the federation via a specific-purpose federate, Scenario Manager (Federate) using the Federation Object Model (FOM) [3]. A FOM is required for each federation execution. It defines the shared objects
 and interactions
 of a federation. A typical scenario distribution environment is seen in Figure 6. A player federate is a federate that uses and needs the scenario during the federation execution. A computer generated force (CGF) federate is an implementation of a software agent such as an agent ship. The data logger federate is explained in Section 3.5.

		

[image: image6.emf]Simulation

Scenario

Player

Federates

Player

Federates

CGF

Federates

RTI

Scenario

Manager

Federate

Data Logger

Federate

Player

Federates

Player

Federates

Player

Federates

trainer

load

interacts

distribute

FOM objects

and

interactions

Figure 6. Scenario Distribution Using RTI

For distributing the scenario via FOM classes, the types of the scenario entities must be mapped to the FOM classes. Thus the FOM will contain the classes of the scenario domain entities and the scenario management specific elements (see section 4).

Another approach, instead of distributing of a (part of) scenario at runtime, is to choose an offline approach, where participating federates load and parse the entire scenario at start-up. Other ways of distributing a scenario such that referencing and hard-coding can be found in [20].

In NSTMSS, the scenario distribution is done via the scenario object class (in form of the HLA object class [3]) over the HLA Runtime Infrastructure (RTI) [4] after the scenario file is selected in the scenario manager (i.e. the ExPFd). Whenever a new federate is discovered, the Scenario object class is updated by the scenario manager through the federation. So that newly joined federate can set the initialization scenario data.

3.3.2. Role Casting (Tasking)

Role casting is to decide which roles in the scenario will be played by which federate and to cast the role to the appropriate federate. For example, in the scenario, there can be two Meko type frigates, with their class, name, call sign, location and nationality (e.g. blue vs. red, or neutral) are defined. When one frigate federate joins the federation, if its frigate class is Meko, then it must be casted to its role in the specific federation execution.

Role casting can be done automatically or manually (by the simulation manager or trainer, respectively). In automatic role casting, whenever a federate discovered, if it is suitable for the scenario, then role casting is done automatically by the scenario manager tool. In manual role casting, the trainer determines which federate will play which role.

Currently, the ExPFd supports only automatic role casting. After a new simulation entity is discovered, the ExPFd checks that there is an unassigned scenario element in the scenario or not, and then if there is and the new entity is eligible for the scenario, it does casting. In more specific terms, it checks whether the scenario element class and the ship class is the same or not based on the enumerated class types. Casting rules are as follows:

· Casting begins after the scenario file is selected.

· Casting is done immediately (if the ship is eligible), when a new ship is discovered.

· Roles are encapsulated in the task order message for each ship.

· Task order messages are sent via data distribution management interface of RTI [4].

Casting flowchart is presented in Figure 7. The casting activity is triggered by two parallel signals (i.e. received events from an outside process). When a ship federate joins to the federation, then A-Ship-Discovered event is generated. If the scenario is not set (not selected) yet, the information of the ship is saved in a player list for a future cast till the scenario is set. Otherwise, casting is done immediately if the discovered ship meets its role specifications. When the scenario is selected, the first thing checked is the player list. If there are saved ships, then casting is done for each until the list gets empty. The whole activity repeats until all elements in the scenario are casted (i.e. casting is finished).

		

[image: image7.emf]A Ship Discovered

Scenario Set

Add Ship to Player List

[Else]

Do Casting

[ScenarioSet]

[Else]

A

A

[PlayerListEmpty]

[CastingFinished]

A

[Else]

A

Figure 7. Role Casting Activity Diagram (for notation, see [14])

On the other hand, role casting is done via sending a message (Task Order) over the Tactical Messaging System [6] to the federation members in the form of the HLA interaction classes [3]. A task order message contains the object id’s of the ships. So, a unique task order is sent for each ship object. In military applications, role casting, known as tasking can be done using Coalition-Battle Management Language (C-BML), which allows the task orders to be sent to the federation members [18].

3.3.3. Federate States

Scenario management specifically distribution and role casting activities must account for the state of the federates in the federation. When a scenario is involved, the states of a federate regarding to the scenario management are depicted in Figure 8.

		

[image: image8.emf]Initial

FreeRun

e1

ReadyPlaying

e2

e3

e5

e6

ScenarioRun

e4

Resigned

FederationExecution (Joined)

e0

e1

Terminated

Created

Figure 8. Federate State Diagram Regarding to Scenario Management (for notation,
see [14])

The explanation of each state and the transitions are presented in Table 1 and in Table 2, respectively.

		STATES

		description

		Initial

		Federate is initialized and ready for a federation execution, but not joined in a federation execution.

		Federation Execution

(Joined)

		This state is a compound state formed by FreeRun and ScenarioRun states. Federation execution is begun.

		

		FreeRun

		Federate is joined to a federation execution. Federate is an active federate and can freely run in the federation execution without adhering to a specific scenario.

		

		Scenario
Run

		This state is a compound state formed by Ready and Playing states. Scenario is in execution.

		

		

		Ready

		Federate received the scenario updates and its role and completed its initialization according to the scenario and its role. Federate is ready to play.

		

		

		Playing

		The scenario has begun and the federate is running the scenario.

		Resigned

		Federate is resigned. When federate enters this state, it is indicated that the federate at least one time is joined to a federation execution.

Table 1. Federate States

		TRANSITIONS

		description

		e0

		Trigger event: Federate application process is created.

Activity during transition: Initialize federate application.

		e1

		Trigger event: Federate joined event is raised.

Guard: Federation execution exists.

		e2

		Trigger event: Role casting interaction is received.

Guard: Scenario update is received.

Activity during transition: Prepare (by doing federate specific initialization (e.g. set terrain file) and preparation (e.g. load the terrain data for rendering) related to the scenario received) and report the readiness.

		e3

		Trigger event: BeginToPlay interaction is received.

Activity during transition: Begin the scenario play. Start the federate clock.

		e4

		Trigger event: EndToPlay interaction is received.

Activity during transition: Stop federate clock. End scenario play.

		e5

		Trigger event: Federate resigned event is raised.

Activity during transition: Delete RTI-specific objects.

		e6

		Trigger event: Exit (shutdown).

Activity during transition: A typical federate will try to destroy the federation execution.

Table 2. Transitions for Federate States

As an example, Figure 9 presents an activity diagram that depicts the preparation activity of the ship federate in transition from the joined (FreeRun) state to the ready state. When the ship federate receives the scenario data (scenario object class) and/or the role casting message (task order interaction class), the federate prepares itself (e.g. a ship (tele)transports to its scenario location) according to the scenario and sends a ReadyToPlay (i.e. I am ready) message in transition to the ready state. In ready state, the federate waits for the scenario to begin. For example, it waits on a synchronization point and freezes its federate clock. After the scenario begins, the federate transits to the playing state.

		

[image: image9.emf]Scenario Update Received

Prepare Terrain

Initialize Environment

Set Scenario Settings

Set Ship Role

Set Initial Position and Posture

Disable Engines and Helm

Free Run

E.g. Load 3D terrain,

load textures.

E.g. Set time of day,

set atmosphere conditions.

E.g. Set reporting interval,

set scenario start time.

Ready

Report ReadinessSend ReadyToPlay interaction.

Task Order Received

Figure 9. The Ship Federate Activity Diagram for Preparing for the Scenario Run.

3.4. Event Injection

Event injection is essential for augmenting the training value of an exercise. The events, generated during the federation execution, change the course of events in the exercise.

Events can be scheduled (defined in scenario) or unscheduled (activated by the trainer at runtime). Therefore events are seen as part of the scenario. It is possible to schedule events at scenario composition time (scheduled event injection) or to inject them at runtime (unscheduled event injection). The timeline for events in the scenario can be specified using a sequence chart such as UML sequence diagrams [4] or live sequence charts [15]. The scenario manager federate injects the events defined in the scenario file at their target time of occurrence to the target federate(s). Event injection is done using the event injection interactions defined in the scenario management classes (see Section 4) as part of the scenario object model in FOM. To separate the communication channel of the event injection interactions for an easier data logging, a special data distribution region can be created specific to the scenario management.

In NSTMSS, the injected events (e.g., man overboard, engine failure) are delivered to human player as textual messages using the NSTMSS Tactical Messaging System. When an event injection message is received by a ship, the ship loses of her steering capability and the functionality of the ship is automatically reduced according to the type of the event. For example, as far as a rudder malfunction emergency event is received, the helm of the ship becomes unusable. Currently supported events are man overboard, engine breakdown, rudder malfunction, and radio failure.

3.5. Data Collection and Logging

Data collection is performed by listening to the activities occurring during the exercise (i.e., messaging activities).

In NSTMSS, the ExPFd collects simple data about messaging activities, such as counting the formation messages. Moreover, the ExPFd provides the interface to monitor the simulation run. The monitor tab displays the ship status reports that indicate the location of the ships in the scenario. The simulation clock displays the simulation time and the time spanned till scenario begin (i.e. physical (exercise) time). The real time clock displays the current system time. Data logging capability is needed for an after-action review. In the ExPFd, the user can save the log file in text format for further logging and investigations on simulation status data. The ExPFd provides the means to generate various kinds of reports in order to review the scenario run (after-action review). A typical federation execution report is seen in Figure 10.

		[image: image10.png]

		Figure 10. Federation Execution Report Sample

Replay is also a desirable feature for after-action reviews. The replay feature affects the data collected. In the current version of NSTMSS, replay is not available and left as a future work.

There are commercial data loggers that are independent of any specific federation for an HLA federation execution. However, they collect generic data related to the usage of the RTI services, not to a specific scenario. In NSTMSS, the FedMonFd is a stealth federate that monitors and logs the RTI data (e.g. interactions and objects published and subscribed, interactions sent and received, objects updated and reflected, etc.). It has a reporting module that generates two kinds of reports: one is a federate based report that shows all the RTI services usage per federate and second is the RTI services based usage report that shows all the RTI services used by the federates grouped by the service name (e.g. report for object published service). A sample federate based report is presented in Figure 11.

		[image: image11.png]

Figure 11. Federate Based RTI Services Usage Report Sample

The generic data loggers are very useful for troubleshooting the federation execution in an RTI-level and can also be used to troubleshoot the scenario distribution and event injection problems.

4. SCENARIOS and FOM

As already pointed out in the scenario distribution, the scenario or a part of it is required to be distributed using the HLA classes specified in FOM. Thus, we hold that a FOM must involve an object model related to the scenario and its management. We name this model as the Scenario Object Model (ScOM) as seen in Figure 12. The ScOM includes two parts: the SDL classes and the scenario management (SM) classes.

		

[image: image12] Figure 12. Scenario Object Model

The SM classes include the scenario management specific classes defined beforehand for all kind of scenarios. They are not specific to a scenario and an SDL. The SM classes are generally in form of the HLA interaction classes. These include BeginToPlay, ReadyToPlay, EndToPlay interactions and event injection interactions such as InjectEmergencyEvent. When necessary, they can be extended according to the simulation object model requirements. To the best of our knowledge, there is no standardized set of scenario management classes. Some proposed sets can be found in [20].

Scenarios and their specifications (i.e. the SDL) can be used to generate the requirements for the object model. And, then a FOM can be synthesized to satisfy these requirements. In a broader sense, the main idea is to use the scenarios in the scope of requirements analysis of FOMs. The SDL classes can be partially obtained from the scenario and its specification (i.e. SDL). The SDL provides us the necessary classes, attributes, and relations among the classes, while the scenario helps to determine the application specific properties such as the resolution of an object class attribute. The SDL entities and events can be mapped to the HLA object classes and interaction classes respectively. When the SDL (schema) changes, then the SDL classes in the ScOM must reflect the change.

The FOM requirement generation using scenarios can be noted as a future work where many research questions arise such as what an object model requirement representation looks like or what an object model requirement includes.

5. CONCLUSION AND RESEARCH DIRECTIONS

Scenario management in a distributed simulation involves many activities. The ones emphasized in this article are scenario development, scenario loading and parsing, scenario distribution, role casting, event injection, and data collection. The scenario construction involves deciding the representation of the scenario language and choosing a tool for automation. The scenario loading is not necessary for all simulation entities in a distributed simulation but this creates a need for a distribution mechanism of the scenario elements using the distributed simulation communication infrastructure (Runtime Infrastructure in HLA). In HLA, the scenario elements can be distributed using object exchange mechanisms (in terms of object and interaction classes). This dictates to define the appropriate scenario objects and interactions in the Federation Object Model. Role casting can be done manually or automatically. Event injection increases the effectiveness of training and data collection allows a complete after-action review. In this article, we explain all these activities using a real life distributed simulation system, namely, NSTMSS. This article also explains typical federate states when a scenario is involved. Finally, this article introduces a scenario object model as a part of a FOM.

There are some other activities in the scenario management that are not touched upon in this article and left as a future work such as federation synchronization through scenarios, the design of a scenario pool (e.g. scenario repository), saving/restoring scenario runs, validation of scenarios, and composition of scenarios.

REFERENCES

[1] Topçu O. and Oğuztüzün H., “Developing an HLA Based Naval Maneuvering Simulation”, in Naval Engineers Journal (NEJ) by American Society of Naval Engineers (ASNE), vol.117 no.1, pp. 23-40, DOI: 10.1111/j.1559-3584.2005.tb00319.x, Winter 2005.

[2] IEEE 1516 Standard for Modeling and Simulation (M&S) High Level Architecture (HLA)-Framework and Rules, September 21, 2000.

[3] IEEE 1516.2 Standard for Modeling and Simulation (M&S) High Level Architecture (HLA)-Object Model Template Specification, September 21, 2000.

[4] IEEE 1516.1 Standard for Modeling and Simulation (M&S) High Level Architecture (HLA)-Federate Interface Specification, September 21, 2000.

[5] Simulation Interoperability Standards Organization (SISO), Standard for Military Scenario Definition Language (MSDL), SISO-STD-007-2008, October 14, 2008.

[6] Topçu O., “Naval Surface Tactical Maneuvering Simulation System Technical Report (Draft)”, manuscript, 2010.

[7] Hunt K., and Harten E., “A New Paradigm for Developing and Maintaining Scenarios for Distributed Simulation Systems”, 99S-SIW-179, in the Proceedings of the SISO Spring Simulation Interoperability Workshop (SIW), 1999.

[8] Savasan, H. and Oğuztüzün H., "Distributed Simulation of Helicopter Recovery Operations At Sea", Proceedings of Military, Government, and Aerospace Simulation (MGA02), Advanced Simulation Technologies Conference Simulation Series Volume 34 number 3 pp.120-125, April 2002.

[9] Microsoft XML Core Services (MSXML), “http://msdn.microsoft.com/en-us/library/ms760399(VS.85).aspx”, last accessed January 09, 2010.

[10] Ullner F., Lundgren A., Blomberg J., and Andersson N., “The Lessons Learned from Implementing a MSDL Scenario Editor”, 08F-SIW-001, in the Proceedings of Fall Simulation Interoperability Workshop (SIW), 2008.

[11] IEEE 1516.3 Standard for IEEE Recommended Practice for High Level Architecture (HLA) Federation Development and Execution Process (FEDEP), Apr 23, 2003.

[12] Topçu O., “Development, Representation, and Validation of Conceptual Models in Distributed Simulation”, Defence R&D Canada – Atlantic (DRDC Atlantic) Technical Memorandum (TM 2003-142), Halifax, NS, Canada, February 2004.

[13] Macannuco D. and Levan M., “Rapid Scenario Generation through Scripts”, 07S-SIW-021, in the Proceedings of Spring Simulation Interoperability Workshop (SIW), 2007.

[14] Fowler M., “UML Distilled 3rd Edition A Brief Guide to the Standard Object Modeling Language”, ISBN: 0-321-19368-7, Addison-Wesley, 2004.

[15] Brill M., Damm W., Klose J., Westphal B., and Wittke H., “Live Sequence Charts: An Introduction to Lines, Arrows, and Strange Boxes in the Context of Formal Verification”, Integration of Software Specification Techniques for Applications in Engineering (ISSN: 0302-9743), Springer Berlin Lecture Notes in Computer Science (LNCS) book series, vol.3147, pp. 374-399, 2004.

[16] Schmidt D.C., “Model-Driven Engineering”, IEEE Computer, vol.39 no.2, pp. 25-32, 2006.

[17] One Semi-Automated Forces, “ OneSAF’s MSDL implementation (Military Scenario Development Environment)”, http://www.onesaf.net/community/index.php?option=com_content&task=category§ionid=5&id=18&Itemid=36#18, last accessed January 30, 2010.

[18] Simulation Interoperability Standards Organization (SISO), Coalition Battle Management Language (C-BML), SISO-STD-008-20XX,

http://www.sisostds.org/index.php?tg=articles&idx=More&article=439&topics=102,

last accessed January 30, 2010.

[19] Blais C., Dodds R., Pearman J., and Baez F., “Rapid Scenario Generation for Multiple Simulations: An Application of the Military Scenario Definition Language (MSDL)”, 09S-SIW-003, in the Proceedings of Spring Simulation Interoperability Workshop (SIW), 2009.

[20] Lofstrand B., Karkkairen V., Strand J., ericsson M., Carmenta J., and Lepp H., “Scenario Management – Common Design Principles and Data Interchange Formats”, 04E-SIW-070, in the Proceedings of European Simulation Interoperability Workshop (SIW), 2004.

MOM

SDL Classes

SM Classes

SOM

Scenario Object Model

FOM

� “Scenario” will be used in short to mean “simulation scenario”.

� Extensible Stylesheet Language Transformations

� � HYPERLINK "http://www.bing.com/maps/" �http://www.bing.com/maps/�, last accessed January 13, 2010.

� A data store can be a database as well as the file system of the host operating system.

� http://maps.google.com/, last accessed January 13, 2010.

� An HLA object is an instance of an HLA object class, which is “A fundamental element of a conceptual representation for a federate that reflects the real world at levels of abstraction and resolution appropriate for federate interoperability” [3].

� An HLA interaction is “An explicit action taken by a federate that may have some effect or impact on another federate within a federation execution” [3].

1

30

33

_1333140853.vsd

�

�

Data

Scenario datastore

Map
datastore

Visual Aids datastore

Scenario Construction Tool

İnternet Map Services
(e.g. Google Maps)

select

load

Simulation
Scenario

store

generate

load

load

İnput (online)

Dynamic
Cache

store

File system or a database

E.g. icons, pinpoints

_1333140855.vsd

A Ship Discovered

Scenario Set

Add Ship to Player List

[Else]

Do Casting

[ScenarioSet]

[Else]

A

A

[PlayerListEmpty]

[CastingFinished]

A

[Else]

A

_1333140856.vsd

Initial

FreeRun

e0

e1

Ready

Playing

e5

e2

e3

e6

ScenarioRun

e4

Resigned

FederationExecution (Joined)

e1

Terminated

Created

_1333140857.vsd

Scenario Update Received

Prepare Terrain

Initialize Environment

Set Scenario Settings

Set Ship Role

Set Initial Position and Posture

Disable Engines and Helm

Report Readiness

Free Run

E.g. Load 3D terrain,
 load textures.

E.g. Set time of day,
 set atmosphere conditions.

E.g. Set reporting interval,
 set scenario start time.

Ready

Send ReadyToPlay interaction.

Task Order Received

_1333140854.vsd

Person

Text�

Simulation
Scenario

Data Logger
Federate

interacts

CGF
Federates

Player
Federates

Player
Federates

RTI

FOM objects and interactions�

Scenario Manager
Federate

Player
Federates

Player
Federates

Player
Federates

trainer

load

distribute

_1333140852.vsd

NSTMSS SDL

MSDL

