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Abstract 

 

Let 𝐼𝑛 , 𝑆𝑛  and 𝐴𝑛  be the symmetric inverse semigroup, the symmetric group and the 

alternating group on 𝑋𝑛 = {1, … , 𝑛} , for 𝑛 ≥ 2 , respectively. Also let 𝐼𝑛,𝑟  be the 

subsemigroup consists of all partial injective maps with height less than or equal to 𝑟 for 

1 ≤ 𝑟 ≤ 𝑛 − 1, and let 𝑆𝐼𝑛,𝑟 = 𝐼𝑛,𝑟 ∪ 𝑆𝑛 and 𝐴𝐼𝑛,𝑟 = 𝐼𝑛,𝑟 ∪ 𝐴𝑛. A non-idempotent element 

whose square is an idempotent is called a quasi-idempotent. In this paper we obtain the rank 

and the quasi-idempotent rank of 𝑆𝐼𝑛,𝑟 (of 𝐴𝐼𝑛,𝑟). Also we obtain the relative rank and the 

relative quasi-idempotent rank of 𝑆𝐼𝑛,𝑟 modulo 𝑆𝑛  (of 𝐴𝐼𝑛,𝑟 modulo 𝐴𝑛).  

 

Keywords: Symmetric inverse semigroup, quasi-idempotent, rank. 

 

 

Simetrik inverse yarıgrubun 𝑆𝑛 veya 𝐴𝑛 i içeren bazı ideallerinin 

rankları 
 

 

Öz 

 

𝑛 ≥ 2 için 𝐼𝑛 , 𝑆𝑛  ve 𝐴𝑛 , sırasıyla, 𝑋𝑛 = {1,… , 𝑛} üzerindeki simetrik inverse yarıgrup, 

simetrik grup ve alterne grup olsun. Ayrıca, 1 ≤ 𝑟 ≤ 𝑛 − 1 için 𝐼𝑛,𝑟, yüksekliği en fazla 𝑟 

olan tüm kısmi bire-bir dönüşümlerden oluşan altyarıgrup, 𝑆𝐼𝑛,𝑟 = 𝐼𝑛,𝑟 ∪ 𝑆𝑛  ve 𝐴𝐼𝑛,𝑟 =

𝐼𝑛,𝑟 ∪ 𝐴𝑛  olsun. Karesi idempotent olan fakat kendisi idempotent olmayan bir elemana 

quasi-idempotent denir. Bu calışmada 𝑆𝐼𝑛,𝑟 (𝐴𝐼𝑛,𝑟) nin rankını elde ettik. Ayrıca, modulo 

𝑆𝑛 e göre 𝑆𝐼𝑛,𝑟 nin (modulo 𝐴𝑛 e göre 𝐴𝐼𝑛,𝑟 nin) ilişkili rankını ve quasi-ilişkili rankını 

elde ettik. 
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Anahtar kelimeler: Simetrik inverse yarıgrup, quasi-idempotent, rank. 

 

 

1. Introduction 

 

For 𝑛 ∈ ℤ+ let 𝑋𝑛 = {1,… , 𝑛}. Also let 𝐼𝑛 be the semigroup of all partial injective maps on 

𝑋𝑛, called symmetric inverse semigroup, let 𝑆𝑛 be the group of all permutations on 𝑋𝑛, 

called symmetric group, and let 𝐴𝑛 be the group of all even permutations on 𝑋𝑛, called 

alternating group. Clearly, 𝐴𝑛 ≤ 𝑆𝑛 ≤ 𝐼𝑛. For escape from triviality throughout this paper 

we consider the case 𝑛 ≥ 2 unless otherwise stated. It is well known that 𝐼𝑛 is an inverse 

semigroup and that every finite inverse semigroup 𝑆 is embeddable in 𝐼𝑛 for a suitable 𝑛 ∈
ℕ. Thus, investigating the structure of 𝐼𝑛 is an important research topic in inverse semigroup 

theory, like as investigating the structure of symmetric group 𝑆𝑛 in group theory. 

 

An element 𝛼 ∈ 𝐼𝑛 is called an idempotent if 𝛼2 = 𝛼, and, as introduced in [6] that an 

element 𝛼 ∈ 𝐼𝑛 is called a quasi-idempotent if 𝛼 ≠ 𝛼2 = 𝛼4, that is, 𝛼 is a non-idempotent 

element whose square is an idempotent. We denote the set of all quasi-idempotents in any 

subset 𝑈 of any semigroup by 𝑄(𝑈). 
 

Let 𝑆 be a semigroup, and let 𝐴 be a non-empty subset of 𝑆. Then the subsemigroup 

generated by 𝐴 is defined as the smallest subsemigroup of 𝑆 containing 𝐴 and denoted by 

〈𝐴〉. If there exists a non-empty subset 𝐴  of 𝑆  such that 𝑆 = 〈𝐴〉, then 𝐴  is called a 

generating set of 𝑆. Also, the rank of a semigroup 𝑆 is defined by 

  

rank(𝑆) = min{ |𝐴|: 〈𝐴〉 = 𝑆, |𝐴| < ∞}.                                                (1)                                            

 

In particular, if there exists a generating set 𝐴 of 𝑆 consists of some quasi-idempotents, then 

𝐴 is called quasi-idempotent generating set of 𝑆 and the quasi-idempotent rank of 𝑆 is 

defined by  

 

qrank (𝑆) = min{ |𝐴|: 〈𝐴〉 = 𝑆, 𝐴 ⊆ 𝑄(𝑆), |𝐴| < ∞}.                                   (2) 

 

For a fixed subset 𝑈 of a semigroup 𝑆, if there exists a non-empty subset 𝐴 of 𝑆 such that 

〈𝐴 ∪ 𝑈〉 = 𝑆, then 𝐴 is called a relative generating set of 𝑆 modulo 𝑈 and the relative rank 

of 𝑆 modulo 𝑈 is defined by  

 

rerank(𝑆: 𝑈) = min{|𝐴|: 〈𝐴 ∪ 𝑈〉 = 𝑆, |𝐴| < ∞}.                                       (3) 

 

Similarly, if there exists a non-empty subset 𝐴 of 𝑄(𝑆) such that 〈𝐴 ∪ 𝑈〉 = 𝑆, then 𝐴 is 

called a relative quasi-idempotent generating set of 𝑆  modulo 𝑈 , and relative 

quasi-idempotent rank of 𝑆 modulo 𝑈 is defined by  

 

reqrank (𝑆: 𝑈) = min{|𝐴|: 〈𝐴 ∪ 𝑈〉 = 𝑆, 𝐴 ⊆ 𝑄(𝑆), |𝐴| < ∞}.                          (4) 

 

For more studies about various ranks of a semigroup, we refer [2, 5, 9, 10] for example. 

The height, fix and shift of 𝛼 ∈ 𝐼𝑛 are defined by 
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h(𝛼) = |im(𝛼)|                                                                        (5) 

fix (𝛼) = {𝑥 ∈ dom(𝛼): 𝑥𝛼 = 𝑥}   𝑎𝑛𝑑                                                 (6) 

shift (𝛼) = {𝑥 ∈ dom(𝛼): 𝑥𝛼 ≠ 𝑥} = dom(𝛼)\fix (𝛼),                                 (7) 

 

respectively. A permutation 𝛼 ∈ 𝑆𝑛 with shift (𝛼) = {𝑎1, … , 𝑎𝑘} (2 ≤ 𝑘 ≤ 𝑛) is called a 

cycle of size 𝑘 (𝑘 −cycle) and denoted by 𝛼 = (𝑎1…𝑎𝑘) if  

 

𝑎𝑖𝛼 = 𝑎𝑖+1    (1 ≤ 𝑖 ≤ 𝑘 − 1)     𝑎𝑛𝑑     𝑎𝑘𝛼 = 𝑎1.                                      (8) 

 

In particular, a 2 −cycle (𝑎1𝑎2) is called a transposition. The identity permutation 𝜀 on 

𝑋𝑛 is expressible as (𝑎), for any 1 ≤ 𝑎 ≤ 𝑛, and (𝑎) is called a 1-cycle. Also, a map 𝛼 ∈ 𝐼𝑛 

with dom(𝛼) = 𝑋𝑛\{𝑎𝑘} and shift (𝛼) = {𝑎1, … , 𝑎𝑘−1} (2 ≤ 𝑘 ≤ 𝑛) is called a chain of 

size 𝑘 (𝑘 −chain) and denoted by [𝑎1…𝑎𝑘] if  

 

𝑎𝑖𝛼 = 𝑎𝑖+1    (1 ≤ 𝑖 ≤ 𝑘 − 1).                                                          (9) 

 

Moreover, a map 𝛼 ∈ 𝐼𝑛 with dom(𝛼) = fix (𝛼) = 𝑋𝑛\{𝑎𝑘} called a 1-chain and denoted 

by [𝑎𝑘 ]. Two cycles (𝑎1…𝑎𝑘 ) and (𝑏1…𝑏𝑡 ) (and similarly two chains [𝑎1…𝑎𝑘 ] and 

[𝑏1…𝑏𝑡], or a cycle (𝑎1…𝑎𝑘) and a chain [𝑏1…𝑏𝑡] ), for 1 ≤ 𝑘, 𝑡 ≤ 𝑛, are said to be disjoint 

if the sets {𝑎1, … , 𝑎𝑘} and {𝑏1, … , 𝑏𝑡} are disjoint. 

 

It is well known that every map in 𝐼𝑛 can be written as a product of disjoint cycles (1-cycles 

are neglected in general) and chains, and every permutation in 𝑆𝑛 can be written as a product 

of disjoint cycles (1-cycles are neglected in general), more particularly, as a product of 

transpositions. Moreover, it is also well known that 𝑆2 = 〈(12)〉, 𝑆3 = 〈(13), (23)〉, 𝑆𝑛 =
〈(12), (12…𝑛)〉 for 𝑛 ≥ 3, and that 𝐴3 = 〈(123)〉 and 𝐴𝑛 is generated by two elements:  

 

(123)   𝑎𝑛𝑑   {
(12. . . 𝑛)    𝑖𝑓   𝑛   𝑖𝑠  𝑜𝑑𝑑 
(23. . . 𝑛)    𝑖𝑓   𝑛   𝑖𝑠  𝑒𝑣𝑒𝑛 

                                           (10) 

 

for 𝑛 ≥ 4. Furthermore,  

 

rank(𝑆𝑛) = {
1    𝑓𝑜𝑟   𝑛 = 2
2    𝑓𝑜𝑟   𝑛 ≥ 3

  𝑎𝑛𝑑                                                  (11) 

 

rank(𝐴𝑛) = {
1    𝑓𝑜𝑟   𝑛 = 3
2    𝑓𝑜𝑟   𝑛 ≥ 4

.                                                       (12) 

 

(For unexplained terms in semigroup theory see for example [4, 7].) 

 

Let 𝑃𝑛  and 𝑇𝑛  be the partial transformations semigroup and the full transformations 

semigroup on 𝑋𝑛 , respectively. Moreover, let 𝑃𝐾(𝑛, 𝑟) = {𝛼 ∈ 𝑃𝑛: |im(𝛼)| ≤ 𝑟}  and 

𝐾(𝑛, 𝑟) = {𝛼 ∈ 𝑇𝑛: |im(𝛼)| ≤ 𝑟} for 1 ≤ 𝑟 ≤ 𝑛 − 1. Yiğit et al. showed in [9] that  
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rerank(𝑇𝑛,𝑟: 𝑆𝑛) = 𝑝𝑟(𝑛)     (𝑎𝑠  𝑠ℎ𝑜𝑤𝑛  𝑖𝑛 [1, 8] 𝑏𝑒𝑓𝑜𝑟𝑒) ,                              (13)

rerank(𝑃𝑇𝑛,𝑟: 𝑆𝑛) = ∑

𝑛−𝑟

𝑠=0

𝑝𝑟(𝑛 − 𝑠), (14)

rerank(𝐴𝑛,𝑟: 𝐴𝑛) = 𝑝𝑟(𝑛), (15)

rerank(𝑃𝐴𝑛,𝑟: 𝐴𝑛) = ∑

𝑛−𝑟

𝑠=0

𝑝𝑟(𝑛 − 𝑠) (16)

 

 

for 1 ≤ 𝑟 ≤ 𝑛 − 1, where  

 
𝑇𝑛,𝑟 = 𝐾𝑛,𝑟 ∪ 𝑆𝑛,    𝑃𝑇𝑛,𝑟 = 𝑃𝐾𝑛,𝑟 ∪ 𝑆𝑛,                                                                         (17)

𝐴𝑛,𝑟 = 𝐾𝑛,𝑟 ∪ 𝐴𝑛,    𝑃𝐴𝑛,𝑟 = 𝑃𝐾𝑛,𝑟 ∪ 𝐴𝑛,                                                                        (18)
 

 

and also 𝑝𝑟(𝑛) is the cardinality of the set 𝑃𝑟(𝑛), the set of all integer solutions of the 

equation  

 

𝑥1 + 𝑥2 +⋯+ 𝑥𝑟 = 𝑛     𝑤𝑖𝑡ℎ     𝑥1 ≥ 𝑥2 ≥ ⋯ ≥ 𝑥𝑟 ≥ 1.                              (19) 

               

Recall from [6, Lemma 2.1] that a non-idempotent map 𝛼 ∈ 𝐼𝑛 is a quasi-idempotent if and 

only if all its orbits are of size at most 2, and so, 𝛼 ∈ 𝑄(𝐼𝑛) if and only if 𝛼 can be written 

as a product of some disjoint 1-cycles (1-cycles are neglected in general), 1-chains and at 

least one 2-cycle and/or 2-chain. In particular, it is easy to see that 𝛼 ∈ 𝑄(𝑆𝑛) if and only if 

𝛼 can be written as a product of some disjoint 2-cycles, and that 𝛼 ∈ 𝑄(𝐴𝑛) if and only if 

𝛼 can be written as a product of positive even number of disjoint 2-cycles. In addition to 

these results recently it is shown in [3] that  

 

qrank (𝑆𝑛) = {

1    𝑓𝑜𝑟   𝑛 = 2
2    𝑓𝑜𝑟   𝑛 = 3
3    𝑓𝑜𝑟   𝑛 ≥ 4

,                                                      (20) 

 

qrank (𝐼𝑛) = {

2    𝑓𝑜𝑟   𝑛 = 2
3    𝑓𝑜𝑟   𝑛 = 3
4    𝑓𝑜𝑟   𝑛 ≥ 4

                                                      (21) 

 

and qrank (𝐴𝑛) = 3 for 𝑛 ≥ 5. Now let  

 

𝐼𝑛,𝑟 = {𝛼 ∈ 𝐼𝑛: |im(𝛼)| ≤ 𝑟}                                                          (22) 

𝑆𝐼𝑛,𝑟 = 𝐼𝑛,𝑟 ∪ 𝑆𝑛                                                                      (23) 

 

for 𝑛 ≥ 2 and 1 ≤ 𝑟 ≤ 𝑛 − 1, and let  

 

𝐴𝐼𝑛,𝑟 = 𝐼𝑛,𝑟 ∪ 𝐴𝑛                                                                      (24) 

 

for 𝑛 ≥ 3 and 1 ≤ 𝑟 ≤ 𝑛 − 1 . Clearly each one of the sets 𝐼𝑛,𝑟 , 𝑆𝐼𝑛,𝑟  and 𝐴𝐼𝑛,𝑟  is an  



BAUN Fen Bil. Enst. Dergisi, 22(2), 669-678, (2020) 

673 

ideal of 𝐼𝑛. Moreover, 𝐼𝑛,𝑛−1 = 𝐼𝑛\𝑆𝑛 and so 𝑆𝐼𝑛,𝑛−1 = 𝐼𝑛. 

 

In this paper we obtain the rank and the quasi-idempotent rank of 𝑆𝐼𝑛,𝑟 (of 𝐴𝐼𝑛,𝑟), and then 

we immediately obtain the relative rank and the relative quasi-idempotent rank of 𝑆𝐼𝑛,𝑟 

modulo 𝑆𝑛 (of 𝐴𝐼𝑛,𝑟 modulo 𝐴𝑛). 

 

 

2. Certain ranks of 𝑺𝑰𝒏,𝒓 
 

For any 𝛼, 𝛽 in 𝐼𝑛,𝑟 it is easy to see that  

 

(𝛼, 𝛽) ∈ ℒ ⇔ im(𝛼) = im(𝛽) 
(𝛼, 𝛽) ∈ ℛ ⇔ dom(𝛼) = dom(𝛽)                                                    (25) 

(𝛼, 𝛽) ∈ 𝒟 ⇔ h(𝛼) = h(𝛽) 
(𝛼, 𝛽) ∈ ℋ ⇔ dom(𝛼) = dom(𝛽)   𝑎𝑛𝑑   im(𝛼) = im(𝛽) 

 

where ℒ,ℛ,𝒟  and ℋ  denotes the Green’s equivalences. Hence, there exist 𝑟 + 1 

𝒟-classes in 𝐼𝑛,𝑟 as follows:  

 

𝐷𝑘 = {𝛼 ∈ 𝐼𝑛,𝑟: h(𝛼) = 𝑘}   𝑓𝑜𝑟   0 ≤ 𝑘 ≤ 𝑟.                                          (26) 

 

Let 𝛼 ∈ 𝐷𝑘  with dom(𝛼) = {𝑎1 < ⋯ < 𝑎𝑘} (1 ≤ 𝑘 ≤ 𝑟 − 1). Then, as usual, 𝛼 can be 

written in the following tabular form:  

 

𝛼 = (
𝑎1 ⋯ 𝑎𝑘 𝑋𝑛\dom(𝛼)
𝑎1𝛼 ⋯ 𝑎𝑘𝛼 −

) (𝑠ℎ𝑜𝑟𝑡𝑙𝑦   𝛼 = (
𝑎1 ⋯ 𝑎k
𝑎1α ⋯ 𝑎kα

)).              (27) 

 

Since 1 ≤ 𝑘 ≤ 𝑟 − 1 ≤ 𝑛 − 2, there exist two distinct elements 𝑎, 𝑎′ ∈ 𝑋𝑛\{𝑎1, … , 𝑎𝑘} and 

there exists 𝑏 ∈ 𝑋𝑛\{𝑎1𝛼, … , 𝑎𝑘𝛼}. Then consider the maps  

 

𝛽 = (
𝑎1 ⋯ 𝑎𝑘 𝑎
𝑎1 ⋯ 𝑎𝑘 𝑎)    𝑎𝑛𝑑                                                          (28) 

 𝛾 = (
𝑎1 ⋯ 𝑎𝑘 𝑎′

𝑎1𝛼 ⋯ 𝑎𝑘𝛼 𝑏
).                                                           (29) 

 

Then we have 𝛽, 𝛾 ∈ 𝐷𝑘+1  and 𝛼 = 𝛽𝛾 , that is 𝐷𝑘 ⊆ 〈𝐷𝑘+1〉 . Thereby, 𝐼𝑛,𝑟 = 〈𝐷𝑟〉 . 

Furthermore, it is easy to see that a non-empty subset 𝐴 of 𝐼𝑛,𝑟 is a generating set of 𝐼𝑛,𝑟 if 

and only if 𝐷𝑟 ⊆ 〈𝐴〉  for 1 ≤ 𝑟 ≤ 𝑛 − 1 . Moreover, it is well known that h(𝜌𝜎) ≤
min{h(𝜌), h(𝜎)} for 𝜌, 𝜎 ∈ 𝐼𝑛, and so we may consider only the subsets of 𝐷𝑟 to generate 

𝐼𝑛,𝑟. 

 

Theorem 2.1.   For 1 ≤ 𝑟 ≤ 𝑛 − 1 𝐷𝑟 ⊆ 〈𝑆𝑛 ∪ {𝜉}〉 where  
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𝜉 = {

 [12]    𝑓𝑜𝑟   𝑛 = 2   𝑎𝑛𝑑   𝑟 = 1

 [12][3]⋯ [𝑛]    𝑓𝑜𝑟   𝑛 ≥ 3   𝑎𝑛𝑑   𝑟 = 1

 (1 2)[𝑟 + 1]⋯ [𝑛]    𝑓𝑜𝑟   𝑛 ≥ 3   𝑎𝑛𝑑   2 ≤ 𝑟 ≤ 𝑛 − 1.

                  (30)      

 

 

Proof.    Let 𝛼 ∈ 𝐷𝑟  for 𝑛 ≥ 2  and 1 ≤ 𝑟 ≤ 𝑛 − 1  and suppose that dom(𝛼) =
{𝑎1, … , 𝑎𝑟}, 𝑋𝑛\dom(𝛼) = {𝑎𝑟+1, … , 𝑎𝑛}, and that 𝑋𝑛\im(𝛼) = {𝑏1, … , 𝑏𝑛−𝑟}. Then we 

have 𝛼 = 𝛽𝜉𝛾 where  

 

𝛽 = (
𝑎1 ⋯ 𝑎r
1 ⋯ 𝑟

    
𝑎r+1 ⋯ 𝑎n
𝑟 + 1 ⋯ 𝑛

) ∈ 𝑆𝑛                                             (31) 

 

for 1 ≤ 𝑟 ≤ 𝑛 − 1; 

 

𝛾 =

{
 
 

 
 (
1 2
𝑏1 𝑎1𝛼

) ∈ 𝑆2    𝑓𝑜𝑟   𝑛 = 2   𝑎𝑛𝑑   𝑟 = 1

(
1 2
𝑏1 𝑎1𝛼

    
3 ⋯ 𝑛
𝑏2 ⋯ 𝑏𝑛−1

) ∈ 𝑆𝑛    𝑓𝑜𝑟   𝑛 ≥ 3   𝑎𝑛𝑑   𝑟 = 1
        (32) 

 

and  

 

𝛾 = (
1 2 3 ⋯ 𝑟 𝑟 + 1 ⋯ 𝑛
𝑎2𝛼 𝑎1𝛼 𝑎3𝛼 ⋯ 𝑎𝑟𝛼 𝑏1 ⋯ 𝑏𝑛−𝑟

) ∈ 𝑆𝑛                     (33) 

 

for 𝑛 ≥ 3 and 2 ≤ 𝑟 ≤ 𝑛 − 1. ■           

 

Corollary 2.2.   For 1 ≤ 𝑟 ≤ 𝑛 − 1    𝑆𝐼𝑛,𝑟 = 〈(12), (12…𝑛), 𝜉〉  where 𝜉 ∈ 𝐷𝑟  is the 

map defined in Theorem 2.1.  

 

Proof.    The result follows from the facts 𝐼𝑛,𝑟 = 〈𝐷𝑟〉 , 𝐷𝑟 ⊆ 〈𝑆𝑛 ∪ {𝜉}〉  and 𝑆𝑛 =

〈(12), (12…𝑛)〉. ■             

 

Recall the following well-known property: Let 𝑆 be a finite semigroup and let 𝑇 be a 

subsemigroup of 𝑆 such that 𝑆\𝑇 is an ideal of 𝑆. It is well-known that if 𝑆 = 〈𝐴〉, for any 

∅ ≠ 𝐴 ⊆ 𝑆, then 𝑇 = 〈𝑇 ∩ 𝐴〉, and so any generating set of 𝑆 must contain at least one extra 

element in addition to any generating set of 𝑇 . Therefore, rank(𝑆) ≥ rank(𝑇) + 1 . 

Similarly, qrank (𝑆) ≥ qrank (𝑇) + 1  when 𝑆  and 𝑇  are generated by their own 

quasi-idempotents. 

 

Corollary 2.3.   For 𝑛 ≥ 2 and 1 ≤ 𝑟 ≤ 𝑛 − 1   𝑟𝑎𝑛𝑘(𝑆𝐼𝑛,𝑟) = {
2, 𝑛 = 2
3, 𝑛 ≥ 3

.  

 

Proof.    Clearly 𝑆𝐼𝑛,𝑟\𝑆𝑛 = 𝐼𝑛,𝑟 is an ideal of 𝑆𝐼𝑛,𝑟 , and so rank(𝑆𝐼𝑛,𝑟) ≥ rank(𝑆𝑛) + 1. 

Then the result follows from Corollary 2.2 since rank(𝑆2) = 1 and rank(𝑆𝑛) = 2 for 𝑛 ≥
3. ■ 
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As in [3], for any 𝑚-tuple (𝑏1, 𝑏2, … , 𝑏𝑚) (2 ≤ 𝑚 ≤ 𝑛) let  

 

[[𝑏1, … , 𝑏𝑚]] = {
(𝑏1𝑏𝑚)(𝑏2𝑏𝑚−1)⋯ (𝑏𝑚

2

𝑏𝑚
2
+1
)    𝑖𝑓 𝑚 𝑖𝑠 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 

(𝑏1𝑏𝑚)(𝑏2𝑏𝑚−1)⋯ (𝑏𝑚−1

2

𝑏𝑚+3

2

)   𝑖𝑓 𝑚 𝑖𝑠 𝑎𝑛 𝑜𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 
        (34) 

 

where (𝑏𝑖 𝑏𝑗) denotes a 2-cycle for 1 ≤ 𝑖, 𝑗 ≤ 𝑘, also let 𝜎, 𝜌 ∈ 𝑄(𝑆𝑛) be the maps with 

one of the following 𝑛-many forms:  

 

• 𝜎 = [[1, … , 𝑘 + 1]][[𝑘 + 2, … , 𝑛]], 

𝜌 = [[1, … , 𝑘 + 2]] [[𝑘 + 3, … , 𝑛]]    (1 ≤ 𝑘 ≤ 𝑛 − 4   𝑎𝑛𝑑   𝑛 ≥ 5); 
• σ = [[1, … , 𝑛 − 2]](𝑛 − 1 𝑛), 

𝜌 = [[1, … , 𝑛 − 1]]; 
• 𝜎 = [[1, … , 𝑛 − 1]], 

𝜌 = [[1, … , 𝑛]]; 
• 𝜎 = [[1, … , 𝑛]], 

𝜌 = [[2, … , 𝑛]]; 
• 𝜎 = [[2,… , 𝑛]], 

𝜌 = (12)[[3, … , 𝑛]]. 
 

Then recall from Theorem 1 and Corollary 2 given in [3] that, for 𝑛 ≥ 4, 𝑆𝑛 = 〈(12), 𝜎, 𝜌〉 
for each 𝜎, 𝜌 ∈ 𝑄(𝑆𝑛) with one of the 𝑛-many forms given above, and that  

 

qrank (𝑆𝑛) = {

1    𝑓𝑜𝑟   𝑛 = 2

2    𝑓𝑜𝑟   𝑛 = 3

3    𝑓𝑜𝑟   𝑛 ≥ 4

.                                                      (35) 

 

Moreover, notice that the map 𝜉 defined in Theorem 2.1 is a quasi-idempotent in 𝐷𝑟, say 

𝜉 ∈ 𝑄(𝐷𝑟). Then we have the following corollary. 

 

Corollary 2.4.   For 1 ≤ 𝑟 ≤ 𝑛 − 1    qrank (𝑆𝐼𝑛,𝑟) = {

2    𝑓𝑜𝑟   𝑛 = 2

3    𝑓𝑜𝑟   𝑛 = 3

4    𝑓𝑜𝑟   𝑛 ≥ 4

.  

 

Proof.    Clearly 𝑆𝐼2,1 = 〈(12), 𝜉〉 , 𝑆𝐼3,𝑟 = 〈(13), (23), 𝜉〉  for 1 ≤ 𝑟 ≤ 2  and 𝑆𝐼𝑛,𝑟 =
〈(12), 𝜎, 𝜌, 𝜉〉  for 𝑛 ≥ 4  and 1 ≤ 𝑟 ≤ 𝑛 − 1  where 𝜉 ∈ 𝑄(𝐷𝑟)  is the map defined in 

Theorem 2.1 and 𝜎, 𝜌 ∈ 𝑄(𝑆𝑛) are one of the 𝑛-many forms given above. Then the result 

follows from the fact qrank (𝑆𝐼𝑛,𝑟) ≥ qrank (𝑆𝑛) + 1 since 𝑆𝐼𝑛,𝑟\𝑆𝑛 = 𝐼𝑛,𝑟 is an ideal of 

𝑆𝐼𝑛,𝑟. ■  

 

Corollary 2.5.  For 1 ≤ 𝑟 ≤ 𝑛 − 1 rerank(𝑆𝐼𝑛,𝑟: 𝑆𝑛) = reqrank (𝑆𝐼𝑛,𝑟: 𝑆𝑛) = 1. ■ 
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3. Certain ranks of 𝑨𝑰𝒏,𝒓 
 

Theorem 3.1.  For 𝑛 ≥ 3 and 1 ≤ 𝑟 ≤ 𝑛 − 1 𝐷𝑟 ⊆ 〈𝐴𝑛 ∪ {𝜉}〉 where  

 

𝜉 = {
 [12][3]⋯ [𝑛]    𝑓𝑜𝑟   𝑛 ≥ 3   𝑎𝑛𝑑   𝑟 = 1

 (1 2)[𝑟 + 1]⋯ [𝑛]    𝑓𝑜𝑟   𝑛 ≥ 3   𝑎𝑛𝑑   2 ≤ 𝑟 ≤ 𝑛 − 1.                   (36) 

Proof.    Let 𝛼 ∈ 𝐷𝑟 for 𝑛 ≥ 3 and 1 ≤ 𝑟 ≤ 𝑛 − 1. From the proof of Theorem 2.1 we 

have 𝛼 = 𝛽𝜉𝛾 where 𝛽, 𝛾 are the permutations defined in the proof of Theorem 2.1. Then 

we have 𝛼 = 𝛽′𝜉𝛾 ′ where  

 

𝛽′ = {
𝛽    𝑖𝑓   𝛽 ∈ 𝐴𝑛
𝛽(𝑛 − 1𝑛)    𝑖𝑓   𝛽 ∉ 𝐴𝑛                                                      (37) 

 

𝛾 ′ = {
𝛾    𝑖𝑓   𝛾 ∈ 𝐴𝑛
𝛾(𝑏1 𝑏2)    𝑖𝑓   𝛾 ∉ 𝐴𝑛                                                         (38) 

 

for 𝑛 ≥ 3 and 𝑟 = 1, and  we have  

 

𝛼 = {
𝛽′𝜉𝛾 ′    𝑖𝑓   𝛽, 𝛾 ∈ 𝐴𝑛   𝑜𝑟   𝛽, 𝛾 ∉ 𝐴𝑛
𝛽′𝜉2𝛾 ′    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   

                                         (39) 

 

where 

 

𝛽′ = {
𝛽    𝑖𝑓   𝛽 ∈ 𝐴𝑛
𝛽(12)    𝑖𝑓   𝛽 ∉ 𝐴𝑛                                                           (40) 

 

𝛾 ′ = {
𝛾,    𝑖𝑓   𝛾 ∈ 𝐴𝑛
(12)𝛾,    𝑖𝑓   𝛾 ∉ 𝐴𝑛                                                            (41) 

 

for 𝑛 ≥ 3 and 2 ≤ 𝑟 ≤ 𝑛 − 1. ■  

 

Corollary 3.2.   For 𝑛 ≥ 3  

 

𝐴𝐼𝑛,𝑟 = {

〈(123), 𝜉〉  𝑓𝑜𝑟   𝑛 = 3   𝑎𝑛𝑑   1 ≤ 𝑟 ≤ 2
〈(123), (12. . . 𝑛), 𝜉〉  𝑓𝑜𝑟 𝑎𝑛  𝑜𝑑𝑑  𝑛𝑢𝑚𝑏𝑒𝑟 𝑛 ≥ 4  𝑎𝑛𝑑 1 ≤ 𝑟 ≤ 𝑛 − 1
〈(123), (23. . . 𝑛), 𝜉〉 𝑓𝑜𝑟  𝑎𝑛  𝑒𝑣𝑒𝑛  𝑛𝑢𝑚𝑏𝑒𝑟 𝑛 ≥ 4  𝑎𝑛𝑑 1 ≤ 𝑟 ≤ 𝑛 − 1

    (42)    

                                                                                     

where 𝜉 ∈ 𝐷𝑟 is the map defined in Theorem 3.1.  

 

Proof.    The result follows from the fact 𝐷𝑟 ⊆ 〈𝐴𝑛 ∪ {𝜉}〉 since 𝐴3 = 〈(123)〉 and 𝐴𝑛 is 
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generated by two elements:  

 

(123)   𝑎𝑛𝑑   {
(12. . . 𝑛)    𝑖𝑓   𝑛   𝑖𝑠  𝑜𝑑𝑑 
(23. . . 𝑛)    𝑖𝑓   𝑛   𝑖𝑠  𝑒𝑣𝑒𝑛 

 

 

for 𝑛 ≥ 4.  ■            

 

Similarly, notice that the map 𝜉 defined in Theorem 3.1 is a quasi-idempotent, say 𝜉 ∈
𝑄(𝐷𝑟). Then we have the following corollary. 

 

Corollary 3.3.  rank(𝐴𝐼𝑛,𝑟) = {
2    𝑓𝑜𝑟   𝑛 = 3   𝑎𝑛𝑑   1 ≤ 𝑟 ≤ 2
3    𝑓𝑜𝑟   𝑛 ≥ 4   𝑎𝑛𝑑   1 ≤ 𝑟 ≤ 𝑛 − 1

.  

 

Proof.    Clearly 𝐴𝐼𝑛,𝑟\𝐴𝑛 = 𝐼𝑛,𝑟 is an ideal of 𝐴𝐼𝑛,𝑟 and so rank(𝐴𝐼𝑛,𝑟) ≥ rank(𝐴𝑛) + 1. 

Then the result follows from Corollary 3.2 and the fact rank(𝐴𝑛) = {
1, 𝑛 = 3
2, 𝑛 ≥ 4

. ■ 

 

As in [3], for any 𝑚-tuple (𝑏1, 𝑏2, … , 𝑏𝑚) (4 ≤ 𝑚 ≤ 𝑛)  let  

 

[[𝑏1, 𝑏2, … , 𝑏𝑚]]
♯ = {

(𝑏1𝑏𝑚)(𝑏2𝑏𝑚−1)⋯ (𝑏𝑚−2
2

𝑏𝑚+4
2

),  𝑖𝑓  𝑚 𝑖𝑠  𝑎𝑛  𝑒𝑣𝑒𝑛  𝑛𝑢𝑚𝑏𝑒𝑟 

(𝑏1𝑏𝑚)(𝑏2𝑏𝑚−1)⋯ (𝑏𝑚−3
2

𝑏𝑚+5
2

), 𝑖𝑓 𝑚 𝑖𝑠  𝑎𝑛  𝑜𝑑𝑑  𝑛𝑢𝑚𝑏𝑒𝑟 
 (43) 

 

where (𝑏𝑖 𝑏𝑗) denotes a 2-cycle for 1 ≤ 𝑖, 𝑗 ≤ 𝑚. Also, recall from Theorem 3 given in [3] 

that 𝐴𝑛 = 〈𝜆, 𝜇, 𝜓〉 where  

 

𝜆 =

{
 

 
(13) [[4, … , 𝑛]]♯    𝑖𝑓   𝑛 ≡ 0   mod   4

(12) [[4, … , 𝑛]]    𝑖𝑓   𝑛 ≡ 1,2   mod   4

(12) [[4, … , 𝑛]]♯    𝑖𝑓   𝑛 ≡ 3   mod   4
                                  (44) 

𝜇 =

{
 
 

 
 (23) (

𝑛+2

2
 
𝑛+6

2
)    𝑖𝑓   𝑛 ≡ 0   mod   4

(13) [[4, … , 𝑛]]    𝑖𝑓   𝑛 ≡ 1,2   mod   4

(13) (
𝑛+3

2
 
𝑛+5

2
)    𝑖𝑓   𝑛 ≡ 3   mod   4

                                   (45) 

𝜓 =

{
 
 

 
 
(1𝑛)(23) [[4,… , 𝑛 − 1]]    𝑖𝑓   𝑛 ≡ 0   mod   4

(14)(23) [[5, … , 𝑛]]    𝑖𝑓   𝑛 ≡ 1   mod   4

(24) [[5, … , 𝑛]]    𝑖𝑓   𝑛 ≡ 2   mod   4

(14) [[5, … , 𝑛]]    𝑖𝑓   𝑛 ≡ 3   mod   4

                           (46) 

 

and that qrank (𝐴𝑛) = 3 for 𝑛 ≥ 5. 

 

Corollary 3.4.   For 𝑛 ≥ 5 and 1 ≤ 𝑟 ≤ 𝑛 − 1   qran𝑘 (𝐴𝐼𝑛,𝑟) = 4.  
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Proof.    Clearly 𝐴𝐼𝑛,𝑟 = 〈𝜆, 𝜇, 𝜓, 𝜉〉  for 𝑛 ≥ 5  and 1 ≤ 𝑟 ≤ 𝑛 − 2  where 𝜆, 𝜇, 𝜓 ∈
𝑄(𝐴𝑛)  are quasi-idempotents given above. Then the result follows from the fact 

qrank (𝐴𝐼𝑛,𝑟) ≥ qrank (𝐴𝑛) + 1 since 𝐴𝐼𝑛,𝑟\𝐴𝑛 = 𝐼𝑛,𝑟 is an ideal of 𝐴𝐼𝑛,𝑟. ■  

 

Corollary 3.5.   For 𝑛 ≥ 3 and 1 ≤ 𝑟 ≤ 𝑛 − 1 rerank(𝐴𝐼𝑛,𝑟: 𝐴𝑛) = 1; and for 𝑛 ≥ 5 

and 1 ≤ 𝑟 ≤ 𝑛 − 1 reqrank (𝐴𝐼𝑛,𝑟: 𝐴𝑛) = 1.  ■ 
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