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Abstract

Let I,,, S, and A, be the symmetric inverse semigroup, the symmetric group and the
alternating group on X, ={1,..,n}, for n > 2, respectively. Also let I,, be the
subsemigroup consists of all partial injective maps with height less than or equal to r for
1<r<n-1,andlet SI,,, = 1,,US, and Al,, = I,,,, U A,. A non-idempotent element
whose square is an idempotent is called a quasi-idempotent. In this paper we obtain the rank
and the quasi-idempotent rank of SI,,, (of Al,,). Also we obtain the relative rank and the
relative quasi-idempotent rank of SI,,,. modulo S,, (of Al,,,, modulo A,,).
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Simetrik inverse yarigrubun S,, veya A, 1iceren bazi ideallerinin
ranklari

Oz

n =2 icin I,, S, ve A,, swraswyla, X, = {1, ...,n} iizerindeki simetrik inverse yarigrup,
simetrik grup ve alterne grup olsun. Ayrica, 1 <r <n —1 icin I, ,, yiiksekligi en fazla v
olan tiim kismi bire-bir doniisiimlerden olusan altyarigrup, SI,, = I,,US, ve Al,, =
I, U A, olsun. Karesi idempotent olan fakat kendisi idempotent olmayan bir elemana
quasi-idempotent denir. Bu calismada SI,,, (Al,,) nin rankini elde ettik. Ayrica, modulo
Sn e gore Sl nin (modulo A,, e gore Al,, nin) iliskili rankini ve quasi-iliskili rankin
elde ettik.
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1. Introduction

For n € Z* let X,, = {1, ...,n}. Also let I, be the semigroup of all partial injective maps on
X,, called symmetric inverse semigroup, let S, be the group of all permutations on X,,
called symmetric group, and let A, be the group of all even permutations on X,,, called
alternating group. Clearly, A4, < S, < I,,. For escape from triviality throughout this paper
we consider the case n > 2 unless otherwise stated. It is well known that I, is an inverse
semigroup and that every finite inverse semigroup S is embeddable in I,, for a suitable n €
N. Thus, investigating the structure of I,, is an important research topic in inverse semigroup
theory, like as investigating the structure of symmetric group S,, in group theory.

An element a € I, is called an idempotent if a? = a, and, as introduced in [6] that an
element « € I, is called a quasi-idempotent if « # a? = a*, thatis, « is a non-idempotent
element whose square is an idempotent. We denote the set of all quasi-idempotents in any
subset U of any semigroup by Q(U).

Let S be a semigroup, and let A be a non-empty subset of S. Then the subsemigroup
generated by A is defined as the smallest subsemigroup of S containing A and denoted by
(A). If there exists a non-empty subset A of S such that S = (A), then A is called a
generating set of S. Also, the rank of a semigroup S is defined by

rank(S) = min{ |A|: (A) = S, |A| < «}. 1)
In particular, if there exists a generating set A of S consists of some quasi-idempotents, then
A is called guasi-idempotent generating set of S and the quasi-idempotent rank of S is
defined by

grank (§) = min{ |4]: (4) = S, A € Q(S), |A| < x}. (2)
For a fixed subset U of a semigroup S, if there exists a non-empty subset A of S such that
(AU U) = S,then A is called a relative generating set of S modulo U and the relative rank
of S modulo U is defined by

rerank(S: U) = min{|A|: (AU U) = §, |A| < w}. 3)
Similarly, if there exists a non-empty subset A of Q(S) such that (A U U) = S, then A is
called a relative quasi-idempotent generating set of S modulo U, and relative
quasi-idempotent rank of S modulo U is defined by

reqrank (S: U) = min{|A|: (AU U) =S,4 € Q(S), |A| < »}. 4)

For more studies about various ranks of a semigroup, we refer [2, 5, 9, 10] for example.
The height, fix and shift of a € I,, are defined by
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h(a) = |im(a)| (5)
fix (@) = {x € dom(a):xa = x} and (6)
shift (o) = {x € dom(a): xa # x} = dom(a)\fix (a), @)

respectively. A permutation a € S, with shift (a) = {ay,...,a,} (2 < k < n) is called a
cycle of size k (k —cycle) and denoted by a = (a; ...a) if

aax=a;,; (1<i<k—-1) and ara=a,. (8)

In particular, a 2 —cycle (a,a,) is called a transposition. The identity permutation £ on
X, isexpressible as (a), forany 1 < a < n, and (a) is called a 1-cycle. Also,amap « € I,
with dom(a) = X, \{ax} and shift (a) = {a4, ...,ax_1} (2 < k <n) is called a chain of
size k (k —chain) and denoted by [a, ... a;] if

aa=a;,, 1<i<k-1). 9)

Moreover, amap a € I, with dom(a) = fix (a) = X, \{a,} called a 1-chain and denoted
by [ax]- Two cycles (a;...a;) and (b; ...b;) (and similarly two chains [a, ...a;] and
[b; ...b:], oracycle (a; ...ax)and achain [b, ... b;]), for 1 < k,t < n, are said to be disjoint
if the sets {a4, ..., ax} and {by, ..., b;} are disjoint.

It is well known that every map in I,, can be written as a product of disjoint cycles (1-cycles
are neglected in general) and chains, and every permutation in S,, can be written as a product
of disjoint cycles (1-cycles are neglected in general), more particularly, as a product of
transpositions. Moreover, it is also well known that S, = ((12)), S; = ((13),(23)), S, =
((12), (12 ...n)) for n = 3, and that A; = ((123)) and A,, is generated by two elements:

(12...n) if n is odd
(123) and {(23...71) if n is even (10)
for n > 4. Furthermore,
(1 for n=2
rank(S,) = {2 for n>3 and (11)
(1 for n=3
rank(4,) = {2 for n>4 (12)

(For unexplained terms in semigroup theory see for example [4, 7].)
Let P, and T,, be the partial transformations semigroup and the full transformations

semigroup on X, , respectively. Moreover, let PK(n,r) ={a € P,:|im(a)| <r} and
K(n,r) ={a € T,;: |im(a)| <1} for 1 <r < n— 1.Yigit et al. showed in [9] that
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rerank (T, ,: Sy) = pr(n) (as shown in[1,8] before), (13)
n-r

rerank(PT,,:S,) = Z pr(n—25), (14)

rerank(4,,:4,) = ;:En), (15)
n-r

rerank(PA,,:4,) = Z pr(n—s) (16)
s=0

for 1 <r <n-1,where

T,, = K, uS, PT,, = PK, US, 17
Any = K,r,UA, PA,, PK,,UA,, (18)

and also p,-(n) is the cardinality of the set P.(n), the set of all integer solutions of the
equation

Xy +x,++x,=n with x;=>2x,=>-2x2>1. (19)

Recall from [6, Lemma 2.1] that a non-idempotent map «a € I,, is a quasi-idempotent if and
only if all its orbits are of size at most 2, and so, a € Q(I,,) if and only if a can be written
as a product of some disjoint 1-cycles (1-cycles are neglected in general), 1-chains and at
least one 2-cycle and/or 2-chain. In particular, it is easy to see that @ € Q(S,,) if and only if
a can be written as a product of some disjoint 2-cycles, and that « € Q(4,,) if and only if
a can be written as a product of positive even number of disjoint 2-cycles. In addition to
these results recently it is shown in [3] that

1  for n=2

grank (S,,)) =<2  for n=3, (20)
3 for n=>4
2 for n=2

grank (I,) =43 for n=3 (21)

4  for n=>4
and grank (4,) = 3 for n > 5. Now let

Iny ={a € I;:|im(a)| <1} (22)
Shyr =1,,US, (23)

forn>2and 1<r<n-—1,andlet
Al =1, UA, (24)

for n>3 and 1 <r <n-—1. Clearly each one of the sets I,,,., SI,, and AI,, is an
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ideal of I,,. Moreover, I,y = I,\S, and so S, = I,,.

In this paper we obtain the rank and the quasi-idempotent rank of SI,,, (of Al,,), and then
we immediately obtain the relative rank and the relative quasi-idempotent rank of SI,, -
modulo S,, (of AlL,, modulo A4,,).

2. Certain ranks of SI,,,

Forany a,f in I, itiseasy to see that

(a,p) € L & im(a) =im(f)

(a,B) € R © dom(a) = dom(p) (25)
(a,) €D = h(a) = h(p)

(o, ) e H & dom(a) = dom(f) and im(a) = im(B)

where L,R,D and H denotes the Green’s equivalences. Hence, there exist r + 1
D-classes in I, ,- as follows:

Dy ={a €l,,-h(a) =k} for 0<k<r. (26)

Let ¢ € D, with dom(a) ={a; <+ <ay} (1 <k <r—1). Then, as usual, a can be
written in the following tabular form:

_(ay o oayg Xn\dom(a)) (M O
a_<a1a' o aga - (shortly a_(alo( aka))' (27)

Since 1 <k <r—1 <n - 2, there exist two distinct elements a,a’ € X,,\{a, ..., a;} and
there exists b € X,\{a,«, ..., aa}. Then consider the maps

al cee ak a
B=(q . a o and (28)
_ al ves ak a'
y_(ala e apa b)' (29)

Then we have B,y € Diy1 and a = By, that is Dy S (Dy41). Thereby, L, =(D,).
Furthermore, it is easy to see that a non-empty subset A of I, is a generating set of I, ,. if
and only if D, € (A) for 1<r <n-—1. Moreover, it is well known that h(po) <
min{h(p), h(o)} for p,o € I,,, and so we may consider only the subsets of D, to generate

Iy .

Theorem2.1. For 1<r<n-1 D, € (S, U{&}) where
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[12] for n=2 and r=1
& =14 [12][3] - [nn] for n>3 and r=1 (30)
12)[r+1]--[n] for n=23 and 2<r<n-—1

Proof. Let « €D, for n>2 and 1<r<n-—1 and suppose that dom(a) =
{a, ...,a,}, Xp,\dom(@) = {a,;4, ..., a,}, and that X,\im(a) = {by, ..., b,_-}. Then we
have a = &y where

_ al ar ar+1 an
'B_(l eor r+1 - n)ES" (31)

fori<r<n-1;

((1 2 ) ~ ~
J<b1 a,a €5 for n=2 and r=1
l(bl a@ b, - b, )€ Sy, for n=3 and r=1
and
— 1 2 3 e T r+1 - n
V= <a2a Q@ aza - apQa b1 bn—r ) € Sn (33)

forn>3and2<r<n—1.m

Corollary 2.2. For 1<r<n-1 SI,, =((12),(12..n),&) where ¢ € D, is the
map defined in Theorem 2.1.

Proof.  The result follows from the facts I,,, =(D,), D, S (S, U{&}) and S, =
((12),(12..n)). m

Recall the following well-known property: Let S be a finite semigroup and let T be a
subsemigroup of S such that S\T is an ideal of S. It is well-known that if S = (A), for any
@+ A C S, then T = (T n A), and so any generating set of S must contain at least one extra
element in addition to any generating set of T. Therefore, rank(S) = rank(T)+ 1.
Similarly, grank (S) = qrank (T)+1 when S and T are generated by their own
quasi-idempotents.

Corollary2.3. Forn=2and 1<r<n-—1 rank(Sl,,)= {é Z ; g

Proof. Clearly SI,,,\S, = I, is an ideal of SI,,,, and so rank(SI,,) = rank(S,) + 1.

Then the result follows from Corollary 2.2 since rank(S,) = 1 and rank(S,) =2 for n >
3.m
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As in [3], for any m-tuple (by, by, ..., b)) (2 < m < n) let

(b1by) (bybip—1) -+ (b%bgﬂ) if mis an even number

[[bp ---;bm]] = (b1by) (byby_1) =+ (bm-1bm+3)  if mis an odd number (34)
2 2

where (b; b;) denotes a 2-cycle for 1 < i,j < k, also let g,p € Q(S,) be the maps with
one of the following n-many forms:

o o=|[1,..k+1]][[k+2 ..,1]]
p=I[1...k+2]][[k+3,...,n]] (1<k<n—4 and n =5);
e 0= [[1,.. ,n—2]](n— 1 n),
p=I[L,..,n~1];
e o=]|[1,..,n—1]],
p =11, ..,n]];
e o=][[1,..,n]],
p = [[2,..,n]];
o o=[[2,..,1n]],
p = U3, ..., n]]

Then recall from Theorem 1 and Corollary 2 given in [3] that, for n > 4, S,, = ((12), 0, p)
for each a,p € Q(S,,) with one of the n-many forms given above, and that

1 for n=2
grank (S,) =12  for n =23, (35)
3 for n=>4

Moreover, notice that the map ¢ defined in Theorem 2.1 is a quasi-idempotent in D,., say
& € Q(D,). Then we have the following corollary.

2  for n=2
Corollary2.4. For I<r<n-1 qrank (Sl,,) =43 for n=3.
4 for n>4

Proof. Clearly SL; =((12),¢), SL, =((13),(23),¢) for 1 <r <2 and SI,, =
((12),0,p,é) for n=>4 and 1 <r<n-—1 where £ € Q(D,) is the map defined in
Theorem 2.1 and o, p € Q(S,,) are one of the n-many forms given above. Then the result
follows from the fact qrank (SI,,,) = qrank (S,,) + 1 since SI,,,\S,, = I,,,- is an ideal of
Sly,.m

Corollary 2.5. For 1 <r <n—1 rerank(Sl,,:S,) = reqrank (§I,,,:S,) = 1. =
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3. Certain ranks of AI,, ,
Theorem3.1. Forn>3 and 1<r<n-—1 D, € (4, U {£}) where

[12][3] -+ [n] for n=3 and r=1
§=3A2[r+1]-[n] for n=3 and 2<r<n-1. (36)

Proof. Leta €D, forn>3 and 1 <r <n-—1. From the proof of Theorem 2.1 we
have a« = &y where B,y are the permutations defined in the proof of Theorem 2.1. Then
we have a = B &y’ where

B if BEA,

B = {ﬁ(n —1n) if B€A, (37)
Y if y€EA,

Y = {Y(bl b)) if yv€A, (38)

forn>3 and r =1,and we have

. {BE)Z/ U By €Ay or Byes, (39)
B &y otherwise,

where
B if BEA,

g = {3(12) if B&A, (40)
1z if ved,

Y = {(12)% if v&An (41)

forn=>3and 2<r<n—1.m
Corollary 3.2. For n >3
((123),¢) for n=3 and 1<r<2
Al,, ={((123),(12...n),€) foran odd numbern>4 and1<r<n-1 (42)

((123),(23...n),¢) for an even numbern=>4 and1<r<n-1

where ¢ € D,. is the map defined in Theorem 3.1.

Proof. The result follows from the fact D, € (4, U {£}) since A; = ((123)) and A4, is
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generated by two elements:

(123) and {(12---") if n is odd

(23...n) if n is even
forn>4. =

Similarly, notice that the map ¢ defined in Theorem 3.1 is a quasi-idempotent, say ¢ €
Q (D). Then we have the following corollary.

2 for n=3 and 1<r<2

Corollary 3.3. rank(Al,,) = {3 for n>4 and 1<r<n-1

Proof. Clearly AL, \A, = I,, isanideal of Al,,,. andso rank(4l,,) = rank(4,) + 1.
Then the result follows from Corollary 3.2 and the fact rank(4,,) = {% Z ; i [
As in [3], for any m-tuple (bq, by, ...,b,) (A <m <n)

(b1b)(byby_q) - (bm=2bm+4), if mis an even number

[[b1, b2, ..., b ]] - {(b1 b)) (babpy—1) + (bm23bm+5) if mis an odd number (43)

where (b; b;) denotesa 2-cycle for 1 < i,j < m. Also, recall from Theorem 3 given in [3]
that A4,, = (1, u, Y) where

((13) [[4,...,n]]* if n=0 mod 4

2= 12) [[4, ...,n]] if n=12 mod 4 (44)
(12) [[4,...,n]]* if n=3 mod 4
f(23) (2% if n=0 mod 4

y=4 (13) [LH n+5]] if n=12 mod 4 (45)
(13)( =) if n=3 mod 4
(1n)(23) [[4,..,n—=1]] if n=0 mod 4
(14)(23) [[5, ..., n]] if n=1 mod 4

Y =1024)[[5,..,n]] if n=2 mod 4 (46)
14 [[5, ...,n]] if n=3 mod 4

and that qrank (4,) = 3 for n > 5.

Corollary34. Forn>=5and 1<r<n-1 qrank (4l,,) =4
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Proof. Clearly AL, ={(Au Y, &) for n=5 and 1<r<n-2 where A, u, )€
Q(A,) are quasi-idempotents given above. Then the result follows from the fact
qrank (Al,,) = qrank (4,) + 1 since AL, \A, = I, isanideal of AL, ,. m

Corollary 35. Forn=>=3 and 1 <r <n -1 rerank(4l,,:4,) =1; and for n > 5
and 1 <r <n-—1 reqrank (Alnjr:An) =1 =m
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