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ON THE STABILITY ANALYSIS OF THE TIME-FRACTIONAL
VARIABLE ORDER KLEIN-GORDON EQUATION AND SOME

NUMERICAL SIMULATIONS

SİNAN DENİZ

Abstract. In this paper, the Klein - Gordon equation is generalized using the
concept of the variational order derivative. We try to construct the Crank-
Nicholson scheme for numerical solutions of the modified Klein- Gordon equa-
tion. Stability analysis of the Crank-Nicholson scheme is examined and ana-
lyzed to prove the proposed method is stable for solving the time-fractional
variable order Klein- Gordon equation. Numerical examples are also given for
illustration.

1. Introduction

In recent years, fractional calculus and especially fractional differential equations
(FDEs) have been extensively used for many different fields of mathematical physics
such as relaxation processes,control theory of dynamical systems, viscoelasticity,
diffusion and so on [1—5]. The main reason why they are so important is that a
realistic modeling of many physical phenomenon having dependence not only at
the time instant, but also the previous time history can be successfully achieved
by using fractional derivatives. Besides, quite a number of different methods have
been enhanced to analyze many different types of fractional differential equations
for showing the importance of the fractional calculus [6—11]. On the other hand,
stability analysis of fractional differential equations has attracted much attention
over the past decade. Atangana has analyzed the stability of numerical solutions for
many different types of FDEs such as groundwater flow equation [12], Schrödinger
equation [13] and telegraph equation [14]. In [15], Zhang et. al. have examined
the stability of FDEs, including linear FDEs, nonlinear FDEs and the FDEs with
time-delay.
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As it is well known, partial differential equations are encountered frequently in
many fields of applied physics [16—23]. One of them is Klein - Gordon equation
which models many problems in quantum mechanics, condensed matter physics,
etc. A Josephson junction, the motion of rigid pendula attached to a stretched
wire can be described by sine Klein-Gordon equation and a non-local version of
them are properly modeled by the fractional version of them [24]. In [25], Sweilam
et al. has constructed a new and effective numerical scheme, namely weighted
average nonstandard finite difference method, for analyzing the time variable-order
fractional of nonlinear Klein-Gordon equation and so on.
In this paper, we investigate the stability of the linear time-fractional variable

order Klein-Gordon equation:

D
α(x,t)
tt y(x, t)− yxx(x, t) + µy(x, t) = 0, 1 < α(x, t) ≤ 2, µ > 0, (1)

with the conditions

y(x, 0) = δ(x), yt(x, 0) = 0; 0 ≤ t ≤ T, 0 ≤ x ≤ L (2)

where δ(x) is a real-valued continuous function.

2. Some basic information for the variable order fractional
derivative

In this section, we give some basic definitions that we need for our analysis.
For much more details about fractional analysis we refer to the books and papers
in [26—28].
Definition 2.1. Let 0 < α(x, t) < 1 for all (x, t) ∈ [a, b] and f ∈ L1[a, b]. Then

aI
α(.,.)
t (f(t)) =

t∫
a

1

Γ [α(t, x)]
(t− x)

α(t,x)−1
f(x)dx (t > a) (3)

and

bI
α(.,.)
t (f(t)) =

b∫
t

1

Γ [α(t, x)]
(x− t)α(x,t)−1f(x)dx (t > b) (4)

are called the left and right Riemann-Liouville integral of variable fractional order
α(., .) respectively.
Definition 2.2. Let aI1−α(.,.)t f ∈ C[a, b] and 0 < α(x, t) < 1 for all (x, t) ∈ [a, b].
Then

aD
α(.,.)
t (f(t)) =

d

dt

t∫
a

1

Γ [1− α(t, x)]
(t− x)

−α(t,x)
f(x)dx (t > a) (5)
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and

bD
α(.,.)
t (f(t)) =

d

dt

b∫
t

1

Γ [1− α(x, t)]
(x− t)−α(t,x)f(x)dx (t < b) (6)

are called the left and right Riemann-Liouville derivative of variable fractional order
α(., .) respectively.
Definition 2.3. Let f be a real valued differentiable function and α(x) ∈ C(0, 1].
Then the Caputo variable order differential operator is given by

D
α(x)
0 (f(x)) =

1

Γ [1− α(x)]

x∫
0

df(t)

dt
(x− t)−α(t)dt. (7)

3. Crank-Nicholson Scheme for numerical solutions

The numbers of the works for numerical solutions of different types of fractional
differential equations have begun to increase considerably in recent years. A few of
the most important ones of them can be found in [13,14,29—31].
In this section, we construct the Crank-Nicholson scheme for the fractional Klein-

Gordon equation by taking xl = lh, tj = jτ ,Mh = L,Nτ = T, 0 ≤ l ≤ M, 0 ≤ j ≤
N whereM,N are grid points, h, τ are step size and time respectively. Under these
assumptions, Crank-Nicholson scheme can be presented by giving the following
discretizations:

y =
1

2
(y(xl, tj+1) + y(xl, tj)) (8)

yxx =
∂2y

∂x2
=

1

2

(
y(xl+1, tj+1)− 2y(xl, tj+1) + y(xl−1, tj+1)

h2

)
+

1

2

(
y(xl+1, tj)− 2y(xl, tj) + y(xl−1, tj)

h2

)
+O(h2)

(9)

D
α(x,t)
tt y =

∂αl
j+1

y(xl, tj+1)

∂tαlj+1
=

τ−α
j+1

Γ(2− αj+1l )
×

 y(xl, tj+1)− y(xl, tj)+

j∑
n=1

(y(xl, tj−n+1)− y(xl, tj−n))
(

(n+ 1)(1−α
j+1
l ) − n(1−αj+1l )

)
 (10)

Substituting (8), (9),(10) into the fractional Klein-Gordon equation (1) yields
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τ−α
j+1

Γ(2− αj+1l )


y(xl, tj+1)− y(xl, tj)+

j∑
n=1

(y(xl, tj−n+1)− y(xl, tj−n))
(

(n+ 1)(1−α
j+1
l ) − n(1−α

j+1
l )

)


−


1

2

(
y(xl+1, tj+1)− 2y(xl, tj+1) + y(xl−1, tj+1)

h2

)
+

1

2

(
y(xl+1, tj)− 2y(xl, tj) + y(xl−1, tj)

h2

)


+µ

(
1

2
(y(xl, tj+1) + y(xl, tj))

)
= 0

(11)
Multiplying both sides of (11) with

Γ(2− αj+1l )

τ−αj+1
= τα

j+1

Γ(2− αj+1l )

we get

y(xl, tj+1)− y(xl, tj)+

j∑
n=1

(y(xl, tj−n+1)− y(xl, tj−n))
(

(n+ 1)(1−α
j+1
l ) − n(1−α

j+1
l )

)

−τ
αj+1Γ(2− αj+1l )

2h2

 y(xl+1, tj+1)− 2y(xl, tj+1) + y(xl−1, tj+1)+

y(xl+1, tj)− 2y(xl, tj) + y(xl−1, tj)



+
µτα

j+1

Γ(2− αj+1l )

2
(y(xl, tj+1) + y(xl, tj)) = 0

(12)

and by making the following change of variables

y(xl, tj) = yjl , Rj+1l =
τα

j+1

Γ(2− αj+1l )

2h2
, Sj+1l =

µτα
j+1

Γ(2− αj+1l )

2

cl,j+1n = (n+ 1)(1−α
j+1
l ) − n(1−αj+1l ), dl,j+1n = cl,j+1n−1 − cl,j+1n

(13)

Eq. (11) becomes

Rj+1l

(
yj+1l+1 − 2yj+1l + yj+1l−1 + yjl+1 − 2yjl + yjl−1

)
−

j∑
n=1

[
yj−n+1l − yj−nl

]
cl,j+1n + Sj+1l

(
yj+1l + yjl

)
+ yj+1l − yjl = 0.

(14)
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4. Stability analysis for Crank-Nicholson scheme

Stability analysis is a very important concept in solving many types of linear or
nonlinear differential equations [32—34]. In order to examine the stability analysis
of the Crank-Nicholson scheme defined above, we now take that εjl = yjl −Y

j
l where

Y jl is the approximate numerical solution at the point (xl, tj) and

εj =
[
εj1, ε

j
2, ..., ε

j
M−1

]T
(15)

with

εj(x) =

{
εjl if xl − h/2 < x ≤ xl + h/2, l = 1, 2, ...,M − 1

0 if L− h/2 < x ≤ L
(16)

for l = 1, 2, ...,M − 1, j = 1, 2, ..., N . Thereby, one can use the Fourier series to
state the function εj(x) as:

εj(x) =

m=∞∑
m=−∞

δm(m)exp [2iπmj/L] (17)

where

δj(x) =
1

L

L∫
0

ρjexp [2iπmx/L] dx. (18)

Before going through a detailed analysis, we give the following remarks which will
be necessary for stability conditions.
Remarks 4.1. One can set up the following properties for all l = 1, 2, ..,M − 1.

i. Rj+1l , Sj+1l > 0

ii. 0 ≤ dl,jn ≤ d
l,j
n−1

iii. 0 ≤ cl,jn ≤ 1,

j−1∑
n=0

cl,j+1n+1 = 1− dl,j+1n .

(19)

Using the previous notations, one can present the error done while applying the
Crank-Nicholson scheme to solve the given fractional Klein-Gordon equation (1)
as:

Rj+1l

(
εj+1l+1 − 2εj+1l + εj+1l−1 + εjl+1 − 2εjl + εjl−1

)
−

j∑
n=1

[
εj−n+1l − εj−nl

]
cl,j+1n + Sj+1l

(
εj+1l + εjl

)
+ εj+1l − εjl .

(20)

In order to show the equation (20) more briefly, the term εjl can be represented in
the delta-exponential form as:

εjl = δjexp [iθlj] . (21)
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where θ represents a real spatial wave number. Using (21) for j = 0, we get

R1l
(
ε1l+1 − 2ε1l + ε1l−1 + ε0l+1 − 2ε0l + ε0l−1

)
+

0∑
n=1

[
ε1−nl − ε−nl

]
cl,1n + S1l

(
ε1l + εl

)
+ ε1l − ε0l = 0.

(22)

Eq. (22) can be arranged as:

δ1 = δ0
1 + 4R1l sin2

(
hθ
2

)
− 2S1l sin2

(
hθ
2

)
1 + 4R1l sin2

(
hθ
2

)
+ 2S1l sin2

(
hθ
2

) (23)

and one can similarly obtain

δj+1 =

δj
(
1 + 4Rk+1l sin2

(
hθ
2

)
− 2Sk+1l sin2

(
hθ
2

))
−
j−1∑
n=0

d1,j+1n+1 δj−n + d1,j+1j δ0

1 + 4Rk+1l sin2
(
hθ
2

)
+ 2Sk+1l sin2

(
hθ
2

)
(24)

for j = 0, 1, 2, .... We must now prove that the inequality |δj | ≤ |δ0| holds for all
j = 1, 2, ... to accomplish the proof of the stability of numerical solutions.It is easy
to see that the inequality is true for j = 1, because

|δ1| = |δ0|
∣∣∣∣∣1 + 4R1l sin2

(
hθ
2

)
− 2S1l sin2

(
hθ
2

)
1 + 4R1l sin2

(
hθ
2

)
+ 2S1l sin2

(
hθ
2

) ∣∣∣∣∣ ≤
|δ0|

∣∣∣∣∣1 + 4R1l sin2
(
hθ
2

)
+ 2S1l sin2

(
hθ
2

)
1 + 4R1l sin2

(
hθ
2

)
+ 2S1l sin2

(
hθ
2

) ∣∣∣∣∣ = |δ0|.
(25)

On the basis of induction, we now suppose that

|δj+1| =

∣∣∣∣∣∣∣∣∣∣∣
δj
(
1 + 4Rk+1l sin2

(
hθ
2

)
− 2Sk+1l sin2

(
hθ
2

))
−
j−1∑
n=0

d1,j+1n+1 δj−n + d1,j+1j δ0

1 + 4Rk+1l sin2
(
hθ
2

)
+ 2Sk+1l sin2

(
hθ
2

)
∣∣∣∣∣∣∣∣∣∣∣

(26)
for m = 2, 3, ...j. Implementing the triangle inequality, the equality (26) turns into

|δj+1| ≤
|δj |

(∣∣1 + 4Rk+1l sin2
(
hθ
2

)
− 2Sk+1l sin2

(
hθ
2

)∣∣)+

j−1∑
n=0

|d1,j+1n+1 ||δj−n|+ |d
1,j+1
j δ0|∣∣1 + 4Rk+1l sin2

(
hθ
2

)
+ 2Sk+1l sin2

(
hθ
2

)∣∣ .

(27)
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Using the induction hypothesis, we get

|δj+1| ≤ |δ0|


∣∣1 + 4Rk+1l sin2

(
hθ
2

)
− 2Sk+1l sin2

(
hθ
2

)∣∣+

j−1∑
n=0

|d1,j+1n+1 |+ |d
1,j+1
j |∣∣1 + 4Rk+1l sin2

(
hθ
2

)
+ 2Sk+1l sin2

(
hθ
2

)∣∣
 .
(28)

By taking advantage of Remark 1, we finally obtain the inequality

|δj+1| ≤ |δ0|
[∣∣1 + 4Rk+1l sin2

(
hθ
2

)
− 2Sk+1l sin2

(
hθ
2

)∣∣∣∣1 + 4Rk+1l sin2
(
hθ
2

)
+ 2Sk+1l sin2

(
hθ
2

)∣∣
]

≤ |δ0|
[∣∣1 + 4Rk+1l sin2

(
hθ
2

)
+ 2Sk+1l sin2

(
hθ
2

)∣∣∣∣1 + 4Rk+1l sin2
(
hθ
2

)
+ 2Sk+1l sin2

(
hθ
2

)∣∣
]

= |δ0|

(29)

thus,
|δj+1| ≤ |δ0|,

and the proof is completed.

5. Numerical examples

In this section, we give some numerical simulations for the approximate solution
of the time-fractional variable order Klein-Gordon equation.
Example 1. Consider the problem (1) with µ = 0.9, α(x, t) = 0.04tanh(x3+t)−

sin2(5x4t− 9x2) and δ(x) = 0.08 cos(x3). The error surface figures of approximate
solutions are depicted for different N’s and for h = 0.0002. As can be seen from
the figures 1 and 2, the larger the N , the smaller the error.

Figure 1. The error surface figures for N = 40
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Figure 2. The error surface figures for N = 80

Example 2. As a second example, let us consider the problem (1) with µ = 0.8,
α(x, t) = 2 − sin2(x5t + t7) and δ(x) = x + sec(x0.7). The error surface figures of
approximate solutions are displayed for different N’s and for h = 0.00012. Again,
it is clear from the figures 3 and 4, we have smaller errors for the larger the N .

Figure 3. The error surface figures for N = 80

Example 3. As a final example, let us now consider the problem (1) with
µ = 0.5, α(x, t) = 1 − cos2(x + t3) and δ(x) = sin(x). Figures of the approximate
solutions are sketched for different N’s and for h = 0.0005. A slight difference
between these solutions can be seen from the simulations from Fig. 5 to 8 for
N = 10 to N = 70. In addition to that, the error surface figure of approximate
solution for N = 80 is demonstrated in Figure 9.

6. Results and discussion

We have modified the time-fractional variable order Klein-Gordon equation to
analyze the concept of the variable order derivative. We apply the Crank-Nicholson
method to solve the new modified equation numerically. Stability of this method is
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Figure 4. The error surface figures for N = 85

Figure 5. Numerical solution to problem (1) for N = 10

Figure 6. Numerical solution to problem (1) for N = 30

studied and reached by proving some inequalities. Some numerical examples have
been also given for illustration. It can be concluded that Crank-Nicholson method



990 SİNAN DENİZ

Figure 7. Numerical solution to problem (1) for N = 50

Figure 8. Numerical solution to problem (1) for N = 70

Figure 9. The error surface figures for N = 80

can be safely implemented to solve the time-fractional variable order Klein-Gordon
equation.



TIME-FRACTIONAL VARIABLE ORDER KLEIN-GORDON EQUATION 991

References

[1] Podlubny, I., Fractional differential equations, Academic Press, New York, 1999.
[2] Caputo, M., Linear models of dissipation whose Q is almost frequency independent, part II,

Geophys J. Int., 13(5) (1967), 529-539.
[3] Bildik, N., Deniz, S., Saad, K.M., A comparative study on solving fractional cubic isothermal

auto-catalytic chemical system via new effi cient technique, Chaos, Solitons & Fractals, 132
(2020).

[4] S.G. Samko, Kilbas, A.A., Marichev, O.I., Fractional Integrals and Derivatives Theory and
Applications, Gordon and Breach, New York, 1993.

[5] Atangana, A., On the new fractional derivative and application to nonlinear Fisher’s reaction-
diffusion equation, Applied Mathematics and Computation, 273 (2016), 948-956.

[6] Arikoglu, A., Ibrahim O., Solution of fractional differential equations by using differential
transform method, Chaos, Solitons & Fractals, 34.5 (2007), 1473-1481.

[7] Deniz, S., Semi-analytical analysis of Allen-Cahn model with a new fractional derivative,
Mathematical Methods in the Applied Sciences, , (2020), https://doi.org/10.1002/mma.5892

[8] Kilicman, A., Gupta, V. G., Shrama, B., On the solution of fractional Maxwell equations by
Sumudu transform, Journal of Mathematics Research, 2 (4) (2010), 147.

[9] Bildik, N., Deniz, S., A new fractional analysis on the polluted lakes system, Chaos, Solitons
& Fractals, 122 (2019), 17-24.

[10] Saad, K.M., Deniz, S., Baleanu, D., On the New Fractional Analysis of Nagumo Equation,
International Journal of Biomathematics, 12 (03) (2019), 1950034.

[11] Atangana, A., Aydin S., The time-fractional coupled-Korteweg-de-Vries equations, Abstract
and Applied Analysis. Vol. 2013., Hindawi Publishing Corporation, (2013).

[12] Atangana, A., Botha, J., A generalized groundwater flow equation using the concept of
variable-order derivative." Boundary Value Problems 2013.1 (2013): 53.

[13] Atangana, A., Cloot, A.H., Stability and convergence of the space fractional variable-order
Schrödinger equation, Advances in Diff erence Equations, 2013.1 (2013), 80.

[14] Atangana, A., On the stability and convergence of the time-fractional variable order telegraph
equation, Journal of Computational Physics, 293 (2015), 104-114.

[15] Li, C. P., Zhang, F. R., A survey on the stability of fractional differential equations, The
European Physical Journal-Special Topics, 193.1 (2011): 27-47.

[16] Deniz, S., Semi-analytical investigation of modified Boussinesq-Burger equations, J. BAUN
Inst. Sci. Technol., 22, (1) (January 2020), 327-333.

[17] Bildik, N., Deniz, S., A practical method for analytical evaluation of approximate solutions
of Fisher’s equations, ITM Web of Conferences, 13 (2017), Article Number: 01001.

[18] Bildik, N., Deniz, S., New analytic approximate solutions to the generalized regularized long
wave equations, Bulletin of the Korean Mathematical Society, 55 (3) (May 2018), 749-762.

[19] Bildik, N., Deniz, S., Solving the Burgers’and regularized long wave equations using the new
perturbation iteration technique, Numerical Methods for Partial Diff erential Equations, 34,
(5) (2018), 1489-1501.

[20] Kilicman, A., Eltayeb, H., A note on defining singular integral as distribution and partial
differential equations with convolution term, Mathematical and Computer Modelling, 49 (1)
(2009), 327-336.

[21] Deniz, S., Modification of coupled Drinfelâd-Sokolov-Wilson Equation and approximate so-
lutions by optimal perturbation iteration method, Afyon Kocatepe University Journal of
Science and Engineering, 20 (1) (February 2020), 3540.

[22] Agarwal, P., Deniz, S., Jain, S., Alderremy, A.A., Aly, S., A new analysis of a partial dif-
ferential equation arising in biology and population genetics via semi analytical techniques,
Physica A: Statistical Mechanics and its Applications, Volume 542 (15 March 2020), 122769.



992 SİNAN DENİZ

[23] Bildik, N., Deniz, S., New approximate solutions to the nonlinear Klein-Gordon equations
using perturbation iteration techniques, Discrete and Continuous Dynamical Systems Series-
S, Volume 13 (3) (March 2020), 503-518.

[24] Golmankhaneh, A.K., Baleanu, D., On nonlinear fractional Klein-Gordon equation, Signal
Processing, 91 3 (2011), 446-451.

[25] Sweilam, N.H., Al-Mekhlafi. S.M., Albalawi, A.O., A novel variable-order fractional nonlinear
Klein Gordon model: A numerical approach, Numer Methods Partial Diff erential Eq., 2019,
1 - 13, https://doi.org/10.1002/num.22367

[26] Petras, I., Fractional-order nonlinear systems: modeling, analysis and simulation, Springer
Science & Business Media, 2011.

[27] Bagley, R.L., Torvik, P.J., Fractional calculus-A different approach to the analysis of vis-
coelastically damped structures, AIAA Journal, (ISSN 0001-1452) 21 (1983): 741-748.

[28] Miller, K.S., Ross, B., An Introduction to the Fractional Calculus and Fractional Differential
Equations, Wiley, New York, 1993.

[29] Meerschaert, M.M., Tadjeran, C., Finite difference approximations for fractional advection
dispersion equations, J. Comput. Appl. Math., 172 (2004), 65-77.

[30] Tadjeran, C., Meerschaert, M.M., Scheffl er, H.P., A second order accurate numerical approx-
imation for the fractional diffusion equation, J. Comput. Phys. 213 (2006), 205-213.

[31] Liu, Y., Fang, Z., Li, H., He, S., A mixed finite element method for a time-fractional fourth-
order partial differential equation, Appl. Math. Comput., 243 (2014), 703-717.

[32] Bildik, N., Deniz, S., On the asymptotic stability of some particular differential equations,
International Journal of Applied Physics and Mathematics, 5(4) (2015) , 252-258.

[33] Gopalsamy, K.. Stability and oscillations in delay differential equations of population dynam-
ics, Vol. 74. Springer Science & Business Media, 2013.

[34] Deniz, S., Bildik, N., Sezer, M., A note on stability analysis of Taylor collocation method,
Celal Bayar University Journal of Science, 13 (1) (2017), 149-153.
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