
Journal of Naval Science and Engineering
2010, Vol. 6 , No.2, pp. 133-148

133

IMPLEMENTATION OF THE ZERO-ERROR
ONE SECOND TIMING ALGORITHM FOR

MICROCONTROLLER

Feyzi AKAR, Cdr
Asst.Prof.

Faculty of Electrical and Electronics Engineering,
Naval Academy, Tuzla, 34940, Istanbul, Turkey

feyziakar@dho.edu.tr

Özdemir ÇETIN
Asst.Prof.

Technical Education Faculty,
Computer Systems Education,

Esentepe Campus, Serdivan, Sakarya, 54187,Turkey
ocetin@sakarya.edu.tr

Abstract

This paper presents a novel accurate timer method that can be used for
generating regular of zero-error one second period. Time functions have
crucial importance in many control systems. This may manifest itself in the
measurement of duration, event counting or control of an external physical
event for known periods. Microcontrollers have programmable timers which
can be used in many tasks, such as generating timing signals, causing
interrupts to be generated at specific time intervals, measuring frequency and
time intervals, and so on. Timing errors, which can be measured with
microseconds in interrupt subroutine that can be, bring about irretrievable
results in control applications. The objective of this research is to propose a
new algorithm and implementation its application for generating zero-error
one-second period with PIC Microcontrollers that uses an interrupt to carry
out accurate timing-related operations inside the microcontroller.

Implementation Of The Zero-Error One Second Timing Algorithm For
Microcontroller

134

MİKRODENETLEYİCİLER İÇİN SIFIR HATALI
BİR-SANİYE ZAMANLAMA

ALGORİTMALARININ
GERÇEKLEŞTİRİLMESİ

Özetçe

Bu makalede düzenli olarak sıfır-hatalı bir saniye periyodu üretilmesiyle ilgili
yeni bir yöntem oluşturulmaktadır. Bir çok control sisteminde zamanlama
fonksiyonları kritik öneme sahiptir. Bu durum harici fiziksel olayların
saydırılmasında, sayma esnasında sürenin ölçümünde ortaya çıkabilir.
Mikrodenetleyicilerbir özel kesmelerin zamanlama sinyallerinin üretilmesi,
frekans ölçülmesi vb. gibi bir çok görevlerde kullanılabilen programlanabilir
zamanlayıcılara sahiptirler. Zamanlama hataları control uygulamalarında
kesme altprogramları ile mikrosaniyelerle ölçülebilen telafi edilemez
sonuçlara neden olabilmektedir. Bu çalışmanın amacı PIC
Mikrodenetleyiciler ile sıfır hatalı zamanlama periyotlarının üretilmesinde
yeni bir algoritma önermek ve gerçekleştirmektir.

Keywords: Assembly, embedding systems, timing algorithm, interrupt, PIC
Anahtar Kelimeler: Assembly, gömülü sistemler, zamanlama algortimaları,
kesme, PIC

1. INTRODUCTION

1.1. Embedded Systems

Basically a microcontroller is a self-contained computer system on a
single chip that includes a processor, data and program memory (RAM,
ROM, EEPROM), serial and parallel input/output ports which are some way
of communicating with the outside world. Microcontrollers are virtually
everywhere in our modern world. About 50 percent of all microcontroller
applications are found in office and house equipment, such as mobile
phones, DVD Players, video cameras, toys, kitchen appliances, TVs and
VCRs, phones and answering machines, automobiles and most self-
contained electronic systems. It is essential for the operation of above-
mentioned devices and allows an independent functionality to its user. In

Feyzi AKAR & Özdemir ÇETİN

135

this sense an MCU (Microcontroller Unit) is also called an embedded
system that provides the key element in the vast range of programmed
devices which are now commonplace. In most cases the presence of a small
LCD screen in electronic devices indicates that this device has got also an
MCU.

Today many different microcontrollers are available in control
applications. In this paper we shall be looking at “an accurate timer”
programming and system design for the PIC (programmable interface
controller) series of microcontrollers manufactured by Microchip
Technology Inc.

1.2 Timer Modules

Timers are the most important parts of any microcontroller, which are
available in all mid-range devices. Microcontrollers have programmable
timers which can be used in many tasks, such as generating timing signals,
causing interrupts to be generated at specific time intervals, measuring
frequency and time intervals, and so on. Time functions have crucial
importance in many control systems. This may manifest itself in the
measurement of duration, event counting or control of an external physical
event for known periods. Where time is of the essence these functions are
often best implemented by using hardware counters to time events.

A timer can be 8 bits or 16 bits wide. Data can be loaded into a timer
under program control, and the timer can be stopped or started by program
control. Most timers can be configured to generate an interrupt when they
reach a certain count (usually when they overflow). The user program can
use an interrupt to carry out accurate timing-related operations inside the
microcontroller [1].

A timer is basically a counter that is driven from either an external
clock pulse or the microcontroller’s internal oscillator.

Implementation Of The Zero-Error One Second Timing Algorithm For
Microcontroller

136

The TIMER0 module shown in Fig.1 is present in all PICs of this
family. It has the following features:[2]

 8-bit timer/counter
 Readable and writable
 8-bit programmable Prescaler
 External or internal clock source
 Interrupt generation on overflow (from FFh to 00h)
 Edge select for external clock

([2]DS33023A : PICmicro™ Mid-Range MCU Family Reference Manual)

Feyzi AKAR & Özdemir ÇETİN

137

2. PROPOSED ZERO-ERROR TIMING TECHNIQUE

2.1. Design of Timing Algorithm

The formula that follows can be used to calculate the time it will take
for the timer to overflow (or to generate an interrupt) given the oscillator
period, the value loaded into the timer, and the Prescaler value: [3,4,5]

Overflow time = 4  TOSC  Prescaler  (256 – TMR0) (1.1)

Where;
Overflow time: Overflow time is in ms.
TOSC : TOSC is the oscillator period

 in ms.
Prescaler : Prescaler is the Prescaler value.
TMR0 : TMR0 is the value loaded into

 TMR0 register.

For example, assume that we are using a 4MHz crystal, and the
Prescaler is chosen as 1:8 by setting bits PS2:PS0 to 010. Also assume that
the value loaded into the timer register TMR0 is decimal 100. The overflow
time is then given by:

4MHz clock has a period, T = 1/f = 0.25s

using the below formula;

Overflow time = 4  TOSC  Prescaler  (256 – TMR0)

Overflow time = 4  0.25  8  (256 – 100) = 1248s

Thus, the timer will overflow after 1.248msec, and a timer interrupt
will be generated if the timer interrupt and global interrupts are enabled.

Implementation Of The Zero-Error One Second Timing Algorithm For
Microcontroller

138

What we normally want is to know what value to load into the
TMR0 register for a required overflow time. This can be calculated by
modifying Equation (1.1) as follows:

TMR0 = 256 – (Overflow time) / (4  TOSC  Prescaler) (1.2)

For example, suppose we want an interrupt to be generated after
500ms and the clock and the prescaler values are as before. The value to be
loaded into the TMR0 register can be calculated using Equation (1.2) as
follows:

TMR0 = 256 – (500) / (4  0.25  8) = 193.5

The closest number we can load into TMR0 register is 193.

The common application of the Timer0 module is as an instruction
cycle counter in implementing delay loops. Timer0 register is also called a
free running timer. There are two advantages of using free running timers
over conventional delay loops: the Prescaler provides a way of slowing
down the count, and the delay is independent of the number of machine
cycles in the loop body. In most cases, it is easier to implement an accurate
time delay using the Timer0 module than by counting instruction cycles [6].
Calculating the time is taken by each counter iteration that consists of
dividing the clock speed by four. For example, a PIC is running on a 4 MHz
oscillator clock increment the counter every 1 MHz. If the Prescaler is not
used, the counter register is incremented at a rate of 1 µs; the timer beats at a
rate of 1,000,000 times per second. If the Prescaler is set to the maximum
divisor value (256) then each increment of the timer takes place at a rate of
1,000,000/256 µs, which is approximately 3.906 ms (exact value:
3.906.25ms). Since this is the slowest possible rate of the timer in a machine
running at 4 MHz, it is often necessary to employ supplementary counters in
order to achieve larger delays [6].

Feyzi AKAR & Özdemir ÇETİN

139

Implementation Of The Zero-Error One Second Timing Algorithm For
Microcontroller

140

Overflow time = 4  TOSC  Prescaler  (256 – TMR0)

Where;
Overflow time: Overflow time is in ms.
TOSC : TOSC is the oscillator period

 in ms. 4MHz clock has a period,
 T = 1/f = 0.25s

Prescaler : Prescaler is the Prescaler value.
 (TMR0 Rate: 1:1)

TMR0 : TMR0 is the value loaded into
 TMR0 Register. (00h)

Feyzi AKAR & Özdemir ÇETİN

141

For example, assume that we are using a 4MHz crystal, and the
Prescaler is chosen as 1:1. To achieve a 1:1 Prescaler assignment for the
TMR0 register, assign the Prescaler to the Watchdog Timer (OPTION_REG
<3> PSA=1) [7,8].

Also assume that the value loaded into the timer register TMR0 is
00h. The overflow time is then given by: using the below formula;

Overflow time = 4  TOSC  Prescaler  (256 – TMR0)

Overflow time = 4  0.25  1  (256 – 0) = 256 s

Thus, the timer will overflow after 0.256 msec, and a timer interrupt
will be generated if the timer interrupt and global interrupts are enabled
[7,8,9].

256s  0F42h =
256s  3.906 = 999.936s

256s  0F43h =
256s  3.907 = 1.000.192s

Error values of the TMR0 are zero for every four seconds in Timer0;
this situation can be shown in below.

Implementation Of The Zero-Error One Second Timing Algorithm For
Microcontroller

142

Feyzi AKAR & Özdemir ÇETİN

143

Overflow time = 4  TOSC  Prescaler  (256 – TMR0)

Where;
Overflow time: Overflow time is in ms.
TOSC : TOSC is the oscillator period

 in ms. 4MHz clock has a period,
 T = 1/f = 0.25s

Prescaler : Prescaler is the Prescaler value.
 (TMR0 Rate: 1:2)

TMR0 : TMR0 is the value loaded into
 TMR0 Register. (00h)

For example, assume that we are using a 4MHz crystal, and the
prescaler is chosen as 1:2 by setting bits PS2:PS0 to 000. Also assume that
the value loaded into the timer register TMR0 is 00h. The overflow time is
then given by:

4MHz clock has a period, T = 1/f = 0.25s

using the below formula;

Overflow time = 4  TOSC  Prescaler  (256 – TMR0)

Overflow time = 4  0.25  2  (256 – 0) = 512s

Thus, the timer will overflow after 0.512msec, and a timer interrupt
will be generated if the timer interrupt and global interrupts are enabled. To
achieve a 1:2 prescaler assignment for the TMR0 register, assign the
prescaler to the Timer0 (OPTION_REG <3> PSA=0).

512s  07A1h =
512s  1.953 = 999.936s

512s  07A2h =
512s  1.954 = 1.000.448s

Implementation Of The Zero-Error One Second Timing Algorithm For
Microcontroller

144

2.2 Implementation of One-Second-Timer Control Algorithm

This study contains a novel accurate timer method that can be used
for generating regular of zero-error one-second period. Time functions have
crucial importance in many control systems. This may manifest itself in the
measurement of duration, event counting or control of an external physical
event for known periods. Timing errors, which can be measured with
microseconds in interrupt subroutine that can be, bring about irretrievable
results in control applications. The objective of this research is to propose a
new algorithm and implementation its application for generating zero-error
one-second period with PIC Microcontrollers that uses an interrupt to carry
out accurate timing-related operations inside the microcontroller.
In Fig. 2.1 and 2.3, flowchart of the one-second timer control algorithms is
presented with two distinct approaches respectively. Ultimate aim is to reset
the error rate at the end of the fourth and eighth second.

Feyzi AKAR & Özdemir ÇETİN

145

Figure 2.1 Flowchart of the One-Second Timer control algorithm, 4-seconds step.

Implementation Of The Zero-Error One Second Timing Algorithm For
Microcontroller

146

Figure 2.2 Flowchart of the One-Second-Timer control algorithm with asm codes.

Feyzi AKAR & Özdemir ÇETİN

147

3. CONCLUSION

Figure 2.3 Flowchart of the One-Second Timer control algorithm, 8-seconds step.

Implementation Of The Zero-Error One Second Timing Algorithm For
Microcontroller

148

In this paper, we have proposed two new zero-error one-second
timer control algorithms based on PIC micro. In this proposed algorithms,
the total error rate is zero at the each end of the fourth and eighth seconds by
the system, which makes this study distinctive in the literature. The
objective of this research is to propose a new algorithm and implementation
its application for generating zero-error one-second period with PIC
Microcontrollers that uses an interrupt to carry out accurate timing-related
operations inside the microcontroller.

REFERENCES
[1] Dogan Ibrahim, Advanced PIC Microcontroller Projects in C, ISBN-13: 978-0-7506-
8611-2, Elsevier, 2008.
[2] PICmicro™ Mid-Range MCU Family Reference Manual, DS33023A, Microchip
Technology Inc.,1997
[3]. PIC16F87XA, Data Sheet- DS39582B, Microchip Technology Inc., 2003.
[4] PIC16F62X, Data Sheet- DS40300C, Microchip Technology Inc., 2003.
[5] PIC16F84A, Data Sheet- DS35007B, Microchip Technology Inc., 2001.
[6] Julio Sanchez, Maria P. Canton Microcontroller
Programming The Microchip PIC
CRC Pres, 2007
[7] Feyzi Akar, Mustafa Yağımlı, PIC Mikrodenetleyiciler, 16F84A & 16F628A, Beta
Yayınevi, 2006
[8] Feyzi Akar, Mustafa Yağımlı, PIC 16F877A Proje Tasarımı, Beta Yayınevi, 2007
[9] John Iovine, PIC Microcontroller Project Book, McGraw-Hill, 2000.
[10] Charles Kim, Embedded Computing with PIC 16F877 – Assembly Language
Approach, 2006
[11] Microchip Technology http://www.microchip.com

Journal of Naval Science and Engineering

2010, Vol. 6 , No.2, pp. 133-148

Implementation Of The Zero-Error One Second Timing Algorithm For Microcontroller

Feyzi AKAR & Özdemir ÇETİN

IMPLEMENTATION OF THE ZERO-ERROR ONE SECOND TIMING ALGORITHM FOR MICROCONTROLLER

Feyzi AKAR, Cdr

Asst.Prof.

Faculty of Electrical and Electronics Engineering,

Naval Academy, Tuzla, 34940, Istanbul, Turkey

feyziakar@dho.edu.tr

Özdemir ÇETIN

Asst.Prof.

Technical Education Faculty,

Computer Systems Education,

Esentepe Campus, Serdivan, Sakarya, 54187,Turkey

ocetin@sakarya.edu.tr

Abstract

This paper presents a novel accurate timer method that can be used for generating regular of zero-error one second period. Time functions have crucial importance in many control systems. This may manifest itself in the measurement of duration, event counting or control of an external physical event for known periods. Microcontrollers have programmable timers which can be used in many tasks, such as generating timing signals, causing interrupts to be generated at specific time intervals, measuring frequency and time intervals, and so on. Timing errors, which can be measured with microseconds in interrupt subroutine that can be, bring about irretrievable results in control applications. The objective of this research is to propose a new algorithm and implementation its application for generating zero-error one-second period with PIC Microcontrollers that uses an interrupt to carry out accurate timing-related operations inside the microcontroller.

MİKRODENETLEYİCİLER İÇİN SIFIR HATALI BİR-SANİYE ZAMANLAMA ALGORİTMALARININ GERÇEKLEŞTİRİLMESİ

Özetçe

Bu makalede düzenli olarak sıfır-hatalı bir saniye periyodu üretilmesiyle ilgili yeni bir yöntem oluşturulmaktadır. Bir çok control sisteminde zamanlama fonksiyonları kritik öneme sahiptir. Bu durum harici fiziksel olayların saydırılmasında, sayma esnasında sürenin ölçümünde ortaya çıkabilir. Mikrodenetleyicilerbir özel kesmelerin zamanlama sinyallerinin üretilmesi, frekans ölçülmesi vb. gibi bir çok görevlerde kullanılabilen programlanabilir zamanlayıcılara sahiptirler. Zamanlama hataları control uygulamalarında kesme altprogramları ile mikrosaniyelerle ölçülebilen telafi edilemez sonuçlara neden olabilmektedir. Bu çalışmanın amacı PIC Mikrodenetleyiciler ile sıfır hatalı zamanlama periyotlarının üretilmesinde yeni bir algoritma önermek ve gerçekleştirmektir.

Keywords: Assembly, embedding systems, timing algorithm, interrupt, PIC

Anahtar Kelimeler: Assembly, gömülü sistemler, zamanlama algortimaları, kesme, PIC

1. INTRODUCTION

1.1. Embedded Systems

Basically a microcontroller is a self-contained computer system on a single chip that includes a processor, data and program memory (RAM, ROM, EEPROM), serial and parallel input/output ports which are some way of communicating with the outside world. Microcontrollers are virtually everywhere in our modern world. About 50 percent of all microcontroller applications are found in office and house equipment, such as mobile phones, DVD Players, video cameras, toys, kitchen appliances, TVs and VCRs, phones and answering machines, automobiles and most self-contained electronic systems. It is essential for the operation of above-mentioned devices and allows an independent functionality to its user. In this sense an MCU (Microcontroller Unit) is also called an embedded system that provides the key element in the vast range of programmed devices which are now commonplace. In most cases the presence of a small LCD screen in electronic devices indicates that this device has got also an MCU.

Today many different microcontrollers are available in control applications. In this paper we shall be looking at “an accurate timer” programming and system design for the PIC (programmable interface controller) series of microcontrollers manufactured by Microchip Technology Inc.

1.2 Timer Modules

Timers are the most important parts of any microcontroller, which are available in all mid-range devices. Microcontrollers have programmable timers which can be used in many tasks, such as generating timing signals, causing interrupts to be generated at specific time intervals, measuring frequency and time intervals, and so on. Time functions have crucial importance in many control systems. This may manifest itself in the measurement of duration, event counting or control of an external physical event for known periods. Where time is of the essence these functions are often best implemented by using hardware counters to time events.

A timer can be 8 bits or 16 bits wide. Data can be loaded into a timer under program control, and the timer can be stopped or started by program control. Most timers can be configured to generate an interrupt when they reach a certain count (usually when they overflow). The user program can use an interrupt to carry out accurate timing-related operations inside the microcontroller [1].

A timer is basically a counter that is driven from either an external clock pulse or the microcontroller’s internal oscillator.

The TIMER0 module shown in Fig.1 is present in all PICs of this family. It has the following features:[2]

(8-bit timer/counter

(Readable and writable

(8-bit programmable Prescaler

(External or internal clock source

(Interrupt generation on overflow (from FFh to 00h)

(Edge select for external clock

[image: image1.png]Table 1: Required TMRO Values for Different Overflow Times

Time to Overflow (ps) 100 - 1000 (ps)
Prescaler =~ = = =~ ~
TMRO] 3 TMRO] 500
2 206->100 6 > 500
231->100 131> 500|106 — 600] 81 - 700
8 243 —>104 |231->200 [218 304|206 - 193 - 504181 > 600|168 — 704|156 —> 800|131->1000]
16 250> 96243 5208 |237 —>304 224-5 512|218 > 608|212 - 704 | 206> 800|193 ->1008
32 253> 96 [250->192 [246 —320 240512237 > 608 | 234> 704 | 2315800 | 225> 992
64 254128 12532192251 2320250 - 2483512 [246 — 640 |245->704|243 832 | 2401024
128 254->256]253 384253 - 2525512251 > 640 |250 > 768 | 250 > 768 | 248->1024]

256 255 256 |: T 254 512|253 5768 | 253> 768 | 253> 768252->1024)

2. PROPOSED ZERO-ERROR TIMING TECHNIQUE

2.1. Design of Timing Algorithm

The formula that follows can be used to calculate the time it will take for the timer to overflow (or to generate an interrupt) given the oscillator period, the value loaded into the timer, and the Prescaler value: [3,4,5]

Overflow time = 4 (TOSC (Prescaler ((256 – TMR0) (1.1)

Where;

Overflow time
: Overflow time is in ms.

TOSC

: TOSC is the oscillator period

 in ms.

Prescaler
: Prescaler is the Prescaler value.

TMR0

: TMR0 is the value loaded into

 TMR0 register.

For example, assume that we are using a 4MHz crystal, and the Prescaler is chosen as 1:8 by setting bits PS2:PS0 to 010. Also assume that the value loaded into the timer register TMR0 is decimal 100. The overflow time is then given by:

4MHz clock has a period, T = 1/f = 0.25(s

using the below formula;

Overflow time = 4 (TOSC (Prescaler ((256 – TMR0)

Overflow time = 4 (0.25 (8 ((256 – 100) = 1248(s

Thus, the timer will overflow after 1.248msec, and a timer interrupt will be generated if the timer interrupt and global interrupts are enabled.

What we normally want is to know what value to load into the TMR0 register for a required overflow time. This can be calculated by modifying Equation (1.1) as follows:

TMR0 = 256 – (Overflow time) / (4 (TOSC (Prescaler) (1.2)

For example, suppose we want an interrupt to be generated after 500ms and the clock and the prescaler values are as before. The value to be loaded into the TMR0 register can be calculated using Equation (1.2) as follows:

TMR0 = 256 – (500) / (4 (0.25 (8) = 193.5

The closest number we can load into TMR0 register is 193.

The common application of the Timer0 module is as an instruction cycle counter in implementing delay loops. Timer0 register is also called a free running timer. There are two advantages of using free running timers over conventional delay loops: the Prescaler provides a way of slowing down the count, and the delay is independent of the number of machine cycles in the loop body. In most cases, it is easier to implement an accurate time delay using the Timer0 module than by counting instruction cycles [6].

Calculating the time is taken by each counter iteration that consists of dividing the clock speed by four. For example, a PIC is running on a 4 MHz oscillator clock increment the counter every 1 MHz. If the Prescaler is not used, the counter register is incremented at a rate of 1 µs; the timer beats at a rate of 1,000,000 times per second. If the Prescaler is set to the maximum divisor value (256) then each increment of the timer takes place at a rate of 1,000,000/256 µs, which is approximately 3.906 ms (exact value: 3.906.25ms). Since this is the slowest possible rate of the timer in a machine running at 4 MHz, it is often necessary to employ supplementary counters in order to achieve larger delays [6].

[image: image12.png]Interrupt
Subroutine

H byte = H byte - 1

L byte = L_byte - 1

_» NO YES

1 second occured !

I

H byte = OXOF
L byte = 0X42

I

Carry = Carry + 0X40

H byte L_byte
DO 2001 [L0E0|f @01©
a8 F 4 =z
2 2 2 2
[1=] w [1=] 1=
Lo Ty Lo Lo
od &l od od
x x x x
™ ™ ™ !
< o) o) <
L L L L
= @ @ @ é’.
I Il Il Il
999.936 ps | 999.936 ps | 999.936 us |1.000.192 ps
e —64ps e — 64us Sk — 64ps -k +192ps |
4.06060.888 s
Carry
D00 900D
4 a
e | 900D
8 a
oo logop
C a
00 | ey

vEs «——- 1 a8

8B F 43

L byte = L byte + 1

a

[image: image2.png]S —

4.000.000 ps —— |

4s

999,936 ps

999,936 ps

999,936 ps

1.000.192 ps

& —64ps -

& —64ps -

& —64ps -

+192ps -

S —

4.000.000 ps —— |

4s

1.000.192 ps

999,936 ps

999,936 ps

999,936 ps

- +192ps |

& —64ps -

& —64ps -

- = 64ps -

[image: image3.png]a

64

512
156384
9830408
a

» =
» =
» =
» =
» =
» =

1.9800.888

Overflow time = 4 (TOSC (Prescaler ((256 – TMR0)

Where;

Overflow time
: Overflow time is in ms.

TOSC

: TOSC is the oscillator period

 in ms. 4MHz clock has a period,

 T = 1/f = 0.25(s

Prescaler
: Prescaler is the Prescaler value.

 (TMR0 Rate: 1:1)

TMR0

: TMR0 is the value loaded into

 TMR0 Register. (00h)

For example, assume that we are using a 4MHz crystal, and the Prescaler is chosen as 1:1. To achieve a 1:1 Prescaler assignment for the TMR0 register, assign the Prescaler to the Watchdog Timer (OPTION_REG <3> PSA=1) [7,8].

Also assume that the value loaded into the timer register TMR0 is 00h. The overflow time is then given by: using the below formula;

Overflow time = 4 (TOSC (Prescaler ((256 – TMR0)

Overflow time = 4 (0.25 (1 ((256 – 0) = 256 (s

Thus, the timer will overflow after 0.256 msec, and a timer interrupt will be generated if the timer interrupt and global interrupts are enabled [7,8,9].

256(s (0F42h =

256(s (3.906 = 999.936(s

256(s (0F43h =

256(s (3.907 = 1.000.192(s

Error values of the TMR0 are zero for every four seconds in Timer0; this situation can be shown in below.

[image: image4.png]2 2 2 2 2 2 2 2
[1=] [1=] [1=] [1=] [1=] [1=] [1=] [1=]
Lo Lo Lo Lo Lo Lo Lo Lo
od od od od od od od od
x x x x x x x x
™ ™ ™ ! ! ™ ™ ™
< o) o) < < o) o) o)
L L L L L L L L
= @ @ @ é = @ @ @ é
I Il Il Il Il Il Il Il
999.936 ps | 999.936 ps | 999.936 us |1.000.192 ps 1,000.192ps | 999.936 us | 999.936 ps | 999.936 ps
e —64ps e — 64us Sk — 64ps -k +192ps | «+192ps - = 64ps ol —64ps S — 64ps S|

4.88068.80008 s

4.88068.80008 s

[image: image5.png]123
0
I
8,000,000 ps
999.936 ps | 999.936 us | 999.936 us | 999.936 ps | 999.936 ps | 999.936 ps | 999.936 pus | 1.000.448 ps
€ = 64ps s —64ps S — 64us S — 64ps e —64ps e — 64ps S — 64ps o« +448ps S
123
0
I
8,000,000 ps
1,000,448 US| 999,936 ps | 999.936 ps | 999.936 ps | 999.936 ps | 999.936 ps | 999.936 ps | 999.936 ps
| +448ps S — 64ps S = 64ps S — 64ps S — 64ps S — 64ps o — 64ps o — 64ps

[image: image6.png]SND MG
XA XA AR
| T

a

S88.088

Overflow time = 4 (TOSC (Prescaler ((256 – TMR0)

Where;

Overflow time: Overflow time is in ms.

TOSC

: TOSC is the oscillator period

 in ms. 4MHz clock has a period,

 T = 1/f = 0.25(s

Prescaler
: Prescaler is the Prescaler value.

 (TMR0 Rate: 1:2)

TMR0

: TMR0 is the value loaded into

 TMR0 Register. (00h)

For example, assume that we are using a 4MHz crystal, and the prescaler is chosen as 1:2 by setting bits PS2:PS0 to 000. Also assume that the value loaded into the timer register TMR0 is 00h. The overflow time is then given by:

4MHz clock has a period, T = 1/f = 0.25(s

using the below formula;

Overflow time = 4 (TOSC (Prescaler ((256 – TMR0)

Overflow time = 4 (0.25 (2 ((256 – 0) = 512(s

Thus, the timer will overflow after 0.512msec, and a timer interrupt will be generated if the timer interrupt and global interrupts are enabled. To achieve a 1:2 prescaler assignment for the TMR0 register, assign the prescaler to the Timer0 (OPTION_REG <3> PSA=0).

512(s (07A1h =

512(s (1.953 = 999.936(s

512(s (07A2h =

512(s (1.954 = 1.000.448(s

2.2 Implementation of One-Second-Timer Control Algorithm

This study contains a novel accurate timer method that can be used for generating regular of zero-error one-second period. Time functions have crucial importance in many control systems. This may manifest itself in the measurement of duration, event counting or control of an external physical event for known periods. Timing errors, which can be measured with microseconds in interrupt subroutine that can be, bring about irretrievable results in control applications. The objective of this research is to propose a new algorithm and implementation its application for generating zero-error one-second period with PIC Microcontrollers that uses an interrupt to carry out accurate timing-related operations inside the microcontroller.

In Fig. 2.1 and 2.3, flowchart of the one-second timer control algorithms is presented with two distinct approaches respectively. Ultimate aim is to reset the error rate at the end of the fourth and eighth second.

[image: image7.png]2 2 g ES 2 2 2 2

M ™ 3 ™ ™ M ™ M

=) - ™) =) =

n Iy} n n Iy} n Iy} n

x x x x x x x x

s Ll Ll el s s Ll 3

s T T 15 s s T T

M M M M M M M M~

@ = =] = @ i) = &

I I I I I I I I |
999.936 ps | 999.936 ps | 999.936 us | 999.936 ps | 999.936 ps | 999.936 ps | 999.936 pus | 1.000.448 ps
€ = 64ps s —64ps S — 64us S — 64ps e —64ps e — 64ps S — 64ps o« +448ps S

8.800808. 888 us

2 2 2 2 2 2 g 2

M M ™ ™ M M 3 M

= =) in = = - =

n n Iy} n n n n n

X x x x x x x x

™ s Ll el s s i s

T s T 15 s s I s

M M~ M M M M~ M M

® ® ® ® = ® = = g

I I I I I I I oo
1,000,448 ps| 999.936 ps | 999.936 ps | 999.936 ps | 999.936 ps | 999.936 us | 999.936 ps | 999.936 ps
€ +448ps Sl = 64us e —64ps S — 64us S — 64us o — 64us o — 64pus S — 64ps)|

8.800808. 888 us

[image: image8.png]Figure 1: Block Diagram of the Timer0/WDT Prescaler

CLKOUT (=Fosc/4) Data B
ata Bus

8

0 '\J 1
TOCKI pin Y M SYNG
1 ol Y 2 TMRO reg
X Cycles

TOSE

TOCS .
PSA Set TOIF flag bit

on Overflow

0 8-bit Prescaler
1

8

8 - to - IMUX PS2:PS0O

WDT Enable bit

WDT
Time-out

Note: TOCS, TOSE, PSA, PS2:PS0 are (OPTION_REG<5:0>).

[image: image9.png]OPTION_REG Register

The OPTION_REG register is a readable and writable register which contains various control bits
to configure the TMRO/WDT prescaler, the external INT Interrupt, TMRO, and the weak pull-ups
on PORTB.

Register 5-2: OPTION_REG Register

R/W—1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
| RBPU | INTEDG | ToCS | TOSE | PSA | PS2 | Ps1 | PSO |
bit 7 bit O

bit 7 RBPU: PORTB Pull-up Enable bit
1 = PORTB pull-ups are disabled
0 = PORTB pull-ups are enabled by individual port latch values
bit 6 INTEDG: Interrupt Edge Select bit
1 = Interrupt on rising edge of INT pin
0 = Interrupt on falling edge of INT pin
bit 5 TOCS: TMRO Clock Source Select bit
1 = Transition on TOCKI pin
0 = Internal instruction cycle clock (CLKOUT)
bit 4 TOSE: TMRO Source Edge Select bit
1 = Increment on high-to-low transition on TOCKI pin
0 = Increment on low-to-high transition on TOCKI pin
bit 3 PSA: Prescaler Assignment bit
1 = Prescaler is assigned to the WDT
0 = Prescaler is assigned to the Timer0 module

bit 2-0 PS2:PS0: Prescaler Rate Select bits

BitValue TMRO Rate WDT Rate

000 1:2 1:1
001 1:4 1:2
010 1:8 1:4
011 1:16 1:8
100 1:32 1:16
101 1:64 1:32
110 1:128 1:64
111 1:256 1:128

Legend

R = Readable bit W = Writable bit
U = Unimplemented bit, read as ‘0’ - n = Value at POR reset

Note: To achieve a 1:1 prescaler assignment for the TMRO register, assign the prescaler
to the Watchdog Timer.

[image: image10.png]Interrupt
Subroutine

L byte = L_byte -

NO

H byte L_byte
momm | @177 | §] 1909 asy
a ra A 1
2 2 g ES 2 2 2 2
M M 3 ™ M M ™ M
= = - ™ = =) =
n n n n n n Iy} n
x x x x x x x x
s s Ll el s s s 3
s s T 15 s s T T
M M M M M M M M~
1 @ @ =] @ @ @ i 2
I I I I I I I I |
999.936 ps | 999.936 ps | 999.936 us | 999.936 ps | 999.936 ps | 999.936 ps | 999.936 pus | 1.000.448 ps
YES € = 64ps s —64ps S — 64us S — 64ps e —64ps e — 64ps S — 64ps o« +448ps S
8.800808. 888 us

0010 || 0000

YES 2 a

0100 || 0000

4 a8

1 second occured !

0110 || 0000

l = a8

H byte = 0X07

I byte = OXAL 1900 0000
l 8 a8

Carry = Carry + 0x20 19710 9509
A a8
1100 || 0000

C a8
1110 || 0000

E a8
< 0000 || 0000

1 a8 a8

L byte = L byte + 1
87 Az

3. CONCLUSION

In this paper, we have proposed two new zero-error one-second timer control algorithms based on PIC micro. In this proposed algorithms, the total error rate is zero at the each end of the fourth and eighth seconds by the system, which makes this study distinctive in the literature. The objective of this research is to propose a new algorithm and implementation its application for generating zero-error one-second period with PIC Microcontrollers that uses an interrupt to carry out accurate timing-related operations inside the microcontroller.

REFERENCES

[1] Dogan Ibrahim, Advanced PIC Microcontroller Projects in C, ISBN-13: 978-0-7506-8611-2, Elsevier, 2008.

[2] PICmicro™ Mid-Range MCU Family Reference Manual, DS33023A, Microchip Technology Inc.,1997

[3]. PIC16F87XA, Data Sheet- DS39582B, Microchip Technology Inc., 2003.

[4] PIC16F62X, Data Sheet- DS40300C, Microchip Technology Inc., 2003.

[5] PIC16F84A, Data Sheet- DS35007B, Microchip Technology Inc., 2001.

[6] Julio Sanchez, Maria P. Canton Microcontroller

Programming The Microchip PIC

CRC Pres, 2007

[7] Feyzi Akar, Mustafa Yağımlı, PIC Mikrodenetleyiciler, 16F84A & 16F628A, Beta Yayınevi, 2006

[8] Feyzi Akar, Mustafa Yağımlı, PIC 16F877A Proje Tasarımı, Beta Yayınevi, 2007

[9] John Iovine, PIC Microcontroller Project Book, McGraw-Hill, 2000.

[10] Charles Kim, Embedded Computing with PIC 16F877 – Assembly Language Approach, 2006

[11] Microchip Technology http://www.microchip.com

Figure 2.2 Flowchart of the One-Second-Timer control algorithm with asm codes.

Figure 2.1 Flowchart of the One-Second Timer control algorithm, 4-seconds step.

([2]DS33023A : PICmicro™ Mid-Range MCU Family Reference Manual)

Figure 2.3 Flowchart of the One-Second Timer control algorithm, 8-seconds step.

133

134

147

[image: image11.png]TSTF L_byte

SKPNZ

before RETFIE

; movf L byte
; btfsc status,Z

GOTO Before RETFIE

BCF INTCON, TOIF
MOVE STATUS TEMP,W
MOVWEF STATUS

SWAPF W _TEMP,F
SWAPF W _TEMP ,W

RETFIE

Interrupt H byte L byte
Subroutine - -
MOVWE W_TEMP 0000 || 1111 0100 || 0010
T e, e | r i e
MOVWF STATUS_TEMP a F 4 =

H_byte

H byte - 1

L byte = L_byte - 1

DECFSZ L byte,F

GOTO Before RETFIE

MOVLW h'OF'
MOVWF H byte

MOVLW h'42'
MOVWF L byte

MOVLW h'40'
ADDWF Carry,F

BTESS INTCON, TOIF
GOTO before RETFIE

;1 second EVENTS

GOTO before RETFIE

; btfsc status,C

1 second occured !

I

H byte = OXOF
L byte = 0X42

I

DECF H_byte,F

TSTF H_byte

SKPZ

Carry = Carry + 0X40

L byte = L byte + 1
8F 43

vEs «——- 1

;

;

Carry

0000

a a

0000

movf H byte

; btfss status,Z

INCF L byte,F

