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Abstract. The classical F -test for testing the hypothesis of no fixed main
effects in a mixed effects design is valid under the assumption of normality,
symmetry and variance homogeneity of the error terms assumption. We con-
sider the two-way mixed effects design which does not require these three
assumptions. A test procedure for the hypothesis of no main fixed effects is
developed under this flexible model. The asymptotic distribution of the test
statistic is studied for a large number of levels of the random effects.

1. Introduction

The assumption of independence of the random main and interaction effects is
called the symmetry assumption. Violation of the symmetry assumption yields that
the sum of squares for the main fixed effects is not distributed as a constant times
the chi-squared variable. Thereby, the F -test for testing no-main fixed effects is
not valid. See ( [9], ch. 8).
Departure from the symmetry assumption has not been received enough atten-

tion. Studies on this topic are [2], [3], [4], [5], [6]. Studies [2]- [4] are on the
unbalanced two-way mixed model while [5] and [6] studied the balanced three way
mixed model with two random factors. They proposed approximate tests for the
effects. Also, simulation studies given by [3] and [5] showed that the achieved sizes
of the F -test are liberal when the symmetry assumption is violated.
In the unbalanced design, an exact test for the main fixed effects of a two-way

mixed effects design is derived by [8]. But derivation is based on assuming that the
random main and interaction effects are independent. See ( [8], p.153-155).
Consider the case in which the assumption of symmetry and variance homogene-

ity of the error terms are violated but the assumption of normality is preserved.
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For this case, Hotelling’s T 2 test for testing of the hypothesis of no main fixed
effects is suggested when two-way mixed effects design is balanced. Also [2] and [3]
extended the balanced two-way mixed effects design into the the unbalanced one.
Their result is that cell sizes are random as it is indicated in Section 2.
The contribution of this paper is to present a new test for testing the hypothesis

of no main fixed effects for the unbalanced two-way mixed model under departure
of three main assumptions: normality, variance homogeneity of the error terms and
symmetry. We propose the test statistic different from studies mentioned above.
To do this:
1) The test statistic is established by extending Hotteling’s T 2 test to the unbal-
anced two way mixed design where cell sizes are random.
2) We assume that the distribution of the random factors and error terms have
any distribution with zero-mean. Using the asymptotic results, the asymptotic null
distribution of the test statistic is established.
The rest of the article is organized as follows: Section 2 describes the nonpara-

metric two-way mixed effects design which is mainly the two-way crossed mixed
effects design without the classical assumptions. Section 3 derives the null asymp-
totic distribution of the Hotelling’s test statistic with a large number of levels of
the random effects where the design does not have fixed cell size. Section 4 presents
the simulation results. Section 5 gives an illustrative example.

2. The nonparametric two-way mixed effects design

We now describe the two-way mixed design violating normality, variance homo-
geneity of the error terms and symmetry. Consider a design in which the a rows
accord with the fixed effects and the b columns accord with the random effects.
The b levels of the random effect are considered to be obtained by simple random
sampling from a population V. Let V be a randomly selected element from a pop-
ulation V. Then YiV is an observation from the cell (i, V ) where i denotes the level
of the fixed effect and the level of the random effects is labeled by random variable
V .
We write YiV as

YiV = E[YiV |V ] + (Yiv − E[YiV |V ]) = mi(V ) + ei(V ) (1)

where mi(V ) and ei(V ) are called the random mean and error term respectively.
We only assume that the distribution of YiV depends on (i, V ). Then

V ar(mi1(V )) 6= V ar(mi2(V )) and V ar(ei1(V )) 6= V ar(ei2(V )) for i1 6= i2.

Further, the expression in (1) of YiV allows that

E[ei(V )] = E[ei(V )|V ] = 0 and E[mi(V )ei(V )] = E[mi(V )ei(V )|V ] = 0.
It follows that mi(V ) and ei(V ) are uncorrelated.
The mi(V ) is uniquely decomposed into main and interaction effects as

mi(V ) = µ+ αi + β(V ) + γi(V )
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where µ, αi, β(V ) and γi(V ) are defined as

µ =
1

a

a∑
i=1

E[mi(V )], αi = E[mi(V )]− µ, β(V ) =
1

a

a∑
i=1

mi(V )− µ,

γi(V ) = mi(V )− µ− αi − β(V ). (2)

The results of Eq. (2) are:
a∑
i=1

αi = 0, E[β(V )] = 0,

a∑
i=1

γi(V ) = 0 and E[γi(V )] = 0.

It is evident that
1) The random effects {β(V ), γ1(V ), . . . , γa(V )} are not independent. Thus the
vector of random means (m1(V ),m2(V ), . . . ,ma(V ))

′
has multivariate distribution.

2)The replicated observation on the cell (i, V ) is denoted by YiV k where k =
1, 2, . . . niV . Then the cell sizes niV is random since it is a function of V .
Let {V1, V2, . . . , Vb} be simple random sampling representing b levels of the ran-

dom effects drawn independently from a population V. Let ni(Vj) be the number
of iid observations drawn from the cell (i, Vj). Then iid observations and the error
terms are denoted by YiVjk and eik(Vj) where k = 1, 2, . . . , ni(Vj)
We assume that eik(Vj), k = 1, 2, . . . , ni(Vj) are iid for each i and ei1k(Vj) and

ei2k(Vj) are uncorrelated for each k and i1 6= i2.
We write j for Vj , Yijk for YiVjk, mij for mi(Vj), βj for β(Vj), γij for γi(Vj),

eijk for eik(Vj) and nij for ni(Vj). Then from (1), we have

E[Yijk|Vj ] = mij and Yijk − E[Yijk|Vj ] = eijk.

The two-way mixed model is written as

Yijk = mij + eijk, i = 1, 2, . . . , a, j = 1, 2, . . . b, k = 1, 2, . . . nij (3)

where the random mean mij is defined as

mij = µ+ αi + βj + γij . (4)

with
∑a

i=1 αi = 0 and
∑a

i=1 γij = 0 for each j. The vector random means
(m1j ,m2j , . . . ,maj)

′
for j = 1, 2, . . . , b are iid with the mean vector

ν = (µ+ α1, µ+ α2, . . . , µ+ αa)
′

(5)

and the covariance matrix

Σm = {Cov(mij ,mi′ j)} (6)

The vector of the error terms (e1jk, e2jk, . . . , eajk)
′
are iid with zero-mean vector

and the covariance matrix Σe = diag(σ2e1 , σ
2
e2 , . . . , σ

2
ea). The elements of the vector

of the error terms are uncorrelated to the elements of the random means. It is
assumed that nij , j = 1, 2, . . . b are iid for each i. Further nij is independent of
Yijk.
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3. Testing the Hypothesis of No Main Fixed Effects

Consider two-way mixed design has no an empty cell such that P (nij ≥ 1) = 1.
Then the average of an observed cell and row are

Y ij. =
1

nij

nij∑
k=1

Yijk, Y i.. =
1

b

b∑
j=1

Y ij.

respectively. We have E[Y ij.|Vj ] = mij and

Cov(E[Y ij.|Vj ], E[Y i′ j.|Vj ]) = Cov(mij ,mi′ j).

From the model (3), one can easily obtain that

E[Y ijY i′ j.|Vj ] = mijmi′ j + δii′σ
2
ei/nij

where δii′ denotes the kronecker delta. It follows that Cov(Y ij., Y i′ j.|Vj) = δii′σ
2
ei/nij .

Then
E[Cov(Y ij., Y i′ j.|Vj)] = δii′σ

2
eiE[n

−1
ij ].

The unconditional covariance between Y ij. and Y i′ j. is

Cov(Y ij., Y i′ j.) = Cov(E[Y ij.|Vj ], E[Y i′ j.|Vj ]) + E[Cov(Y ij., Y i′ j.|Vj)]

= Cov(mij ,mi′ j) + δii′σ
2
eiE[n

−1
ij ].

Vectors of the observed cell averages (Y 1j.., Y 2j., . . . , Y aj.)
′
, for j = 1, 2, . . . b, are

i.i.d. as the multivariate normal distribution with mean vector ν and covariance
matrix

Σ = Σm + diag(σ2e1E[n
−1
1j ], σ

2
e2E[n

−1
2j ], . . . , σ

2
eaE[n

−1
aj ]), (7)

where ν and Σm are given in Eqs. (5) and (6) respectively.
The test statistic is based on the vector of the observed row averages

Y = (Y 1.., Y 2.., . . . , Y a..)
′
. (8)

The proposed test statistic for testing H0: all αi = 0 is

TSA = b(CY )
′
(CSC

′
)−1CY (9)

where C = {cij} is an (a − 1) × a contrast matrix, i.e., its rows are orthogonal to
the vector of ones and the sample covariance matrix

S = {Sii′} with Sii′ =

∑b
j=1(Y ij. − Y i..)(Y i′ j. − Y i′ ..)

b− 1 (10)

for i, i
′
= 1, 2, . . . , a.

Remark 3.1 In the case that the two-way mixed effects design keeps normality of
the random effects and of the error terms but violates both the homoscedasticity
and symmetry assumption, the test statistic TSA in Eq. (9) is the Hotelling’s T 2

test statistic distributed as (b− 1)(a− 1)/(b− a+ 1)Fa−1,b−a+1.
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Theorem 3.1 The asymptotic null distribution of TSA given in Eq. (9) is the
chi-squared distribution with a− 1 degrees of freedom as b→∞.

Proof From central limit theorem for multivariate observations, we have
√
b(Y − ν)

is the multivariate normal distribution with zero-mean vector and the covariance
matrix given in Eq. (7) as b→∞ where Y is given in Eq. (8) see [1]. Let C be an
(a − 1) × a contrast matrix. Then Cν = 0 when H0 : all αi = 0 holds. It follows

that
√
bCY

d→ Na−1(0,CΣC
′
) as b→∞.

Observe that E[Sii′ ] = Cov(mij ,mi′ j) + δii′σe2i (1/b)
∑b

j=1 n
−1
ij where Sii′ is the

ii
′
th entry of the sample covariance matrix S given in Eq. (10). From Lemma given

in Appendix, it follows that E[Sii′ ] → Cov(mij ,mi′ j) + δii′σe2iE[n
−1
ij ] as b → ∞.

Then S is a consistent estimator of Σ.
Thus, Σ can be replaced by S where CSC

′
is a positive definite matrix. Then,√

b(CSC
′
)−1/2CY

d→ Na−1(0, I) as b → ∞. As a result, the asymptotic null
distribution of the test statistic TSA is the chi-squared distribution with a − 1
degrees of freedom as b→∞.

4. Simulation Study

In this section, we investigate the performance and power of the proposed test
by simulation study. The distribution of the cell sizes nij is considered to be a
discrete uniform distribution for the unbalanced design. Yijk’s defined by Eq. (3)
are generated where the number of Yijk is specified by achieved nij for a given
(i, j). Data violating the assumption of symmetry is generated by using the data
generation method of Gaugler and Akritas [4]. It is as follows:
1. Set µ and αi, i = 1, 2, . . . , a constants subject to

∑a
i=1 αi = 0.

2. Generate Vj , j = 1, 2, . . . , b from the standard normal distribution
3. Generate λi, i = 1, 2, . . . , a from the standard exponential distribution where
λi’s are independent of Vj’s and always held constants within simulations.
4. Then Yijk is from a normal distribution with mean µ + αi + Vj + Vj ∗ (λi − λ)
and variance σ2ei . where λ denotes the average of λi’s.
The number of levels of the random effects "b" is large. Therefore, we take

a = b = 20 where the number of levels of the fixed effects "a" can be taken any
number greater than 2. The asymptotic null distribution of TSA in (9) does not
depend on µ. So we take µ = 0. For all cases and σ2ei = 1 ∀i in the homoscedastic
case and σ2ei = 2, 25 for i = 1, 2, 3, 4, 5 and σ2ei = 4 for i = 6, 7, 8, 9, 10 in the
heteroscedastic case. Two different values of σ2ei , that we set, are enough to reflect
the heteroscedastic case The distribution of the cell sizes is assumed to be identical
and from a discrete uniform distribution.
The way of generating data preserves normality but violates symmetry and vari-

ance homogeneity of the error term. This fact ensures that the 1−α quantile point
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Table 1. Achieved test sizes (in H0-row) and power (in remaining
rows) for T 2 and TSA where P (nij = x) = 0.2, x = 2, 3, 4, 5, 6,
i = 1, 2, . . . , 20 and for each j if the design is unbalanced and
P (nij = 4) = 1.0 if the design is balanced.

α = 0.05
Unbalanced Balanced
T 2 TSA T 2 TSA

Homo.
H0 0.064 0.077 0.064 0.074
H1 0.116 0.132 0.260 0.286
H2 0.343 0.370 0.417 0.494
H3 0.516 0.543 0.624 0.633

Hetero.
H0 0.064 0.075 0.079 0.096
H1 0.077 0.094 0.123 0.136
H2 0.127 0.152 0.292 0.315
H3 0.175 0.195 0.415 0.454

α = 0.10
Unbalanced Balanced
T 2 TSA T 2 TSA

Homo.
H0 0.098 0.117 0.135 0.151
H1 0.220 0.240 0.339 0.365
H2 0.492 0.515 0.402 0.419
H3 0.675 0.694 0.655 0.658

Hetero.
H0 0.117 0.133 0.133 0.153
H1 0.137 0.155 0.222 0.239
H2 0.223 0.238 0.367 0.383
H3 0.268 0.292 0.564 0.591

can be (b − 1)(a − 1)/(b − a + 1)Fa−1,b−a+1(α) if the test statistics has the exact
distribution or χ2a−1(α) if the test statistic has the asymptotic distribution. Here,
Fa1,a2(α) and χ

2
a(α) are the upper quantile point of the F -distribution with respect

to degrees of freedom a1 and a2 and the chi-squared distribution with degrees of
freedom a respectively.
We use αi = 0 for all i = 1, 2, . . . , 20 for the null hypothesis. We formed three

alternative hypotheses denoted by H1, H2 and H3. They are:

H1 : α1 = . . . = α10 = 0.3, α11 = . . . , α20 = −0.3,

H2 : α1 = . . . = α10 = 0.5, α11 = . . . , α20 = −0.5,
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H3 : α1 = . . . = α10 = 0.7, α11 = . . . , α20 = −0.7.

Table 2. Achieved test sizes (inH0-row) and power (in remaining
rows) for T 2 and TSA where P (nij = x) = 0.2, x = 7, 8, 9, 10, 11
i = 1, 2, . . . , 20 and for each j if the design is unbalanced and
P (nij = 9) = 1.0 if the design is balanced.

α = 0.05
Unbalanced Balanced
T 2 TSA T 2 TSA

Homo.
H0 0.062 0.076 0.065 0.075
H1 0.281 0.310 0.327 0.356
H2 0.434 0.452 0.417 0.494
H3 0.566 0.571 0.822 0.835

Hetero.
H0 0.058 0.073 0.079 0.095
H1 0.127 0.148 0.160 0.177
H2 0.325 0.356 0.484 0.510
H3 0.509 0.545 0.711 0.740

α = 0.10
Unbalanced Balanced
T 2 TSA T 2 TSA

Homo.
H0 0.106 0.117 0.137 0.151
H1 0.434 0.464 0.419 0.449
H2 0.687 0.702 0.774 0.777
H3 0.782 0.784 0.797 0.797

Hetero.
H0 0.109 0.127 0.132 0.154
H1 0.203 0.220 0.263 0.282
H2 0.461 0.488 0.545 0.574
H3 0.644 0.667 0.798 0.813

Simulations are based on 1000 runs for all cases. Achieving any test size is
accomplished as follows: the number of the generated test statistic from null data
and exceeding the upper 1−α quantile of the null distribution is divided by 1000. To
obtain achieved power value of any test, the number of the generated test statistic
from alternative data and exceeding the upper 1−α quantile of the null distribution
is divided by 1000. It should be noted that any significant difference from the
presenting results is not detected when simulations are based on 10000 runs.



NONPARAMETRIC MODELLING VIA TWO-WAY MIXED EFFECTS DESIGN 201

Table 3. Achieved test sizes (in H0-row) and power (in remaining
rows) for T 2 and TSA where P (nij = x) = 0.1, x = 2, 3, . . . , 11
i = 1, 2, . . . , 20 and for each j if the design is unbalanced and
P (nij = 7) = 1.0 if the design is balanced.

α = 0.05
Unbalanced Balanced
T 2 TSA T 2 TSA

Homo.
H0 0.063 0.075 0.065 0.075
H1 0.129 0.147 0.309 0.339
H2 0.441 0.462 0.506 0.526
H3 0.641 0.674 0.673 0.681

Hetero.
H0 0.060 0.075 0.075 0.096
H1 0.077 0.094 0.136 0.144
H2 0.162 0.173 0.381 0.344
H3 0.224 0.245 0.517 0.546

α = 0.10
Unbalanced Balanced
T 2 TSA T 2 TSA

Homo.
H0 0.105 0.114 0.135 0.151
H1 0.260 0.279 0.402 0.420
H2 0.589 0.608 0.584 0.600
H3 0.775 0.795 0.682 0.684

Hetero.
H0 0.111 0.125 0.133 0.153
H1 0.146 0.161 0.239 0.256
H2 0.264 0.278 0.430 0.451
H3 0.317 0.339 0.659 0.681

Table 1-Table 3 address the achieved test sizes and the power values of T 2 and
TSA. In all settings, the proposed test TSA displays stronger power than Hotelling’s
T 2 test under each of the three alternative hypotheses. Further, our simulation re-
sults verified that Hotelling’s T 2 test suffers from low power. It should be noted
that the proposed test is slightly more liberal than Hotelling’s T 2 test. Addition-
ally Hotelling’s T 2 test sizes achieved their nominal sizes more accurately in the
unbalanced cases. Both tests have stronger power in the homoscedastic case than
the heteroscedastic case.
No significant difference was observed between achieved test sizes of Hotelling’s

T 2 and TSA in the case of either homoscedastic or heteroscedastic. Therefore
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departure from the assumption of variance homogeneity of the error terms does not
effect to the proposed test.

5. Example

The company selected five different transmission cases and operators to measure
the diameter of hole (mm) in the rear of the transmission cases. The experiment
consisted of randomly selected six operators from the workforce. Each selected
operator was presented the transmission case in a completely random order. Data
for this experiment is given in Table 4. ( [7] p.175).

Table 4. Measurements of the diameter hole

Operator
Transmission Case 1 2 3 4 5 6

186 176 184 197 179 176
1 188 177 185 196 176 174

184 196 176

188 181 194 195 182 173
2 189 184 192 191 184 173

195 182 188 186

167 169 166 182 167 158
3 166 167 166 182 166 163

167

188 181 190 188 182 176
4 189 180 188 189 182 176

192 182 190 186 174

169 173 184 185 174 164
5 172 172 182 187 177 166

173 175 188 176 166

We are testing the hypothesis of no difference among the transmission cases. The
data summary is:

Y = (182.69, 185.72, 167.19, 184.55, 175.88)
′
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and

S =


67.42 51.68 49.89 37.97 47.48
51.68 47.04 36.47 42.82 47.84
49.89 36.47 52.12 23.57 44.87
37.97 42.82 23.57 32.98 32.59
47.48 47.84 44.87 32.59 6.13

 .
The value of the test statistic TSA in (9) is calculated where it is equal to 70.72.
We have χ24,0.005 = 14.86. The hypothesis can be rejected.

6. Conclusions

We consider the unbalanced two-way mixed effects model when three main as-
sumptions, normality, symmetry and variance homogeneity of the error term, are
violated. Non symmetry causes that the sum of squares for the main fixed effects
are not distributed as a constant times the chi-squared variable. As a result the
F -test is not valid. Therefore, in this article, we focuss on testing the hypothesis
of no main fixed effects. This article is a part of Ph. D. dissertation of the first
author.
We showed that both the mean of observations and the cell sizes are random

when the levels of the random effects are from a simple random sampling. The
proposed test statistic TSA is the same as the Hotelling’s T 2 test statistic without
assuming normality. In simulation study, the proposed test TSA displays stronger
power than the Hotelling’s T 2 test in all cases. However, the proposed test does
not allow empty cells such that nij ≥ 1 ∀(ij) with probability 1. It is considered
that both a test for the hypothesis of no interaction effects and empty cells are
considered to be further research.
Appendix

Lemma For each i, nij , j = 1, 2, . . . , b are iid and take values from a finite set of
distinct positive integers Ni. Then

p1 lim
n→∞

(1/b)

b∑
j=1

n−1ij = E[n−1ij ] i = 1, 2, . . . , a (11)

where the symbol p1 denotes convergency with probability one.

Proof Let νimin and νimax be the minimal and maximal elements of a finite set
Ni. Then ν

−1
imax ≤ n−1i1 ≤ ν−1

imin. It follows that E[n
−1
i1 ] is finite. From strong law

of large numbers we get Eq. (11) (see [10], p.27).
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