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Abstract
In the present paper, we consider the generalized equation 0 ∈ f (x)+g(x)+F (x), where f : X → Y is Fréchet
differentiable on a neighborhood Ω of a point x̄ in X , g : X → Y is differentiable at point x̄ and linear as well
as F is a set-valued mapping with closed graph acting between two Banach spaces X and Y . We study the
above generalized equation with the help of extended Newton-type method, introduced in [ M. Z. Khaton, M.
H. Rashid, M. I. Hossain, Journal of Mathematics Research, 10(4) (2018), 1–18.], under the weaker conditions
than that are used in Khaton et al. (2018). Indeed, semilocal and local convergence analysis are provided for
this method under the conditions that the Fréchet derivative of f and the first-order divided difference of g are
Hölder continuous on Ω. In particular, we show this method converges superlinearly and these results extend
and improve the corresponding results in Argyros (2008) and Khaton et al. (2018).
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1. Introduction
Robinson [27, 28] introduced generalized equation problems as an universal instrument for describing, analyzing and solving
various type of problems in a framed way. This form of generalized equation problems have been discussed widely. Typical
examples are systems of inequalities, systems of nonlinear equations, variational inequality problems, linear and nonlinear
complementary problems and etc; see for examples [7, 19, 20]. Let Ω be a subset of X . Let f be a Fréchet differentiable
function from Ω to Y and ∇ f be its Fréchet derivative, g be a differentiable at x̄ but it may not be differentiable in a
neighborhood Ω of x̄ and linear function from Ω to Y , [x,y;g] denote the first-order divided difference at the points x and y and
F be a set-valued mapping from X to Y with closed graph. To find a point x in Ω, we consider the generalized equation of
the following form:

0 ∈ f (x)+g(x)+F (x). (1.1)

Pietrus and Alexis [1] associated the following Newton-like method for solving (1.1):

0 ∈ f (xk)+g(xk)+(∇ f (xk)+ [2xk+1− xk,xk;g])(xk+1− xk)

+F (xk+1), for k = 0,1, . . . (1.2)
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and proved that the sequence generated by the process (1.2) converges superlinearlly. To solve the generalized equation (1.1),
Rashid et al. [25] established the local convergence results using the weaker conditions than Alexis and Pietrus [1] for the
method (1.2) and expanded the sequels by fixing a gap in the proof of [1, Theorem 1].

Furthermore, Hilout et al. [12] associated the following sequence for solving (1.1): x0 and x1 are two starting points
yk = αxk +(1−α)xk−1; here α ∈ (0,1)
0 ∈ f (xk)+ [yk,xk; f ](xk+1− xk)+F (xk+1)

and they proved the superlinear convergence of the sequence generated by this method under the assumption that f is only
differentiable and continuous at a solution x∗.

For approximating the solution of (1.1), Argyros and Hilout [4] considered the following Newton-like method :

0 ∈ f (xk)+g(xk)+
(
∇ f (xk)+ [xk+1,xk;g]

)
(xk+1− xk)+F (xk+1), for k = 0,1, . . . , (1.3)

and under Lipschitz continuity property of ∇ f , they presented the quadratic convergence of the method (1.3).
Moreover, when F = {0}, Argyros [2] investigated on local as well as semilocal convergence analysis for two-point

Newton-like methods for solving (1.1) in a Banach space setting under very general Lipschitz type conditions. An extensive
study on these issues has been investigated by Rashid [3, 19, 20, 21] and other researchers when g = 0. In the case when F is
either zero mapping or nonzero mapping, a large number Newton-like iterative methods have been studied and we will not
mention here all in detail.

Suppose that x ∈X and N (x) is the subset of X which is defined as

N (x) =
{

d ∈X : 0 ∈ f (x)+g(x)+(∇ f (x)+ [x+d,x;g])d +F (x+d)
}
.

Under some suitable conditions, Khaton et al. [18] introduced and studied extended Newton-type method, when ∇ f is
continuous and Lipschitz continuous as well as g admits first-order divided difference satisfying Lipschitzian condition. Inspired
by the work of Argyros in [4], Khaton et al. [18] considered the following “so called” extended extended Newton-type method
(see Algorithm 1):

Algorithm 1 (Extended Newton-type Method)
Step 0. Pick η ∈ [1,∞), x0 ∈X , and put k := 0.
Step 1. If 0 ∈N (xk), then stop; otherwise, go to the next Step 2.
Step 2. If 0 /∈N (xk), choose dk ∈N (xk) such that

‖dk‖ ≤ η dist (0,N (xk)).

Step 3. Set xk+1 := xk +dk.
Step 4. Replace k by k+1 and go to Step 1.

In contrast Algorithm 1 with the known results, we have the following conclusions: When F = 0 and g = 0, it is obvious
that Algorithm 1 is turned into the known Gauss-Newton method which is a famous iterative technique for solving nonlinear
least squares (model fitting) problems and has been studied widely; see for example [8, 9, 13, 15, 29, 30]. Within the case
when g = 0, several kind of methods for solving (1.1) were established by Rashid [22, 23, 24] and also obtained their local and
semilocal convergence.

The objective of this article is to continue to study the semilocal and local convergence for the extended Newton-type
method under the weaker conditions than [18], that is, ∇ f is (L,q)-Hölder continuous and g admits the first-order divided
difference satisfying q-Hölderian condition. The Lipschitz-like property of set-valued mappings which is the main tool of
this study whose concepts can be found in Aubin [5] in the context of non smooth analysis and it has been studied by a huge
number of mathematicians [1, 4, 10, 12, 17]. The main result of this study is semilocal analysis for the extended Newton-type
method, that is, based on the information around the initial point, the main results are the convergence criteria, which provide
few suitable conditions ensuring the convergence to a solution of any sequence generated by Algorithm 1. Consequently, the
results of the local convergence for the extended Newton-type method are attained.

This article is organized as follows: Some necessary notations, notions, preliminary results and a fixed-point theorem are
recalled in Section 2 that are used in the subsequent sections. In Section 3, we consider the extended Newton-type method
defined by Algorithm 1 to approximate the solution of (1.1). Using the concept of Lipschitz-like property for the set-valued



Extended Newton-type Method for Generalized Equations with Hölderian Assumptions — 3/13

mapping, in this section we also establish the existence and superlinear convergence of the sequence generated by Algorithm 1
in both semilocal and local cases. At the end, we give a summary of the main results and present a comparison of this study
with other known results.

2. Notations and Preliminaries
In this section, we evoke some notations and take out some results that will be helpful to verify our main results. Let X and Y
be two complex or real Banach spaces. Also, let p ∈X and B(p,α) = {u ∈X : ‖u− p‖ ≤ α} denote the closed ball centered
at p with radius α > 0, and F be a set-valued mapping with closed graph. The domain of F , can be stated as

domF := {p ∈X : F (p) 6= /0}.

Let q ∈ Y . Then the inverse of F , denoted by F−1, is defined by

F−1(q) := {p ∈X : q ∈F (p)}.

The graph of F , denoted by gphF , is defined by

gphF := {(p,q) ∈X ×Y : q ∈F (p)}.

Let M and N be two subsets of a non empty set X and p be a point in X . The distance from a point p to a set M is defined by

dist(p,M) := inf{‖p−m‖ : m ∈M}.

In addition, the excess e from the set M to the set N is defined by

e(N,M) := sup{dist(n,M) : n ∈ N}.

The set L (X ,Y ) is the space of linear operators from X to Y and all the norms are denoted by ‖ · ‖.

Definition 2.1. Suppose f ∈L (X ,Y ). Then f is said to have the first order divided difference on the points x1 and y1 in X
(x1 6= y1) if the following properties hold:

(a) [x1,y1; f ](y1− x1) = g(y1)−g(x1) for x1 6= y1;

(b) if f is Fréchet differentiable at x1 ∈X , then [x1,x1; f ] = ∇ f (x1).

Now we mention the notions of pseudo-Lipschitz and Lipchitz-like set-valued mappings, which was established by Aubin
and have been studied widely. To see the more details about this topic, the reader could refer to [5, 6, 26].

Definition 2.2. Let Ψ : Y ⇒ X be a set-valued mapping and (q̄, p̄) ∈ gphΨ with α p̄, αq̄ and ν are positive constants. Then
Ψ is said to be

(a) Lipchitz-like on B(q̄,αq̄) relative to B(p̄,α p̄) with constant ν if the following inequality holds:

e(Ψ(q1)∩B(p̄,αp̄),Ψ(q2))≤ ν‖q1−q2‖ for every q1,q2 ∈ B(q̄,αq̄).

(b) pseudo-Lipschitz around (q̄, p̄) if there exist constants α ′p̄ > 0,α ′q̄ > 0 and ν ′ > 0 such that Ψ is Lipchitz-like on B(q̄,α ′q̄)
relative to B(p̄,α ′p̄) with constant ν ′.

The following lemma is due to Rashid et al. [26, Lemma 2.1], which is effective and the proof of this lemma is similar to
that of [16, Theorem 1.49(i)].

Lemma 2.3. Let Ψ : Y ⇒ X be a set-valued mapping and (ȳ, x̄) ∈ gph Ψ. Also suppose that Ψ is Lipschitz-like on B(ȳ,rȳ)
which is related to B(x̄,rx̄) with constant µ . Then

dist (x,Ψ(y))≤ ν dist(y,Ψ−1(x)),

for each x ∈ B(x̄,rx̄) and y ∈ B(ȳ, rȳ
3 ) satisfying dist(y,Ψ−1(x))≤

rȳ

3
, is hold.
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Dontchev and Hager [11] proved Banach fixed point theorem, which has been employing the standard iterative concept
for contracting mapping. To prove the existence of the sequence generated by Algorithm 1, the following lemma will play an
important rule in this study.

Lemma 2.4. Let Φ : X ⇒ X be a set-valued mapping. Let x∗ ∈X , 0 < λ < 1 and r > 0 be such that

dist(x∗,Φ(x∗))< r(1−λ ) (2.1)

and

e(Φ(x1)∩B(x∗,r),Φ(x2))≤ λ‖x1− x2‖ for all x1,x2 ∈ B(x∗,r). (2.2)

Then Φ has a fixed point in B(x∗,r), that is, there exists x ∈ B(x∗,r) such that x ∈ Φ(x). Furthermore, if Φ is single-valued,
then there exists a fixed point x ∈ B(x∗,r) such that x = Φ(x).

The preceding lemma is a generalization of a fixed point theorem and it has been taken from [14], where in the second
assertion the excess e is updated by Hausdorff distance.

3. Convergence Analysis
Let f : Ω ⊆X → Y be a Fréchet differentiable function on a neighborhood Ω of x̄ with its derivative denoted by ∇ f ,
g : Ω→ Y which is linear and differentiable at x̄ and let F : X ⇒ Y be a set-valued mapping with closed graph. This section
is dedicated to prove the existence of a sequence generated by the extended Newton-type method, represented by Algorithm 1
and show the superlinear convergence of the sequence generated by this method.

Let x ∈X . Then for each x ∈X , we get

g(x)+ [x+d,x;g]d = g(x)− [x+d,x;g](x− (x+d))

= g(x)− (g(x)−g(x+d)) = g(x+d). (3.1)

Define a set-valued mapping Gx by

Gx(·) := f (x)+g(·)+∇ f (x)(·− x)+F (·).

It holds, for the formation of N (x) and (3.1), that

N (x) =
{

d ∈X : 0 ∈ Gx(x+d)
}
.

In addition, for any z ∈X and y ∈ Y , we get the following identity:

z ∈ G−1
x (y) if and only if y ∈ f (x)+g(z)+∇ f (x)(z− x)+F (z). (3.2)

Particularly, let (x̄, ȳ) ∈ gphGx̄. Then, the definition of closed graphness of Gx̄ signifies that

x̄ ∈ G−1
x̄ (ȳ). (3.3)

The following outcome constitutes the equivalence between G−1
x̄ and ( f +g+F )−1. This result is due to [18].

Lemma 3.1. Let (x̄, ȳ) ∈ gph ( f +g+F ). Suppose that ∇ f is continuous around x̄. Assume that g admits first-order divided
difference. Then the followings are equivalent:

(i) The mapping ( f +g+F )−1 is pseudo-Lipschitz at (ȳ, x̄);

(ii) The mapping G−1
x̄ is pseudo-Lipschitz at (ȳ, x̄).

For our suitability, let rx̄ > 0, rȳ > 0 and B(x̄,rx̄)⊆Ω∩domF . Suppose that ∇ f is (L,q)-Hölder continuous on B(x̄,rx̄),
that is , there exists L > 0 such that

‖∇ f (x)−∇ f (x′)‖ ≤ L‖x− x′‖q,q ∈ (0,1], for any x,x′ ∈ B(x̄,rx̄), (3.4)

g admits a first-order divided difference satisfying q-Hölder condition, that is, there exists ν > 0 such that, for all x,y,v,w ∈
B(x̄,rx̄) (x 6= y,v 6= w),

‖[x,y;g]− [v,w;g]‖ ≤ ν(‖x− v‖q +‖y−w‖q), (3.5)
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and the mapping G−1
x̄ is Lipschitz-like on B(ȳ,rȳ) relative to B(x̄,rx̄) with constant M, that is,

e(G−1
x̄ (y1)∩B(x̄,rx̄),G

−1
x̄ (y2))≤M‖y1− y2‖ for any y1, y2 ∈ B(ȳ,rȳ). (3.6)

Further, for ȳ, the closed graph property of Gx̄ implies that f +g+F is continuous at x̄ i.e.

lim
x→x̄

dist
(
ȳ, f (x)+g(x)+F (x)

)
= 0 (3.7)

is hold.
Let ε0 > 0 and write

r̄ := min
{

rȳ−2ε0rx̄,
rx̄(1−Mε0)

4M

}
. (3.8)

Then

r̄ > 0 if and only if ε0 < min
{ rȳ

2rx̄
,

1
M

}
. (3.9)

The following lemma is taken from [26, Lemma 3.1] and it plays a crucial role for convergence analysis of the extended
Newton-type method.

Lemma 3.2. Assume that G−1
x̄ is Lipschitz-like on B(ȳ,rȳ) relative to B(x̄,rx̄) with constant M and that

sup
x′,x′′∈B(x̄, rx̄

2 )

‖∇ f (x′)−∇ f (x′′)‖ ≤ ε0 < min
{ rȳ

2rx̄
,

1
M

}
. (3.10)

Let x ∈ B(x̄, rx̄
2 ) and ε0 be defined by (3.9). Suppose that ∇ f is continuous on B(x̄, rx̄

2 ). Let r̄ be defined by (3.8) such that (3.10)
is true. Then G−1

x is Lipschitz-like on B(ȳ, r̄) relative to B(x̄, rx̄
2 ) with constant M

1−Mε0
, that is,

e(G−1
x (y1)∩B(x̄,

rx̄

2
),G−1

x (y2))≤
M

1−Mε0
‖y1− y2‖ for any y1, y2 ∈ B(ȳ, r̄).

For our convenience, we would like to introduce some notations. First we define the mapping Jx : X →Y , for each x ∈X ,
by

Jx(·) := f (x̄)+g(·)+∇ f (x̄)(·− x̄)− f (x)−g(x)−
(
∇ f (x)+ [·,x;g]

)
(·− x)

and the set-valued mapping Φx : X ⇒ X by

Φx(·) := G−1
x̄ [Jx(·)]. (3.11)

Then for any x′, x′′ ∈X , we have

‖Jx(x′)− Jx(x′′)‖ = ‖g(x′)−g(x′′)− [x′,x;g](x′− x)+ [x′′,x;g](x′′− x)

+(∇ f (x̄)−∇ f (x))(x′− x′′)‖. (3.12)

Furthermore, let q ∈ (0,1] and define

r̂ := min
{

rȳ−2Lrq+1
x̄ ,

rx̄(1−MLrq
x̄)

4M

}
. (3.13)

Then

r̂ > 0⇔ L < min
{ rȳ

2rq+1
x̄

,
1

Mrq
x̄

}
. (3.14)
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3.1 Superlinear Convergence
In this section we will show that the sequence generated by Algorithm 1 converges superlinearly if ∇ f is (L,q)-Hölderian and g
admits first-order divided difference satisfying (ν ,q)-Hölder condition. In fact, the following theorem provides some sufficient
conditions ensuring the convergence of the extended Newton-type method with initial point x0.

Theorem 3.3. Let η > 1 and q ∈ (0,1]. Assume that G−1
x̄ is Lipschitz-like on B(ȳ,rȳ) relative to B(x̄,rx̄) with constant M and

that ∇ f is (L,q)- Hölder continuous on B(x̄, rx̄
2 ) and g admits first-order divided difference that satisfies (3.5). Let r̂ be defined

by (3.13) so that (3.14) is satisfied. Let ν > 0, δ > 0 be such that

(a) δ ≤min
{ rx̄

4
, (q+5)r̂, 1,

( 3(q+1)rȳ

[L(q+2)+2ν(q+1)](6.2q +1)

) 1
(q+1)

}
,

(b) (2qM+1)[L(q+2)+2ν(q+1)]
(

η(q+1)δ q +41−qrq
x̄

)
≤ (q+1),

(c) ‖ȳ‖< [L(q+2)+2ν(q+1)]
3(q+1)

δ q+1.

Suppose that

lim
x→x̄

dist(ȳ, f (x)+g(x)+F (x)) = 0. (3.15)

Then there exist some δ̂ > 0 such that any sequence {xn} generated by Algorithm 1 with initial point x0 in B(x̄, δ̂ ) converges
superlinearly to a solution x∗ of (1.1).

Proof. According to the assumption (a) 4δ ≤ rx̄ and η > 1, by assumption (b) we can write the inequality as follows

(2qM+1)(q+5)[L(q+2)+2ν(q+1)]δ q = (2qM+1)[L(q+2)+2ν(q+1)]
(
(q+1)δ q +4δ

q
)

≤ (2qM+1)[L(q+2)+2ν(q+1)]
(

η(q+1)δ q +4δ
q
)

≤ (2qM+1)[L(q+2)+2ν(q+1)]
(

η(q+1)δ q +41−qrq
x̄

)
≤ (q+1). (3.16)

Furthermore, using assumption (a) 4δ ≤ rx̄ and assumption(b) we can reduce the inequality as follows

ηM[L(q+2)+2ν(q+1)]δ q < η2qM[L(q+2)+2ν(q+1)](q+5)δ q

≤ (2qM+1)[L(q+2)+2ν(q+1)](η(q+1)δ q +4δ
q)−2qML4δ

q

≤ (2qM+1)[L(q+2)+2ν(q+1)](η(q+1)δ q +41−qrq
x̄)−2qML41−qrq

x̄

≤ (q+1)−2qML41−qrq
x̄ .

Since q ∈ (0,1] then, we get 2qML41−qrq
x̄ ≥ (q+1)MLrq

x̄ . Now using (3.16) in the above equation and it becomes

ηM[L(q+2)+2ν(q+1)]δ q ≤ (q+1)− (q+1)MLrq
x̄ . (3.17)

Putting

s :=
ηM[L(q+2)+2ν(q+1)]δ q

(q+1)(1−MLrq
x̄)

.

Then, from (3.17) we have that

s≤ 1. (3.18)

Pick 0 < δ̂ ≤ δ such that, for each x0 ∈ B(x̄, δ̂ ),

dist(0, f (x0)+g(x0)+F(x0))≤
[L(q+2)+2ν(q+1)]

3(q+1)
δ

q+1. (3.19)
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Note that since (3.15) holds and assumption (c) is true, we assume that such δ̂ exists, which satisfies (3.19). Let x0 ∈ B(x̄, δ̂ ).
By induction we will show that Algorithm 1 generates at least one sequence and such sequence {xn} generated by Algorithm 1
satisfies the following statements:

‖xn− x̄‖ ≤ 2δ (3.20)

and ‖dn‖ ≤ s
(1

3

)(q+1)n

δ , (3.21)

hold for every n = 0,1,2, ....
Define

rx :=
(q+5)M
4(q+1)

(
[L(q+2)+2ν(q+1)]‖x− x̄‖(q+1)+(q+1)‖ȳ‖

)
for each x ∈ X . (3.22)

From (3.16) we get

2qM[L(q+2)+2ν(q+1)]δ q ≤ q+1
q+5

. (3.23)

and [L(q+2)+2ν(q+1)]δ q ≤ q+1
q+5

. (3.24)

Hence by the combination of δ ≤ (q+5)r̂ in assumption (a) and inequality (3.24), we get

‖ȳ‖ <
[L(q+2)+2ν(q+1)]δ q+1

3(q+1)

≤ (q+1)
(q+1) · (q+5)

· (q+5)r̂
3

=
r̂
3
. (3.25)

Utilizing (3.23) and assumption (c) together with (3.24), we get from (3.22) that

rx ≤ (q+5)M
4(q+1)

(
[L(q+2)+2ν(q+1)]‖x̄− x0‖q+1 +

[L(q+2)+2ν(q+1)]
3

δ
q+1
)

<
(q+5)M
12(q+1)

(
3[L(q+2)+2ν(q+1)](2δ )q+1 +2q[L(q+2)+2ν(q+1)]δ q+1

)
=

(q+5)M
12(q+1)

[L(q+2)+2ν(q+1)]δ q+1(3.2.2q +2q)

=
(q+5)(6 ·2q +2q)M

12(q+1)
[L(q+2)+2ν(q+1)]δ q+1

=
(q+5)7 ·2qM

12(q+1)
[L(q+2)+2ν(q+1)]δ p+1

=
7(q+5)

12(q+1)
· (q+1)
(q+5)

δ <
7

12
δ < 2δ for each x ∈ B(x̄,2δ ). (3.26)

Observe that (3.20) is trivial for n = 0.
At first, we need to prove N (x0) 6= /0 to show that (3.21) holds for n = 0. The nonemptyness of N (x0) will ensure us to

deduce the existence of the point x1. We will apply Lemma 2.4 to the map Φx0 with η0 = x̄ for completing this. We have to

show that Lemma 2.4 holds with r := rx0 and λ :=
q+1
q+5

satisfying both assertions (2.1) and (2.2). We get from (3.3) that

x̄ ∈ G−1
x̄ (ȳ)∩B(x̄,2δ ). According to the definition of the excess e and (3.11), defined as the mapping of Φx0 , we have that

dist(x̄,Φx0(x̄)) ≤ e(G−1
x̄ (ȳ)∩B(x̄,rx0),Φx0(x̄))

≤ e(G−1
x̄ (ȳ)∩B(x̄,2δ ),Φx0(x̄))

≤ e(G−1
x̄ (ȳ)∩B(x̄,rx̄),G

−1
x̄ [Jx0(x̄)]). (3.27)
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Since ∇ f is (L,q)-Hölder continuous and g admits first-order divided difference satisfies Hölderian condition, for every
x ∈ B(x̄,2δ )⊆ B(x̄, rx̄

2 ), we have that

‖Jx0(x)− ȳ‖ = ‖ f (x̄)+g(x)+∇ f (x̄)(x− x̄)− f (x0)−g(x0)

−(∇ f (x0)+ [x,x0;g])(x− x0)− ȳ‖
≤ ‖ f (x̄)− f (x0)−∇ f (x0)(x̄− x0)‖+‖

(
∇ f (x0)−∇ f (x̄)

)
(x̄− x)‖

+‖g(x)−g(x0)− [x,x0;g](x− x0)‖+‖ȳ‖

≤ L
q+1

‖x̄− x0‖q+1 +‖[x0,x;g]− [x,x0;g]‖‖x− x0‖+

L‖x0− x̄‖q‖x̄− x‖+‖ȳ‖ (3.28)

≤ L
q+1

‖x̄− x0‖q+1 +ν
(
‖x0− x‖q +‖x− x0‖q)‖x− x0‖+

L‖x0− x̄‖q‖x̄− x‖+‖ȳ‖

≤ L
q+1

(2δ )q+1 +L(2δ )q ·2δ +ν
(
(2δ )q +(2δ )q) ·2δ +‖ȳ‖

≤ L(q+2)+2ν(q+1)
q+1

δ
q+1 ·2q+1 +‖ȳ‖. (3.29)

Now through the assumptions (a)
[L(q+2)+2ν(q+1)](6 ·2q +1)

3(q+1)
δ q+1 ≤ rȳ and (c), (3.28) gives that

‖Jx0(x)− ȳ‖ ≤ [L(q+2)+2ν(q+1)]
q+1

2q+1
δ

q+1 +
[L(q+2)+2ν(q+1)]

3(q+1)
δ

q+1

=
[L(q+2)+2ν(q+1)](3.2.2q +1)

3(q+1)
δ

q+1

<
[L(q+2)+2ν(q+1)](6 ·2q +1)

3(q+1)
δ

q+1

≤ rȳ. (3.30)

This means that Jx0(x) ∈ B(ȳ,rȳ). Moreover, let x = x̄ in (3.28). Then it is easily proved that

Jx0(x̄) ∈ B(ȳ,rȳ)

and

‖Jx0(x̄)− ȳ‖ ≤ [L+2ν(q+1)]
q+1

‖x̄− x0‖q+1 +‖ȳ‖. (3.31)

By using the Lipschitz-like property of G−1
x̄ and (3.31) in (3.27), we obtain

dist(x̄,Φx0(x̄)) ≤ M‖ȳ− Jx0(x̄)‖

≤ M[L(q+2)+2ν(q+1)]
q+1

‖x̄− x0‖q+1 +M‖ȳ‖

≤ 4
q+5

rx0 =
(

1− q+1
q+5

)
rx0

= (1−λ )r;

i,e,. the statement (2.1) of Lemma 2.4 is hold.

Now, it is evident to show that statement (2.2) of Lemma 2.4 holds. Let x′,x′′ ∈ B(x̄,rx0). Then we have that x′,x′′ ∈
B(x̄,rx0)⊆ B(x̄,2δ )⊆ B(x̄,rx̄) by (3.26) and Jx0(x

′), Jx0(x
′′) ∈ B(ȳ,rȳ) by (3.30). This together with Lipschitz-like property of

G−1
x̄ follows as

e(Φx0(x
′)∩B(x̄,rx0),Φx0(x

′′)) ≤ e(Φx0(x
′)∩B(x̄,2δ ),Φx0(x

′′))

≤ e(G−1
x̄ [Jx0(x

′)]∩B(x̄,rx̄),G
−1
x̄ [Jx0(x

′′)])

≤ M‖Jx0(x
′)− Jx0(x

′′)‖. (3.32)
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Now, using the definition of first order divided difference of g in (3.12) we obtain

‖Jx0(x
′)− Jx0(x

′′)‖ = ‖g(x′)−g(x′′)− [x′,x0;g](x′− x0)+ [x′′,x0;g](x′′− x0)

+(∇ f (x̄)−∇ f (x0))(x′− x′′)‖
≤ ‖g(x′)−g(x′′)+ [x′,x0;g](x0− x′)− [x′′,x0;g](x0− x′′)‖

+‖∇ f (x̄)−∇ f (x0)‖‖x′− x′′‖
≤ ‖g(x′)−g(x′′)+g(x0)−g(x′)−g(x0)+g(x′′)

+‖∇ f (x̄)−∇ f (x0)‖‖x′− x′′‖
≤ ‖∇ f (x̄)−∇ f (x0)‖‖x′− x′′‖ ≤ L‖x̄− x0‖q‖x′− x′′‖
≤ L.2q

δ
q‖x′− x′′‖. (3.33)

It follows from (3.32), that

e(Φx0(x
′)∩B(x̄,rx0),Φx0(x

′′)) ≤ ML.2q
δ

q‖x′− x′′‖.

Since ν ,M,L > 0 and q ∈ (0,1], then we can write 2qMLδ q < 2qM[L(q+2)+2ν(q+1)]δ p and hence the above inequality
becomes

e(Φx0(x
′)∩B(x̄,rx0),Φx0(x

′′)) ≤ 2qM[L(q+2)+2ν(q+1)]δ p‖x′− x′′‖

≤ q+1
q+5

‖x′− x′′‖

= λ‖x′− x′′‖.

Thus the statement (2.2) of Lemma 2.4 is also hold. Hence, both statements (2.1) and (2.2) of Lemma 2.4 are accomplished.
Finally, it shows that Lemma 2.4 is adequate to presume the position of a point x̂1 ∈ B(x̄,rx0) such that x̂1 ∈ Φx0(x̂1) which
implies that 0 ∈ f (x0)+g(x0)+(∇ f (x0)+ [x̂1,x0;g])(x̂1− x0)+F (x̂1) and hence N (x0) 6= /0.

Next, it is sufficient to prove that (3.21) holds for n = 0. As ∇ f is (L,q)- Hölder continuous on B(x̄, rx̄
2 ), we have for all

x′,x′′ ∈ B(x̄, rx̄
2 ), that

Lrq
x̄ ≥ sup

x′,x′′∈B(x̄, rx̄
2 )

‖∇ f (x′)−∇ f (x′′)‖. (3.34)

Observe the assumption (a) that r̂ > 0. Therefore, from (3.13) and (3.34)imply that Lemma 3.2 is satisfied with ε0 := Lrp
x̄ .

According to our assumption G−1
x̄ is Lipschitz-like on B(ȳ,rȳ) relative to B(x̄,rx̄). Then, it implies from Lemma 3.2 that, G−1

x0

is Lipschitz-like on B(ȳ, r̂) relative to B(x̄, rx̄
2 ) with constant M

1−MLrq
x̄

as x0 ∈ B(x̄, δ̂ )⊆ B(x̄,δ )⊆ B(x̄, rx̄
2 ) by assumption (a) and

the choice of δ̂ . On the other hand, (3.19) follows as

dist(0,Gx0(x0)) = dist(0, f (x0)+g(x0)+F (x0))

≤ r̂
3
.

Inequality (3.25) shows that 0 ∈ B(ȳ, r̂
3 ) and observe before that x0 ∈ B(x̄, rx̄

2 ). Hence using Lemma 2.3, we get

dist(x0,G
−1
x0

(0)) ≤ M
1−MLrq

x̄
dist(0,Gx0(x0))

=
M

1−MLrq
x̄

dist(0, f (x0)+g(x0)+F (x0)).

This together with (3.1), gives

dist(0,N (x0)) = dist(x0,G
−1
x0

(0))

≤ M
1−MLrq

x̄
dist(0, f (x0)+g(x0)+F (x0)). (3.35)
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According to Algorithm 1 and using (3.35), (3.19) and then assumption (a), we have

‖d0‖ ≤ η dist(0,N (x0))

≤ ηM
(1−MLrq

x̄)
dist(0, f (x0)+g(x0)+F (x0))

≤ ηM[L(q+2)+2ν(q+1)]δ q+1

3(q+1)(1−MLrq
x̄)

= s
(1

3

)
δ .

This means that

‖x1− x0‖= ‖d0‖ ≤ s
(1

3

)
δ ,

and therefore, (3.21) is true for n = 0.

Suppose x1,x2, . . . ,xk are formed and (3.20), and (3.21) hold for n = 0,1,2, . . . ,k−1. We show that there exists xk+1 such that
(3.20) and (3.21) also hold for n = k. Since (3.20) and (3.21) are true for each n≤ k−1, we have the following inequality:

‖xk− x̄‖ ≤
k−1

∑
i=0
‖di‖+‖x0− x̄‖ ≤ sδ

k−1

∑
i=0

(1
3

)(q+1)i

+δ ≤ 2δ .

This implies (3.20) holds for n = k. Now with all the same argument as we did for the case when n = 0, we can prove
that N (xk) 6= /0, that is, the point xk+1 exists and G−1

xk
is Lipschitz-like on B(ȳ, r̂) relative to B(x̄, rx̄

2 ) with constant M
1−MLrq

x̄
.

Therefore, we have that

‖xk+1− xk‖ = ‖dk‖ ≤ η dist(0,N (xk))

≤ η dist(xk,G
−1
xk

(0))

=
ηM

1−MLrq
x̄

dist(0, f (xk)+g(xk)+F (xk))

≤ ηM
1−MLrq

x̄
‖ f (xk)+g(xk)− f (xk−1)−g(xk−1)

−
(
∇ f (xk−1)+ [xk,xk−1;g]

)
(xk− xk−1)‖

≤ ηM
1−MLrq

x̄

(
‖ f (xk)− f (xk−1)−∇ f (xk−1)(xk− xk−1)‖

+‖g(xk)−g(xk−1)− [xk,xk−1;g](xk− xk−1)‖
)

≤ ηM
(q+1)(1−MLrq

x̄)

(
L‖xk− xk−1‖q+1 +

(q+1)‖[xk−1,xk;g]− [xk,xk−1;g]‖‖xk− xk−1‖
)

≤ ηM
(q+1)(1−MLrq

x̄)

(
L‖xk− xk−1‖q+1 +

(q+1)ν(‖xk−1− xk‖q +‖xk− xk−1‖q)‖xk− xk−1‖
)

≤ ηM[L+2ν(q+1)]
(q+1)(1−MLrq

x̄)
‖dk−1‖q+1

≤ ηM[L(q+2)+2ν(q+1)]
(q+1)(1−MLrq

x̄)
‖dk−1‖q+1

≤ ηM[L(q+2)+2ν(q+1)]
(q+1)(1−MLrq

x̄)

(
s
(1

3
)(q+1)k−1

δ
)q+1

≤ s
(1

3
)(q+1)k

δ .

This implies that (3.21) holds for n = k and therefore the proof of the theorem is complete.

Consider the special case when x̄ is a solution of (1.1) (that is, ȳ = 0) in Theorem 3.3. We have the following corollary,
which describes the local superlinear convergence result for the extended Newton-type method.
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Corollary 3.4. Suppose that x̄ is a solution of (1.1). Let q ∈ (0,1] and η > 1 and let G−1
x̄ be pseudo-Lipschitz around (0, x̄).

Let r̃ > o and suppose that ∇ f is (L,q)-Hölder continuous on B(x̄, r̃) and g admits first-order divided difference satisfying
Hölderian condition on B(x̄, r̃). Assume that

lim
x→x̄

dist(0,Gx(x)) = 0. (3.36)

Then, with an initial point x0, there exists some δ̂ > 0 such that any sequence {xn} generated by Algorithm 1 converges
superlinearly to a solution x∗ of (1.1).

Proof. Suppose that G−1
x̄ is pseudo-Lipschitz around (0, x̄). Then by definition of pseudo-Lipschitz continuty, there exist

constants M, r̃ and r0 such that G−1
x̄ is Lipschitz-like on B(ȳ,r0) relative to B(x̄, r̃) with constant M. Then, for each 0 < rx̄ ≤ r̃,

we have that

e(G−1
x̄ (y1)∩B(x̄,rx̄),G

−1
x̄ (y2)≤M‖y1− y2‖ for any y1, y2 ∈ B(0,r0),

that is, G−1
x̄ is Lipschitz-like on B(ȳ,r0) relative to B(x̄,rx̄) with constant M. Let L ∈ (0,1], q ∈ (0,1] and ν > 0. By the

(L,q)-Hölder continuty of ∇ f we can select rx̄ ∈ (0, r̃) such that
rx̄

2
≤ r̃, r0−2Lrq+1

x̄ > 0, MLrq
x̄ < 1 and

Lrq
x̄ ≥ sup

x′,x′′∈B(x̄, rx̄
2 )

‖∇ f (x′)−∇ f (x′′)‖.

Then, define

r̂ := min
{

r0−2Lrq+1
x̄ ,

rx̄(1−MLrq
x̄)

4M

}
> 0.

and

min
{ rx̄

4
, (q+5)r̂,

3(q+1)r0

[L(q+2)+2ν(q+1)](6.2q +1)
}
> 0

Thus, we can choose 0 < δ ≤ 1 such that

δ ≤min
{ rx̄

4
, (q+5)r̂,

3(q+1)r0

[L(q+2)+2ν(q+1)](6.2q +1)
}

and

(2qM+1)[L(q+2)+2ν(q+1)]
(

η(q+1)δ q +41−qrq
x̄

)
≤ (q+1).

Now it is routine to check that conditions (a)-(c) of Theorem 3.3 are satisfied. Thus we can apply Theorem 3.3 to complete the
proof.

4. Conclusion
The semilocal and local convergence results are presented for the extended Newton-type method when η > 1, G−1

x̄ is Lipschitz-
like, ∇ f satisfies Hölderian condition and g admits first-order divided difference satisfying the Hölder condition defined by
(3.5). In particular, we have presented semilocally superlinear convergence analysis for extended Newton-type method in
Theorem 3.3 while the locally superlinear convergence analysis for extended Newton-type method is presented in Corollary 3.4.
This result extends and improves the corresponding ones [4, 18].

Moreover, according to our main results, we have the following conclusions:

(i) If we set q = 0 in Theorem 3.3, it gives the semilocal linear convergence result for the extended Newton-type method and
this result coincides with the result presented in [18, Theorem 3.1]. On the other hand, if we put q = 0 in Corollary 3.4,
this result provides locally linear convergence result which is similar with the result presented in [18, Corollary 3.1].

(ii) If we put q = 1 in Theorem 3.3, it yields the semilocal quadratic convergence result for the extened Newton-type method
and this result is analogous to the outcome presented in [18, Theorem 3.2]. Furthermore, if we give q = 1 in Corollary 3.4,
it gives the local quadratic convergence result for this method which is resembling the work presented in [18, Corollary
3.2].
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