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Abstract 

 

In this study, some results are given concerning the behavior of the solutions for linear 

delay integro-differential equations. These results are obtained by the use of two 

distinct real roots of the corresponding characteristic equation. 
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Birinci mertebeden gecikmeli integro-diferansiyel denklemlerde 

kararlılık 
 

 

Öz 

 

Bu çalışmada, doğrusal gecikmeli integro-diferansiyel denklemler için çözümlerin 

davranışı ile ilgili bazı sonuçlar verilmiştir. Bu sonuçlar, karşılık gelen karakteristik 

denklemin iki ayrı reel kökünün kullanılmasıyla elde edilmiştir.  

 

Anahtar kelimeler: İntegro-diferansiyel denklem, kararlılık, gecikme. 

 

 

1. Introduction 

 

Consider initial value problem for first order delay integro-differential equation   

 

𝑥′(𝑡) = 𝑎𝑥(𝑡) + 𝑏𝑥(𝑡 − 𝜏) + 𝑐 ∫ 𝑥(𝑠)𝑑𝑠
𝑡

𝑡−𝜏
 ,     𝑡 ≥ 0                                                         (1) 

𝑥(𝑡) = 𝜙(𝑡)  ,    − 𝜏 ≤ 𝑡 ≤ 0 ,                                                                                                   (2) 
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where 𝑎, 𝑏 and 𝑐 are real numbers, 𝜏 is a positive real number and 𝜙(𝑡) is a given 

continuous initial function on the interval [−𝜏, 0].     
 

In this paper, our aim is to create a new result for the solution of  equation (1). Similar 

results to the solutions of first order linear delay integro-differential equations were 

obtained by the authors in [1-6]. Our work in this article is mainly motivated by the 

results of Philos and Purnaras in [7-9]. Since the first systematic study was carried out 

by Volterra [6], this type of equations have been investigated in various fields, such as 

mathematical biology and control theory (see, e.g., [10-12]). For the basis theory of 

integral equations, we choose to refer to the books by Burton [13] and Corduneanu [14].  

 

This paper  is concerned with the asymptotic behavior and stability of scalar first order 

linear delay integro-differential equations. A basic asymptotic criterion is established. 

Furthermore, a useful estimate of the solutions and a stability criterion are obtained. The 

results were obtained using a real root of the corresponding characteristic equation. The 

techniques which used to obtain the results are a combination of the methods used in [4, 

7-9, and 15]. 

 

By a  “solution”  of the first order delay integro-differential equation (1), we mean a 

continuous real-valued function 𝑥 defined on the interval ),[ −  and satisfies (1) for all  

𝑡 ≥ 0.  It is known that (see, for example, [10]), for any given initial function  , there 

exists a unique solution of the initial value problem (1)-(2) or, more briefly, the solution 

of (1)-(2). 

 

Together with the first order delay integro-differential equation (1), we associate the 

following equation 

 

 𝜆 = 𝑎 + 𝑏𝑒−𝜆𝜏 + 𝑐 ∫ 𝑒−𝜆𝑠𝑑𝑠
𝜏

0
                                                                                                  (3) 

 
which will be called the characteristic equation of (1). The equation (3) is obtained 

from (1) by looking for solutions in the form 𝑥(𝑡) = 𝑒𝜆𝑡 for 𝑡 ∈ ℝ, where 𝜆 is a root of 

the equation (3). 

 

The paper is organized as follows. A known (see Yeniçerioğlu and Yalçınbaş [15]) 

useful exponential estimate for the solutions of the first order delay integro-differential 

equation (1) is presented in Section 2. Section 3 is devoted to two lemma which 

concerns the real roots of the characteristic equation (3). The main result of the paper 

will be given in Section 4. 

 

 

2.  A known asymptotic result 

 

In this section, we present a useful exponential prediction for the solutions of equation 

(1), which is closely related to the main outcome of this article. This exponential 

estimate for the solutions and also stability criteria have  been obtained by Yeniçerioğlu 

and Yalçınbaş [15].  

 

 

 



BAUN Fen Bil. Enst. Dergisi, 22(2), 660-668, (2020) 

 662 

Theorem 2.1.  Assume that  

 

𝑏𝑒−𝛾𝜏 + 𝑐𝛾−1(1 − 𝑒−𝛾𝜏) > 𝛾 − 𝑎 

 

and 

 

|𝑏|𝜏𝑒−𝛾𝜏 + |𝑐|𝛾−1[𝛾−1(1 − 𝑒−𝛾𝜏) − 𝜏𝑒−𝛾𝜏] ≤ 1. 

 

Let 𝜆0 be real root of the characteristic equation (3)   in the interval (𝛾, ∞). Then, for 

any  𝜙 ∈ 𝐶([−𝜏, 0], ℝ), the solution   of (1)-(2) satisfies 

  

|𝑒−𝜆0𝑡𝑥(𝑡) −
𝐿(𝜙)

1 + 𝛽𝜆0

| ≤ 𝑀(𝜙)𝜇𝜆0
  ,      𝑡 ≥ 0 , 

 

where  

 

𝛽𝜆0
= 𝑏𝜏𝑒−𝜆0𝜏 + 𝑐𝜆0

−1[𝜆0
−1(1 − 𝑒−𝜆0𝜏) − 𝜏𝑒−𝜆0𝜏] , 

 

𝜇𝜆0
= |𝑏|𝜏𝑒−𝜆0𝜏 + |𝑐|𝜆0

−1[𝜆0
−1(1 − 𝑒−𝜆0𝜏) − 𝜏𝑒−𝜆0𝜏] , 

 

𝐿(𝜙) = 𝜙(0) + 𝑏𝑒−𝜆0𝜏 ∫ 𝑒−𝜆0𝑟

0

−𝜏

𝜙(𝑟)𝑑𝑟 + 𝑐 ∫ 𝑒−𝜆0𝜏

𝜏

0

[ ∫ 𝑒−𝜆0𝑟

0

−𝑠

𝜙(𝑟)𝑑𝑟] 𝑑𝑠 

 

and  

 

𝑀(𝜙) = max
−𝜏≤𝑡≤0

|𝑒−𝜆0𝑡𝜙(𝑡) −
𝐿(𝜙)

1 + 𝛽𝜆0

| . 

 

 

3.  Two lemma 

 

Here, we give two lemma about the real roots of the characteristic equation (3). 

 

Lemma 3.1.  Let 0  be real root of (3) and let  𝛽𝜆0
 be defined as in Theorem 2.1. 

Assume that  

 

𝑏 < 0   and   𝑐 ≤ 0  .                                                 (4) 

 

Then 1 + 𝛽𝜆0
> 0  if  (3) has another real root less than 𝜆0 

, and 1 + 𝛽𝜆0
< 0 if  (3) has 

another real root greater than 𝜆0 . 

Proof  of  Lemma 3.1.  Let )(F  denote the characteristic function of (3), i.e., 

 

𝐹(𝜆) = 𝜆 − 𝑎 − 𝑏𝑒−𝜆𝜏 − 𝑐 ∫ 𝑒−𝜆𝑠𝑑𝑠
𝜏

0
                                                                                    (5) 

 

for 𝜆 ∈  ℝ .  We obtain immediately  
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𝐹′(𝜆) = 1 + 𝑏𝜏𝑒−𝜆𝜏 + 𝑐 ∫ 𝑠𝑒−𝜆𝑠𝑑𝑠
𝜏

0
                                                                           (6) 

 

for  𝜆 ∈  ℝ .  Furthermore,  

 

𝐹′′(𝜆) = −𝑏𝜏2𝑒−𝜆𝜏 − 𝑐 ∫ 𝑠2𝑒−𝜆𝑠𝑑𝑠
𝜏

0
                                                                            

 

for 𝜆 ∈  ℝ .   That is, considering (4), we conclude that 

 

𝐹′′(𝜆) > 0   for  𝜆 ∈ ℝ .                                                                                                 (7) 

 

Now, assume that (3) has another real root  𝜆1 with  𝜆1 < 𝜆0 (respectively, 𝜆1 > 𝜆0 ). 

From the definition of the function 𝐹 by (5) it follows that 𝐹(𝜆1) = 𝐹(𝜆0) = 0, and 

consequently Rolle’s Theorem guarantees the existence of a point α with 𝜆1 < 𝛼 < 𝜆0 

(resp., 𝜆1 > 𝛼 > 𝜆0 ) such that 𝐹′(𝛼) = 0. But, (7) implies that 𝐹′ is positive on (α,∞) 

(resp., 𝐹′ is negative on (-∞,α)). Thus we must have 𝐹′(𝜆0) > 0 (resp., 𝐹′(𝜆0) < 0). 
The proof of Lemma 3.1 can be completed, by observing that   
 

 𝐹′(𝜆0) = 1 + 𝛽𝜆0
.
  

 

Lemma 3.2.  Assume that statement (4) is true. Then we have: 

a) In the interval [𝑎 , ∞) , the equation (3) has no roots. 

b) Suppose that  

 −𝑏𝑒−(𝑎− 
1

𝜏
)𝜏 − 𝑐 ∫ 𝑒−(𝑎− 

1

𝜏
)𝑠𝑑𝑠 <

1

𝜏

𝜏

0
 .                                                                       (8) 

Then: 

(i) 𝜆 = 𝑎 −
1

𝜏
  is not a root of  equation (3).   

(ii) In the interval (𝑎 −
1

𝜏
 , 𝑎),   (3) has a unique root. 

(iii) In the interval (−∞ , 𝑎 −
1

𝜏
) ,  (3) has a unique root.  

 

Proof of Lemma 3.2.   

a) Let �̂� be real root of  (3). Using (4), we can immediately see that 

 

𝑏𝑒−�̂�𝜏 + 𝑐 ∫ 𝑒−�̂�𝑠𝑑𝑠
𝜏

0
< 0 .  

 

Hence, from (3) it follows that �̂� − 𝑎 < 0,  i.e.,  �̂� < 𝑎 .  We have thus proved that 

every real root of (3) is always less than 𝑎 .  

 

b) Consider the real-valued function  𝐹  defined by (5). As in the proof of Lemma 3.1, 

we see that (7) holds and consequently  

 

𝐹  is convex on ℝ .                          (9) 

Next, we observe that, as in the proof of Lemma 3.2, assumption (8) means that  

 

𝐹 (𝑎 −
1

𝜏
) = −

1

𝜏
− 𝑏𝑒−(𝑎− 

1

𝜏
)𝜏 − 𝑐 ∫ 𝑒−(𝑎− 

1

𝜏
)𝑠𝑑𝑠

𝜏

0
< −

1

𝜏
+

1

𝜏
= 0.                                  (10) 
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Inequality (10) implies, in particular, that 𝜆 = 𝑎 −
1

𝜏
  is not a root of (3). From (5) we 

obtain  

 

𝐹(𝑎) = −𝑏𝑒−𝑎𝜏 − 𝑐 ∫ 𝑒−𝑎𝑠𝑑𝑠
𝜏

0
 .  

 

So, by using (4), we conclude that   

 
𝐹(𝑎) > 0 .                                              (11) 

 

Furthermore, from (5) we get  

 

𝐹(𝜆) ≥ 𝜆 − 𝑎 − 𝑏𝑒−𝜆𝜏     for  𝜆 ∈ ℝ . 

 

Using this inequality, it is not difficult to show that  

 

𝐹(−∞) = ∞ .               (12) 

 

Using (9), (10) and (11), it follows that in the interval (𝑎 −
1

𝜏
 , 𝑎), the equation (3) has a 

unique real root. Furthermore, (9), (10) and (12) guarantee that equation (3)  has a 

unique real root in the interval (−∞ , 𝑎 −
1

𝜏
). Proof of Lemma 3.2 is complete. 

 

 

4.  The main result 

 

Theorem 4.1. Let 𝜆0 be real root of the equation (3),  and let 𝛽𝜆0
 and  𝐿(𝜙) be defined 

as in Theorem 2.1. Suppose that statement (4) is true.  Also, let  𝜆1 be real root of (3) 

with 𝜆1 ≠ 𝜆0 ( Note that, Lemma 3.1. guarantees that  1 + 𝛽𝜆0
≠ 0  ). Then the solution 

of (1)-(2) satisfies  

 

𝐶1(𝜆0, 𝜆1; 𝜙) ≤ 𝑒−𝜆1𝑡 [𝑒−𝜆0𝑡𝑥(𝑡) −
𝐿(𝜙)

1+𝛽𝜆0

] ≤ 𝐶2(𝜆0, 𝜆1; 𝜙)                                            (13) 

 

for all 𝑡 ≥ 0 , where 

 

𝐶1(𝜆0, 𝜆1; 𝜙) = min
−𝜏≤𝑡≤0

{𝑒−𝜆1𝑡 [𝑒−𝜆0𝑡𝜙(𝑡) −
𝐿(𝜙)

1+𝛽𝜆0

]}                                                         (14) 

 

and  

 

𝐶2(𝜆0, 𝜆1; 𝜙) = max
−𝜏≤𝑡≤0

{𝑒−𝜆1𝑡 [𝑒−𝜆0𝑡𝜙(𝑡) −
𝐿(𝜙)

1+𝛽𝜆0

]}.                                                          (15) 

 
 

Equivalently to the (13) inequalities, we see that it can be written as follows 

 

𝐶1(𝜆0, 𝜆1; 𝜙)𝑒𝜆1𝑡 ≤ [𝑒−𝜆0𝑡𝑥(𝑡) −
𝐿(𝜙)

1 + 𝛽𝜆0

] ≤ 𝐶2(𝜆0, 𝜆1; 𝜙)𝑒𝜆1𝑡    ,     𝑡 ≥ 0 . 
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Hence, if 𝜆1 < 0, then the solution of (1)-(2) satisfies  

 

 lim
𝑡→∞

𝑒−𝜆0𝑡𝑥(𝑡) =
𝐿(𝜙)

1 + 𝛽𝜆0

 . 

 

Also, we observe that (13) is equivalent to  

 

𝑒𝜆0𝑡 [𝐶1(𝜆0, 𝜆1; 𝜙)𝑒𝜆1𝑡 +
𝐿(𝜙)

1 + 𝛽𝜆0

] ≤ 𝑥(𝑡) ≤ 𝑒𝜆0𝑡 [𝐶2(𝜆0, 𝜆1; 𝜙)𝑒𝜆1𝑡 +
𝐿(𝜙)

1 + 𝛽𝜆0

] 

 

for all 𝑡 ≥ 0 .  

 

Proof of Theorem 4.1. Consider an arbitrary initial function 𝜙 ∈ 𝐶([−𝜏, 0], ℝ) and let 𝑥 

be the solution of  (1)−(2). Define 

 

𝑦(𝑡) = 𝑒−𝜆0𝑡𝑥(𝑡)   for   𝑡 ≥ −𝜏 

 

and next, set 

 

 𝑧(𝑡) = 𝑦(𝑡) −
𝐿(𝜙)

1 + 𝛽𝜆0

   for   𝑡 ≥ −𝜏 . 

 

As shown by Yeniçerioğlu and Yalçınbaş [15], the fact that 𝑦 satisfies (1)  for   𝑡 ≥ 0 is 

equivalent to the fact that 𝑤 satisfies 

 

𝑧(𝑡) = −𝑏𝑒−𝜆0𝜏 ∫ 𝑧(𝑠)𝑑𝑠
𝑡

𝑡−𝜏
− 𝑐 ∫ 𝑒−𝜆0𝑠 {∫ 𝑧(𝑢)𝑑𝑢

𝑡

𝑡−𝑠
}

𝜏

0
𝑑𝑠                                           (16) 

    

for   𝑡 ≥ 0. Also, due to the 𝑦 and 𝑧 transformations, the following initial condition is 

obtained using the (2) initial condition. 

 

 𝑧(𝑡) = 𝑒−𝜆0𝑡𝜙(𝑡) −
𝐿(𝜙)

1+𝛽𝜆0

   for   𝑡 ∈ [−𝜏, 0].                                                                    (17) 

 

Now, we define 

 

ℎ(𝑡) = 𝑒(𝜆0−𝜆1) 𝑡𝑧(𝑡)    for  𝑡 ≥ −𝜏 .                                                                           (18) 

 

Because of the 𝑦 and 𝑧 transformations, the following expression is obtained for the 

function ℎ: 

 

ℎ(𝑡) = 𝑒−𝜆1𝑡 [𝑥(𝑡) − 𝑒𝜆0𝑡 𝐿(𝜙)

1+𝛽𝜆0

]     for 𝑡 ≥ −𝜏 .                                                               (19) 

 

Moreover, by using the ℎ function, (16) can be written as equivalent  

 

ℎ(𝑡) = −𝑏𝑒−𝜆0𝜏 ∫ 𝑒(𝜆1−𝜆0) 𝑠ℎ(𝑠 + 𝑡)𝑑𝑠 − 𝑐 ∫ 𝑒−𝜆0𝑠 {∫ 𝑒(𝜆1−𝜆0) 𝑢ℎ(𝑢 + 𝑡)𝑑𝑢
0

−𝑠
}

𝜏

0
𝑑𝑠

0

−𝜏
                                      

                                                                                                                                       (20) 

for   𝑡 ≥ 0 and (17) becomes 
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ℎ(𝑡) = 𝑒−𝜆1𝑡 [𝜙(𝑡) − 𝑒𝜆0𝑡 𝐿(𝜙)

1+𝛽𝜆0

]    for   𝑡 ∈ [−𝜏, 0].                                                         (21) 

 

As solution   𝑥  satisfies the initial condition (2), we can use the function ℎ as well as 

the definitions of 𝐶1(𝜆0, 𝜆1; 𝜙) and 𝐶2(𝜆0, 𝜆1; 𝜙) by (14) and (15), respectively, to see 

that 

 

𝐶1(𝜆0, 𝜆1; 𝜙) = min
−𝜏≤𝑡≤0

ℎ(𝑡)   and   𝐶2(𝜆0, 𝜆1; 𝜙) = max
−𝜏≤𝑡≤0

ℎ(𝑡).                                   (22) 

 

Considering (19) and (22), the double inequality (13) can be written equivalent to  

 

min
−𝜏≤𝑠≤0

ℎ(𝑠) ≤ ℎ(𝑡) ≤ max
−𝜏≤𝑠≤0

ℎ(𝑠) for all 𝑡 ≥ 0.          (23) 

 

We need to prove that (23) inequalities are met. We will use the fact that ℎ satisfies (20) 

for all 𝑡 ≥ 0  to show that (23) is valid. We just need to prove the following inequality  

 

ℎ(𝑡) ≥ min
−𝜏≤𝑠≤0

ℎ(𝑠)     for every 𝑡 ≥ 0 .           (24) 

 

The proof of the inequality 

 

ℎ(𝑡) ≤ max
−𝜏≤𝑠≤0

ℎ(𝑠)    for every 𝑡 ≥ 0  

 

can be obtained in a similar manner and is therefore omitted. We will obtain (24) for the 

rest of the proof. To do this, we are considering an arbitrary real number 𝐴 with 

𝐴 < min
−𝜏≤𝑠≤0

ℎ(𝑠), i.e., with 

 

ℎ(𝑡) > 𝐴   for   −𝜏 ≤ 𝑡 ≤ 0.             (25) 

 

We will show that  

 

ℎ(𝑡) > 𝐴   for all 𝑡 ≥ 0.             (26) 

 

For this purpose, suppose that (26) is not provided. Then, due to (25), there is a point 

𝑡0 > 0  such that 

 

ℎ(𝑡) > 𝐴   for −𝜏 ≤ 𝑡 < 𝑡0 ,   and   ℎ(𝑡0) = 𝐴. 

 

Thus, by using (3), from (20) we obtain 

 

𝐴 = ℎ(𝑡0) 

     = −𝑏𝑒−𝜆0𝜏 ∫ 𝑒(𝜆1−𝜆0) 𝑠ℎ(𝑠 + 𝑡0)𝑑𝑠 − 𝑐 ∫ 𝑒−𝜆0𝑠 { ∫ 𝑒(𝜆1−𝜆0) 𝑢ℎ(𝑢 + 𝑡0)𝑑𝑢

0

−𝑠

}

𝜏

0

𝑑𝑠

0

−𝜏

 

     > 𝐴 (−𝑏𝑒−𝜆0𝜏 ∫ 𝑒(𝜆1−𝜆0)𝑠𝑑𝑠

0

−𝜏

− 𝑐 ∫ 𝑒−𝜆0𝑠 { ∫ 𝑒(𝜆1−𝜆0) 𝑢𝑑𝑢

0

−𝑠

}

𝜏

0

𝑑𝑠 
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     =
𝐴

𝜆1 − 𝜆0
(−𝑏𝑒−𝜆0𝜏[1 − 𝑒−(𝜆1−𝜆0)𝜏] −𝑐 ∫ 𝑒−𝜆0𝑠[1 − 𝑒−(𝜆1−𝜆0)𝑠]

𝜏

0

𝑑𝑠) 

     =
𝐴

𝜆1 − 𝜆0
(−𝑏[𝑒−𝜆0𝜏 − 𝑒−𝜆1𝜏] −𝑐 ∫[𝑒−𝜆0𝑠 − 𝑒−𝜆1𝑠]

𝜏

0

𝑑𝑠) 

     =
𝐴

𝜆1 − 𝜆0
(−𝑏[𝑒−𝜆0𝜏 − 𝑒−𝜆1𝜏] − 𝑐[𝜆1

−1(𝑒−𝜆1𝜏 − 1) − 𝜆0
−1(𝑒−𝜆0𝜏 − 1)] 

      =
𝐴

𝜆1 − 𝜆0
(−𝑏𝑒−𝜆0𝜏 − 𝑐[−𝜆0

−1(𝑒−𝜆0𝜏 − 1)] + 𝑏𝑒−𝜆1𝜏 + 𝑐[−𝜆1
−1(𝑒−𝜆1𝜏 − 1)] ) 

      =
𝐴

𝜆1 − 𝜆0
(−𝑏𝑒−𝜆0𝜏 − 𝑐 ∫ 𝑒−𝜆0𝑠𝑑s

τ

0

+ 𝑏𝑒−𝜆1𝜏 + 𝑐 ∫ 𝑒−𝜆1𝑠𝑑s

τ

0

) 

      =
𝐴

𝜆1 − 𝜆0

(𝑎 − 𝜆0 + 𝜆1 − 𝑎) = 𝐴 . 

 

So we came to a contradiction and therefore (26) is correct. Since (26) is satisfied for all 

real number 𝐴 with 𝐴 < min
−𝜏≤𝑠≤0

ℎ(𝑠), it follows that (24) is always performed. The proof 

of the Theorem 4.1 is complete. 
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