AJIT-e: Online Academic Journal of Information Technology

2015 Winter/Kis — Cilt/Vol: 6 - Sayi/Num: 18

DOI: 10.5824/1309-1581.2015.1.001.x
http://www.ajit-e.org/?menu=pages&p=details_of_article&id=136

Fractal Analysis of Stock Exchange Indices in Turkey

A. S. HACINLIYAN, Prof. Dr., Yeditepe University, ahacinliyan@yeditepe.edu.tr, Department of Physics and

Department of Information Systems and Technologies, Yeditepe University, Atasehir, Istanbul, Turkey

Engin KANDIRAN, Bogazici University, engin.kandiran@boun.edu.tr, Department of Information Systems and
Technologies, Yeditepe University, Atasehir, Istanbul, Turkey and The Institute for Graduate Studies in Sciences

and Engineering, Bogazici University, istanbul Turkey.

ABSTRACT  The purpose of this study is to investigate possible fractal behavior in Istanbul Stock Exchange
(BIST) indices. In particular evidence of chaotic and fractal behavior will be presented. To be
able to analyze monofractality of given indices we are going to use Higuchi and Katz methods.
In addition to this, we analyze the chaotic behavior of the investigated indices using Rescaled
Range Analysis(R/S) and Detrended Fluctuation Analysis (DFA).
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OZET Bu ¢alismanin amact Istanbul Menkul Kiymetler Borsast endekslerindeki muhtemel fractal
davramslarr  arastirmaktir.Ozellikle, — kaotik  ve fraktal  davramiglarin  kanitlar
verilecektir.Verilen endekslerin monofraktal davramislarini analiz etmek icin Higuchi ve Katz
metodlarint  kullanacagiz. Buna ek olarak,arastirilan endekslerin  kaotik davramiglarim
incelemek amaciyla Déniistiiriilmiis Genislik (R/S) ve Arndirlmis Dalgalanma (DFA)
Analiz’leri kullanilmugtir.

Anahtar Kelimeler: Fraktal Geometri, Higuchi, Katz, Arindirilmis Dalgalanma Analizi, Déniistiiriilmiis Genislik

Analizi.

Introduction
Humanity has been looking for finding symmetry and smoothness in nature throughout its
existence. In general, scientists search for patterns and call the events which do not conform

to their conceptual framework as anomalies since they do not match their conceptual
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framework based on symmetry. However, most of the entities in our physical world do not

obey Euclidean geometry at all.

Through the application of Euclidean geometry to a drawing, we can only create an
approximation of a tree. In the real world, trees consist of a network of branches which are
very similar to the overall shape of a tree but each branch is different. (Edgar E.Peters, 1994).
Furthermore, there are other branches on branches on smaller scales (successive generation
of branches). At individual branch level, each branch has a different size but share certain
common properties. This "self-similar" property is one features of Fractal geometry. That
means actual structure of tree includes both local randomness and deterministic point of

view.

Another example could be fluid heated from below. Near the source, the fluid is heated by
the way of convection, then the fluid is going to reach an equilibrium state in which
maximum entropy occurs. During a heating period, all fluid molecules move independently.
When the temperature passes a critical level, molecules which move independently start to
behave coherently, that means heat flows by means of convection. In that case, the
convection result is known by scientists but direction of roles of molecules is unknown. That

means local randomness and global determinism coexist together.

Stock markets are also driven both by microeconomic considerations such as profit levels of
firms and macroeconomic considerations such as employment and manufacturing data. The
former can be compared to the individual molecules, the latter to the mass action of the

molecules.

In that sense, the science of chaos theory and fractals are the places that chance (randomness)
and necessity (determinism) seem together. Economic systems also exhibits complicated
dynamic(chaotic) evidences by large amplitude and periodic fluctuation in economic
indices, for instance, stock market prices, currency prices ,GDP(gross domestic product)
(Edgar E.Peters,1994).Classical approach to economic anabolisms is the Newtonian one
which economic fluctuations evaluated as linear perturbations near the equilibrium.
However, large fluctuations in economic indicators shows that economic systems are driven
from the equilibrium points such that nonlinearity takes roles and gives the clues of chaotic

complex systems.

In economics stock markets show dynamic structures that can be examined through use of
chaos theory and fractal analysis. The stock market consists of investors from different
investment horizons. A stable market is one where all investors can make trade with each
other, each confronted with the same risk level as others, adjusted for their investment
horizon. However, forecasting using linear approaches to stock market values do not give

reasonable explanations.
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Theory

Monofractal Methods

Rescaled Range Analysis

Rescaled range analysis (R/S) was developed by Harold E. Hurst when he was working on

the Nile River Dam Project in Egypt .After his work the technique was applied to financial

time series by Mandelbrot and van Ness.

R/S analysis is a simple process which is highly data-intensive. To be able to understand R/S

analysis, it is reasonable to follow the given sequential steps one by one below:

Start with a time series of length of N. Then convert this time series to a time series
with length N'=(N-1) with the following logarithmic ratios:

V! = log ()
Then divide this generated time series into M number of adjacent sub-periods of
length m and they satisfy the following condition M*m=N. Then give a name to each
sub-period I. where a=1, 2, 3... M. Each element in sub-period I. can be named as Nka
where k=1,2,....m. For every I. of length m the average value ea is defined as:

m
1 !
eq = E Nk,a'
i=1

The time series of accumulated departures X from the mean value ea for eachIais

k
Xk,a = Z(Ni’,a — €q).
i=1

The range is defined for each sub-period I. as:
R;, = max(Xk‘a) — min(Xk,a)
k=123, .., m
The standard deviation for each sub-period I. can be calculated by:

1 ’
Slaza (Nk,a_ea)z'

Each range can be normalized by dividing it by S; . Then the rescaled range for each
is equal to R;,/S;, .we had adjacent M sub-periods of length m. Then, the average R/S
value of length m is:

1

M
(R/S)m = 72D (Ri,/S1,).
a=1

The length m is increased to the next higher value such that (N-1)/m is an integer
value. We use values of m that includes start and final points of the time series and
steps given above repeated until m=(N-1)/2.Then we can apply least square

regression on log(m) vs. log (2) as:
m

R
log(S—m) =logc + H * logm.
m
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Note that R/S is the ratio of two different measures of dispersion, range and standard
deviation. By these steps we calculate H, the Hurst Exponent. The Hurst exponent
has a very close relationship to the fractal dimension. The following linear relation
holds:

D=2-H
where D is fractal dimension. Using the Hurst exponent we can classify time series
into types and gain some insight into their dynamics.
A value H in the range 0.5-1.0 indicates a time series with long-term positive
autocorrelation, meaning both that a high value in the series will probably be
followed by another high value and that the values a long time into the future will
also tend to be high. A value in the range 0<H<0.5 indicates a time series with long-
term switching between high and low values in adjacent pairs, meaning that a single
high value will probably be followed by a low value and that the value after that will
tend to be high, with this tendency to switch between high and low values lasting a
long time into the future. A value of H=0.5 can indicate a completely uncorrelated
series, but in fact it is the value applicable to series for which the autocorrelations at
small time lags can be positive or negative but where the absolute values of the
autocorrelations quickly decay exponentially to zero.

Detrended Fluctuation Analysis (DFA)

The detrended fluctuation analysis (DFA) algorithm is a scaling analysis method
used to estimate long-range temporal correlations of power-law form (Peng et al.,
1995) (Hardstone et al., 2012). Its advantage is the fact that extreme values are less
likely to affect the result. DFA can be applied by the following four steps:

* Firstly, we need to determine the "profile" of the time series X; of length N( where
i=1..N) (Y (i)):

k
Y =) (X~ %)
_ i=1
where X is mean of the time series.

* In the second, step profile Y (i) is divided into non-overlapping segments of length 1
where number of segments is integer N; = inl:(%). At the end of this procedure the
short part of the time series would remain. To overcome this problem, the second
step can be repeated from the end of the time series. That's why,2N; segments are
generated.

* In the third step for each segments local trend is calculated using least-square fitting.

1 l
F2(t) = 7Zi:l[y((v —Dt+i) - p, O]

For each segment v, v = 1,2, ..., N; and p, (i) is a fitting polynomials for each segment.

* The final step is finding the average over all segments and taking the square root to
get the fluctuation function F (1):
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F() =

If the data are long-range power-law correlated, F(l) increases, for large values of 1,
as a power-law:

F(l) ~1¢
where «, the fluctuation exponent can be obtained by finding the slope of the
logarithmic graph of F(I) vs. L.

Power (Fourier) Spectral Analysis

The purpose of spectral analysis is to study the properties of an economic variable
over the frequency spectrum, ie. in the frequency-domain. In particular, the
estimation of the population spectrum or the so-called power spectrum (also known
as the energy-density spectrum) aims at describing how the variance of the variable
under investigation can be split into a variety of frequency components.
(Masset,2008). A deterministic signal has few Fourier components, signals coming
from a non-deterministic process has many frequencies.

In Fourier analysis, the given time series (or signal) is demonstrated as a family of sinusoidal
functions. In Fourier transform, the time series X(t) converted to "frequency-domain"
representation X(t).The set of values X(t) for each frequency f is called as spectrum of (t) .
Ricardo Gutierrez-Osuna).

The Fourier Spectrum can be calculated mathematically as follows:

[ee]

X(f) = fX(t)eZ"iftdt

—00

Katz Method for analyzing fractal behavior

Katz’s method calculates the fractal dimension of a time series as follows:

* The sum of (Euclidean) distances between the successive points of the time series are
calculated as:
d= max(distance(l, i)).
* The fractal dimension of the time series is given as:
D logg L.
logod

The fractal dimension compares the actual number of units that compose a curve
with the minimum number of units required to reproduce a pattern of the same
spatial extent. Fractal dimensions computed in this fashion depend upon the
measurement units used. If the units are different, then so are these dimensions.

http://www.ajit-e.org/?menu=pages&p=details_of_article&id=136
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Katz’s approach solves this problem by creating a general unit or yardstick: the
average step or average distance a between successive points.

L
logyo a

D=
logio
If we define n as the number of steps in the curve then n = L/a and the fractal

dimension D is:

_ logign
"~ logion +logod/L”

Higuchi Method

This is a slightly different method for determining fractal dimension. We have the time series
X(i) with a length N where i =1... N and the data is taken at regular intervals.

We create the new time series from the given time seriesX(i):

N—m

X(m), X(m + k), X(m + 2Kk), ..., X(m + [ ] .k)

In this representation m shows the initial time and k indicates the time interval and [ ]
represents greatest integer function. By this way, we will have constructed k sets of time
series. We can calculate the length of the curve of the constructed time series:

N-m

Lm(9) = (T X [X(m +ik) — X(m + (i — DK)|) ﬁjﬁk}/k.
.

The average length of the curve < L(k) > is defined as:

k
<L) >=

~ =

L (k)
1

m=
If the curve has a fractal behavior:
<L(k) > ~k™P

We can get the fractal dimension D from the slope of the best fitted line corresponding to the
plot of log (< L(k) >) against log (k).
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Observational Results and Analysis for Stock Market Indices

We use the following data sets for our experimental evaluations: BIST 100 index, BIST 50
Index, BIST 30 Index, Dow-Jones 30 Industrial Index. All the data sets are between the dates
2005-2015 each of which consist of 2516 data points.

In Table 1, the result of fractal dimension calculations according to Katz's and Higuchi's
methods are presented. In addition to this, corresponding Hurst exponents are given. When
we compared to this result for Indian stock exchange results presented in (Sammader et
al.,2013), we obtain very close results for both Turkish Stock Market Indexes and the Dow-
Jones Index. Since the fractal dimensions are between1<D<2, it can be said that self-similar
property of fractal geometry is observed. It is one of the supporting results that Efficient
Market Hypothesis does not represent the realistic view of financial time series. When the
Hurst exponents calculated by (R/S) method are taken into account all the Hurst exponents
are bigger than 0.5.That means this time series are persistent or trend reinforcing series
rather than a series where information from the previous step dominates over information
from parallel processes, however, all processors scale in similar ways. In other words, long
memory structures exist for this time series. Since this time series are persistent, they
presents fractional Brownian motion, or biased random walk. However, since the Hurst
exponents are not much bigger than 0.5 it can be said that there will be a noise in the given
the series due to possible seasonal fluctuations (economic, social or political crisis).

Data Set Higuchi Method Katz Method Hurst Exponent
BIST 100 1.4647 1.6886 0.5951

BIST 50 1.4694 1.7075 0.6368

BIST 30 1.4694 1.7075 0.6368

Dow Jones 30 1.5064 1.7586 0.6386
Industrial

Table 1: Fractal dimensions and Hurst Exponents

In Figure 1, the graphical representation of the (R/S) analysis is given. In this graph, it can be
seen that there is breakdown after the first 1200 days of observation. That means there would
be two different time scales. However, the slope of Turkish Stock Markets increasing after

the breakdown, while the slope of Dow-Jones Index decreasing which is very similar to the
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result presented in (Cakar, Aybar, Hacinliyan, Kusbeyzi, 2010).
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Figure 1: Rescaled Range Analysis

The Detrended Fluctuation Analysis results of given indices, Figure 2, shows identical
behavior in terms of fluctuation. However, in this analysis two different time scales observed
in (R/S) cannot be seen. It is probable that a short term nonstationarity present in the original
data has been smoothed out because of the detrending. Therefore, DFA is not a suitable tool
to understand the existence of multiple time scales or regimes in this sense, if these trends
are due to possible nonstationarity.
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Figure 2 : Detrended Fluctuation Analysis

In Figure 3, power spectrum of BIST 100 data set versus frequency is plotted in logarithmic
scale. The best fit line is 1/f1678 (this exponent estimated from f=5 to f=267). This relation
which is close to 1/f? implies the Brownian motion as indicated by Hurst analysis.
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Figure 3: Power Spectrum Analysis of BIST 100
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The behavior of the mutual information analysis (Figure 4) shows that when all sets of
indexes are very close to each other and they have almost the same delay time of 5 days (a

week).
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Figure 4: Mutual Information

After determining delay times, embedding dimensions can be determined. To get a
meaningful value for the embedding dimension, false nearest neighbors” method offer a
good estimate. After finding delay time for all data sets, the fraction of false nearest
neighbors are calculated. In Figure 5  the fraction of false nearest neighbors versus
embedding dimension are plotted. All regions embedding dimension graphs” are stabilizing
at more than 4 dimensions, implying that at least a two dimensional model is needed.
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Figure 5: False Nearest Neighborhood

The Lyapunov exponents are invariants of the dynamics. All the slopes in Figure 6 are
calculated. For BIST 100, Lyapunov exponent is 0.291683, for BIST 50 is 0.292167, for BIST 30
is 0.295938 and for Dow-Jones 30 Industrial is 0.26603. As a conclusion a positive Lyapunov
exponent is indicated from studied indices.Since, all Lyapunov exponents are positive , they
are not stable fixed points . Consequently, they do not indicate random noise. However, they
are positive and this shows that this time series is chaotic .

T
BIST100 ——
BISTS0 ——

logarithm of stretching factor

-8 1 1 1 1
0 10 20 30 40 50

number of iteration

Figure 6: Maximum Lyapunov Exponent
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Conclusion

All of the stock market data show Fractal Brownian motion trends, meaning that there is a
close correlation between each successive step accompanied with positive indicators of
chaos. The time period of approximately one week is indicated by three different
observations, namely the stabilization of the false nearest neighbors at approximately five
periods, Lyapunov exponents around 0.25 indicating a prediction horizon of 3-4 days and
disappearance of the two components indicated by Hurst analysis upon detrending. The
positive indicators of chaotic behavior are compatible for the findings concerning parallel
research in the Indian, Tel Aviv stock markets, dollar and Euro prices and gold prices.
((Sammader et al., 2013), (A. S. Hacinliyan et al., 2010), (A. S. Hacinliyan et al., 2013), (Alan, L.
Kugbeyzi Aybar and O.O Aybar, Hacinliyan,2013).
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