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Highlights
« This paper focuses on quasi-hemi-slant Riemannian maps.
« Distributions to be integrable and parallel investigated.
» A quasi-hemi-slant Riemannian map to be totally geodesic investigated.
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1. INTRODUCTION

A differentiable map F between Riemannian manifolds (N1, g1) and (N2, g2) is said to be a Riemannian
map if

02(F,Z1, F.Z2) = 91(Za, Z2), for Z1, ZoeT (ker F*)l.

The theory of smooth maps between Riemannian manifolds plays a preeminent role in differential geometry
and also in physics. It is useful for comparing geometric structures between the source manifolds and the
target manifolds. A conspicuous property of Riemannian map provides the generalized eikonal equation ||
F.||? = rank F [1]. Since rank F is an integer value function and || F, || is continuous function on the
Riemannian manifold. Since energy density 2e(F ) = || F, || 2=rank F, i.e. density is quantized to integer if
the Riemannian manifold is connected. In addition, complex manifolds are very useful tools for studying
spacetime geometry [2]. In fact, Calabi-Yau manifolds and Teichmuller spaces are two interesting classes
of Kéhler manifold, which have applications in superstring theory [3] and in general relativity [4, 5]. Thus,
the notion of Riemannian maps deserves through study from different perspectives.

In addition, O’Neills [6] and Gray [7] studied Riemannian submersions. Watson introduced almost
Hermitian submersions as follows: A Riemannian submersion F : (N1, g1, In;) — (N2, g2, In, ) is said to
be an almost Hermitian submersion if F,Jn,=Jn, F. [8]. Watson also showed that, in most cases [8] and
[9], each fiber and base manifold have the same kind of structure as the total space.
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After that, several kinds of Riemannian submersions were introduced and studied, some of them are like:
contact-submersions [10], semi-slant and generic submersions [11, 12], semi-invariant &*-Riemannian
submersions [13], hemi-slant submersions [14] etc. Sayar, Akyol and Prasad studied on bi slant submersions
[15], and Prasad, Shukla and Kumar introduce quasi-bi slant submersions [16]. Recently, Longwap,
Massamba and Homti introduce and study quasi-hemi slant Riemannian submersions which generalizes
hemi-slant, semi-slant and semi-invariant Riemannian submersions [17]. It is well known that Riemannian
submersion is a particular Riemannian map with (range F,)* = {0}, so we generalize the notion of quasi-
hemi slant Riemannian submersions to quasi-hemi slant Riemannian maps in the present paper and study
its geometry.

The notion of Riemannian map between Riemannian manifolds was introduced by Fischer [18]. Let F: (Ng,
01) — (N2, g2) be a differentiable map with 0 < rank F,< min (m, n). If the kernal space of F, is denoted by
ker F,, and the orthogonal complementary space of ker F, is denoted by (ker F,)* in TNy, then

TN; = ker F,®(ker F,)*.

Also, if the range of F, is denoted by range F,, and for a point qe N the orthogonal complementary space
of range F,rq) is denoted by (range F.rq)* in TrgN2 then the tangent space TrqN2 has the following
orthogonal decomposition:

Tr@N2 = (rangeF.rq)®(range F,rq)".

h
A differentiable map F: (N1, g1) = (N2, g2) is called a Riemannian map at geN; if Fx : (ker F,q)'—>
(range F.rq) is linear isometry.
In this paper, we study the quasi-hemi-slant Riemannian maps from an almost Hermitian manifolds to
Riemannian manifolds. In section 3, quasi-hemi-slant Riemannian maps are defined, and the geometry of
leaves of distributions that are involved in the definition of such maps is studied. In addition, a necessary
and sufficient condition for quasi-hemi-slant Riemannian maps to be totally geodesic is given. Finally,
concrete examples for this setting are provided.
2. PRELIMINARIES

If Jisa (1, 1) tensor field on an even-dimensional differentiable manifold Ny such that
F=- (1)

then (N1,J) is said to be an almost complex manifold where I is identity operator [19, 20]. Nijenhuis tensor
N of J is described as:

N(X1, X2) = [IX1, IX2] — [X1, Xo]— I[IX1, Xo]— I[X1, IX2] (2)

for all X1, XoeT'(TN1). If N =0, then Nj is said to be a complex manifold. If g; is a Riemannian metric
on Nj such that

01 (JXl, .]Xz) = gl(Xl, Xz), for all Xi, Xoel” (TNl) (3)

then (N3, gy, J) is said to be an almost Hermitian manifold, and if (Vx,J) Xz= 0 for all X1, XoeI'(TNa) then
(N1, 01, J) is said to be a Kahler manifold where V is the Levi-Civita connection on Nj.

O’Neill’s tensors T and A are defined by
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A £y Fa= HVH£1V£2 + WHfl HE, 4)

77151 EZ = HV]}E]_ VEZ + WVElHEZ (5)

for any &1, £,€I’(TN1). From Equations (4) and (5), we have

Vx, Xo = Tx, X2 + Wi Xa,. (6)
Vx,Z1= Tx, Zy+ HVx, Z, O
Vz, X1 = Az, X1+ Wz, X, (8)
Vz2,2Z2=HVz,Z2+ Az, Z5, 9)

for all X1, XoeI'(ker F,) and Zi, Z,eT"(ker F,)*, where HVx,Z1=Az, X, if Z1 is basic. For g € N1, X1eVy
and Z;eHq the linear operators

Az, and Tx,: TqN1— TqN1

are skew-symmetric, that is

01(Az, E1, E2) = — Qu(E1, Az, E2) and gu(7x, E1, E2) = —01 (E1, Ix, E2)
for each €1, E2e TqN1.

Let F: (N1, g1)— (N2, g2) is a smooth map. F is said to be a totally geodesic if
(VF*) (Xl, Xz) =0, for all Xj, Xzer(TNl).

The differential map F, of F can be observed a section of the bundle Hom (TNi, F*TN2)— N1, where
F1TN, is the bundle which has fibers (F*TN2)x = TrxN2, has a connection V induced from the Riemannian
connection V¥ and the pullback connection. In addition, the second fundamental form of F is given by

(VF.) (X1, X)) = Vi, F, (Xo) = Fu(Vy!X2) (10)
for vector field X1, XoeT'(TN1), where VF is the pullback connection. Bi-harmonic Riemannian maps and
the second fundamental form (VF,)(U1, U,), for all U;, U.el'(ker F,)* of a Riemannian map has

components in range F, [21].

Lemma 1. Let F: (N1, g1) = (N2, g2) be a Riemannian map. Then g2((VF.) (U1, Uy), F.(Us)) = 0 for all
U1, U2, UaeF(ker F*)L.

As a consequence of the above lemma, we get (VF,)(Ui, Uz) eI (range F,)*, for all Uy, Uy, el (ker
F)*L

Let F: (N1, g1, J) — (N2, g2) be Riemannian map from an almost Hermitian manifold onto a Riemannian
manifold.
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F is said to be a semi-invariant Riemannian map if there is a distribution Dic kerF, such that

ker F* =D® Dz, J (Dl) = D1,

where D:® D; is an orthogonal decomposition of ker F, [1]. The complementary orthogonal subbundle to
J(ker F,) in (ker F,)* is denoted by p. Thus, we get (ker F,)* = J(D,) ®p. It is clear that p is an invariant

subbundle.

If KerF, = D°® D+with D® is slant distribution and D* is anti-invariant distribution then an F is said to
be a hemi-slant map, and 0 is said to be the hemi-slant angle [14].

If Ker F,=D ® D:® D,, J (D) =D, JD,c (kerF,)* the angle & between JZ and the space (Da)p is
constant for any non-zero vector Z in (D1)pthen F is said to be quasi-hemi-slant Riemannian map and the
angle 0 is said to be the quasi-hemi-slant angle of the map [17].

3. QUASI-HEMI-SLANT RIEMANNIAN MAPS

Let F be quasi-hemi-slant Riemannian map from an almost Hermitian manifold (N1, g1, J) onto a
Riemannian manifold (N2, g2). Thus, we get

TN = kerF, @ (kerF,)*.

Let P, Q and R be projection morphisms of kerF, onto D, D; and D respectively. For any vector field
XieT'(kerF,), we put

X1=PX;1 + QX; + RXi. (11)

For all ZeT"(ker F,), we get
IZ1=0Z1+wZs (12)

where ¢Z1eT'(kerF,) and ©Z:1eT'(0D:1® ®D,). The horizontal distribution (kerF,)* is decomposed as
(kerF,)* = @D1®oD,® .

Here p is an invariant distribution of ®D1® D> in (kerF,)*. From Equations (11) and (12), we have
JX1=J (PXy) +J(QX1) +J (RX1)

= ¢ (PX1) + o (PX1) + ¢ (QX1) + ® (QX1) + ¢ (RX1) + o (RXa).

Since JD = D, we have oPX;=0 and ¢(RX1) = 0. Thus, we get

JX1 = ¢(PXy1) + $QX1 + QX1 + oRXj.

Hence we get the below decomposition

J(kerF,) =D @¢ (D1) ® (0D1® wDy)

where @ denotes orthogonal direct sum. Further, let X.€T" (D1) and XzeI” (D2). Then

01 (Xl, Xz) =0.
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From above equation, we have

g1 (IX1, X2) =—g1 (X1, IX2) = 0.

Now, consider

g1 (§X1, X2) = g1 (IX1 — 0X1, X2) = g1 (IX1, X2).

Similarly, we have g: (X1, $X2) = 0.

Let V1eI'(D) and V.€I'(D1). Then we have

01 (dV1, V2) = g1 (V1 — V1, V2) =01 (IV1, Vo) =—01(V1, IV2) =0

as D isinvariant i.e., JV1eI'(D).

Similarly, for Z,eT" (D) and Z;eTI" (D), we obtain g1 (¢Z2, Z1) = 0. From above equations, we have
g1 (0Y1, ¢Y2) =0and g1 (oY1, ®Y2) =0

for all Y1eI' (D) and Y2eI (D). Since wD:1c (ker F,)*, oD2c (ker F,)*. So we can write

(kerF,)* = @D1® oD@V

where Vis orthogonal complement of (0D1® wD) in (kerF,)*. For any X;eI'(ker F)*, we get
IX1=BX: + CX1 . (13)
where BX;eI'(ker F,) and CX1eT'(V).

Lemma 2. If F is a quasi-hemi-slant Riemannian map then we have

$*V1+BwoVi= -V, 0¢V: + CoVi =0,

0BV, + C?V; = —V,, BV, + BCV,=0

for all VeI (ker F,) and VeI (ker F,)*.

Proof. The desired results are obtained by using Equations (1), (12) and (13).
Evidence of the following result is the same as given in [1], so we will skip the proof.
Lemma 3. If Fis a quasi-hemi-slant Riemannian map then we have

i) $?V1 = —(c0s?01) V1,

i) 91 (9V1, $V2) = cos? Aug1 (V1, Vo),

iii) g1 (0V1, ©V2) = sin%0:9: (V1, V2),

for all V1, Voelm (Dl).
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From now on we will denote a quasi-hemi-slant Riemannian map from a Kéhler manifold (N, gi, J) onto
a Riemannian manifold (N2, g2) by F.

Lemma. 4. If F is a quasi-hemi-slant Riemannian map then, we have
Wi, 60Xz + Tx 0Xz = BTx, Xz +$VVx Xo,

7§<1(|)X2 + HVxioXs = C’]§<1X2 + con1X2,

WX, BZy + Tx,CZy = $Tx, Z1 + BHVx, Z4,

Tx,BZi + HVx,CZ1 = 0Tx,Z1 +CHVx, Z1.

Wz, 0X1+ Az, 0X1 = BAz, X1 + $WVz, Xy,

Az, 0X1 + HVz, 0X1 = 0Vz, X1+ CAz, Xy,

W2z,BZ: + Az,CZ, = BHVz,Z2 + 0 Az, 25,

Az,BZy + HVz,CZo =0Az, 2+ CHVz, 2>,

for any Xi, X,eI'(ker F,) and Z;, Z,eT'(ker F,)*.
Proof. Using Equations (3), (6), (7), (8), (9), (12) and (13), we get the lemma completely.

Now, we define

(Vx; 0)Xz = VWi $Xo— oWV, Xo,
(Vx, @)Xz = HVx, 0Xo— @Wx, X,
(Vz,C)Z2=HVz,CZ,— CHVz, Z,,
(Vz,B)Z: =Wz, BZ,— BHVz,Z,

for any Xy, X, eT'(ker F,) and Z;, Z,eT'(ker F,)*.

Lemma 5. If F is a quasi-hemi-slant Riemannian map then, we have
(Vx, 0)X2 = BTx, X2 — Tx, 0Xo,
(Vx, @)Xz = CTx, X2 — Tx $Xo,
(Vz,C)Z: = 0 Az, Z> - Az BZ,,
(Vz,B)Zz = ¢ Az, Z: - Az, CZ,,

for any vectors X1, X,eI'(ker F,) and Z1, Z,eI'(ker F,)*.
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Proof. The proof is straightforward, so we omit its proof.

If ¢ and o are parallel with respect to V on Nj respectively, then
B7x, Xz = Tx, 0Xz and CTx, Xz = Tx, $Xz

for any X1, XoeI'(TNy).

Theorem 1. D is integrable if and only if

01 (Tx0X1 — Tx | IX2, ©QZ1 + ©RZ1) = g1 Wi IX2 - VWx,IX1, $QZ1)
for all X1, XoeI' (D) and Z:eI” (D1® D»).

Proof. For all X1, X,eI'(D), Z:eI'(D:® D) and Z,e(kerF,)* , since [X1, X;] e(kerF,), we have g1 ([X,
X2], Z2) = 0. Thus D is integrable < g1 ([X1, X2], Z1) = 0. Now, using Equations (2), (3), (6), (7), (11), (12)
and (13), we have

01 ([X1, X2], Z1) = g1 IV, X2, 3Z1) — 91 IV X1, IZ1)

= 01 (Vx IX2, 3Z1) — 91 (VX2 IX1, JZy)

= 01 (Tx, IX2 — Tx2IX1, ®QZ1 + ®RZ1) — g1 (W, IXo—VVX2dX1, QZ).

Theorem 2. D is integrable if and only if

017z, 0922 — Tz, whpZs, V1) = 9u(Tz, 0Z2 — Tz,0Z, OPV1) + 01 (HVZz, 0Z2 - HVZ,0Z1, R V1)
for all Z1, Z,eI'(D,) and V1eT'(D:1® D»).

Proof. For all Z;, Z,eI'(D) and V1eI'(D:® D) and V.e(kerF,)*, since [Z1, Z;] e (kerF,), we have g: ([Z1,
Z>], V2) = 0. Thus Dy is integrable < g:1 ([Z1, Z2], V1) = 0. Using Equations (2), (3), (6), (7), (11), (12), (13)
and the Lemma 4, we have

01([Z1, Z2], Vi) = 0 (Vz1 JZ3, V1) — g1 (Vz, JZ1, IV4)

=01(Vz, 022, V1) + 9u(Vz, 0Z2, V1) — 91(VZ20Z1, V1) — 01(VZ,0Z1, V1)

= 08°0101 (Vz, Z2, V1) — €0820101(VZ,Z1, V1)-01(Tz, 00Z-T220$Z1,V1)
+01(HVz, 0Z2+Tz, 0Z2,JPVi+©RV1) —Qi(HVz,0Z1+ 122071, JIPV1 + @R V).
Now, we have

Sin261gl ([Z1, Z2], V1) = o ('Tzl(DZz - '7220321, JPV1) + s (HVzl())Zz—HVZZ(DZl, ®RV})

— 0u(Tz, 0022~ T2 071,V1)
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which proofs the assertion.
Theorem 3. D; is always integrable.

Theorem 4. (kerF,)*is integrable if and only if

91 (Wx, BXa=VVx, BXy, $Z1) = =02 (F. (CX2), (VF.) (X1, §Z1)) + 92(F.(CX1), (VE.) (X2, $Z4)),
01 (Ax, BXz — Ax,BX1, ©QZ2) = go((VF.) (X1, CX2), F.(0QZ2)) + g2 ((VF,) (X2, CX1), F.(0QZ2)),
91 (Ax, BXz — Ax;BX1, ©QZs) = go((VF.) (X1, CX2), F.(0QZ3)) + g2 ((VF,) (X2, CX1), F.(0QZs)),

for all Xl, Xzel"(ker F*)J‘, ZleF(D), deF(Dl) and ZsEF(De,).

Proof. For X1, XeI'(ker F,)*, Z:1eT" (D), Z;eI'(D1) and ZzeI'(Ds) and using Equations (2), (3), (8), (12)
and (13), we have

01 (X1, Xz]), Z1) = 9u(Vx, §Xz2, 0Z1) — 91 (VX20X4, 0Z1)

= g1 (W, BXo—Wx,BXy, 0Z1) — 91(CXa, Vx, 0Z1) + g1 (CX1, VXp0Z1).

Using Equation (10), we get

01 ([X1, X2]), Z1) = g1 (Wx, BXo—VVx,BXy, $Z1)+ g2 (F. (CX2), (VF.) (X1, $Z1))

— 02(F.(CXy), (VE,) (X2, $Z1)).

From Equations (2), (3), (8), (9), (11), (12), (13) and the Lemma 4, we obtain

01 ([X1, X)), Z2) = g1 ($Vx, Xz, $QZ2) + gu($Vx, X2, ®QZ2) — 91 ($VX2 X1, $QZ2) — gu($Vx, X1, ©®QZ2)
= €0520101 ([X1,Xz2], Z2) — g1 (VX1 X2, ©dQZ2) + g1(Vx, X1, ©dQZ2) +01 (Vx, BXz, ®QZ>)
+ gl(VxlC X2, ®QZ2) — 91 (Vx,BX1, ®QZ2— g1 (VX,CX1, ®QZ>).

Using Equation (10), we have

sin?01g1 ([X1,X2], Z2) = g1 (Ax, BXz2 —=Ax,BX1, ©QZ2) — g2 ((VF.)(X1, CXa2), F, (0QZ2))
+02 ((VF.) (X2, CXy), F, (0QZ2)).

Similarly, we get

sin%0201 ([X1, Xa], Z3) = g1 (Ax, BXz2 —Ax,BXi1, ©QZs) — g2 ((VF,)(X1, CX2), F, (0QZs))
+92 ((VF,) (X2, CXy), F (0QZ3)).

Theorem 5. (kerF,)* is totally geodesic if and only if

01 (.Axl)(z, PZ, + COSzelQZ1) = g1(HVx1X2, opPZ; + 0)¢QZ1)— o1 (.Ax1 BX; + HVxl CX2, ®QZ1 + (DRZl)
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for all Xy, XoeI'(ker F,)*and Z,eI'(ker F,).

Proof. For all Xi, XoeI'(kerF,)* and Z1eI'(kerF,) and using Equations (2), (3), (8), (9), (11), (12), (13)
and the Lemma 4, we have

01 (Vx, X2, Z1) = 01 (IVx, Xz, IZ1)

= — 01 (Vx Xa, $?PZ1 + 0dPZ1 + 0dpQZ1)+ g1 (Vx,BXz, ®QZ1 + ®RZ1) + g1(Vx, CX2, ®QZ1 + ®RZ1)
=01 (Ax, Xz, PZy + c0s%01QZ1) — g1 (HVx, X2, ®PZ1 + ©$pQZ1)+ g1 (Ax, BXz, ©®QZ1 + wRZ:)

+ g1(HVx, CXz, ®QZ1 + ©RZ1)

which shows our assertion.

Theorem 6. ker F, is parallel if and only if
01 (73(1 PXs, Xs) + coszelgl(%q Qx2, X3) =01 (HVxl(Dd)PXz, X3) + gl(HVxlwd)QXz, X3)
—01 (HVxlcOQX2 + HVxl(DRXQ, CXa)+ g1 (7;(10)QX2 + 7;(10)RX2, BX3)

for all Xy, XoeI'(kerF,) and Z,eT'(kerF,)*.

Proof. For all Xy, X,eI'(kerF,) and XseI'(kerF,)*, using Equations (2), (3), (8), (9), (11), (12), (13) and
the Lemma 4, we have

91 (Vx, X2, X3)= g1 (IVx, Xz, IX3)

= 01 (Vx, ¢ PX2, IXa), + g1(Vx, 0QXz, IXs) +01 (Vx, 0QXz, IXs) + ga(Vx, ®RXz, IX3)

= 0u(Tx, PXa, Xa) + €05%0191(Tx , QXz, Xa) — 01 (HVx, 0PXz, Xa)— g1 (HVx, ©QXz, Xa)
+ 01 (HVx, 0QX2 + HVX10RXz, CX3) +91(7x, ©QX2 + Tx, ®RX>, BX3)

which completes the proof.

Theorem 7. D is parallel if and only if

91(7x , IPX2, ®QZ1 + ®RZ1) = — g1 (Wx, IPXz, $Z1)

and

g1 (7, JPXz, CZ2) = —g1 (Wi, IPXo, BZ))

for all X1, XoeT" (D), Z1eT" (D1® Dy)* and Z,eT'(kerF,)*.

Proof. For all X, X;eI'(D), Z:eT" (D:® D,)*and Z,eI'(ker F,)* using Equations (2), (3), (7), (11), (12)
and (13), we have
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01 (Vx, Xz, Z1) = 91 (Vx IX2, IZ1)

=01 (Vx,IPXz, JQZ: + JRZy)

= 01 (Tx, 9PX2, ©QZ1 + @RZ1) + g1 (Wi, $PXz, $QZ1).
Using equations (2), (3), (7), (11) and (13), we obtain
91(Vx, X2, Z2) =g1 (Vx,IX2, IZ2)

=01 (Vx,IPX;, BZ, + CZ;)

= g1 (W IPX2, BZ2) + g1(7x, IPX2, CZ2)

which completes the assertion.

Theorem 8. D is parallel if and only if

01(7z, @0Z2, X1) = 91 (T2, 0Z2, $PX1) + 91 (HVz, ©Z>, ®RX))
and

91(HVz, 00Z2, X2) = 01 (HVz,0Za, CX2) + g1 (T2, 0Z2, BX2)
for all Z;, Z,eT'(D,), X1€I'(D ® Dy) and X.eT'(ker F,)*.

Proof. For all Zi, Z,eI" (D1), X1eI'(D @ D,) and XoeI'(ker F,)*, using Equations (2), (3), (8), (11), (13)
and the Lemma 4, we have

01 (Vz,Z2, X1) = 01 (Vz,3Z5, IX1)

= 01 (Vz,0Z2, IX1) + g1 (Vz, 0Z2, IXy)

= 008°0101 (Vz, Z2, X1) — 01 (T2, ©9Z2, X1)+ 91(Tz, 0Z2, $PX1) + 91 (HVz, ©Z>, ®RX1).
That is,

$in0191(Vz, Z2, X1)= — 91(7z, ©0Z2,X1) + 91 (Tz, ®Z2, IPX1)+ 91 (HVz, ©Z2, ©RX1).
From Equations (2), (3), (8), (12), (13) and the Lemma 4, we have

01 (Vz,Z2, X2)= 01 (Vz,3Z2, IX2) = g1 (Vz, 022, IX2) + g1 (Vz, 0Z2, IX>)

= 008°0101 (Vz,Z2, X2) — G1 (HVz, 09Z2, Xo)+ 91 (HVz, 0Zz, CX2) + g1 (T2, ®Z2, BX2).
So, we have

Sin%0101 (Vz,Z5, X2)= — 91 (HVz, 00Z2,X2) + 91 (HVz, ©Z2, CX2)+ 91 (T2, 0Z2, BXy),
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which completes the proof.
Similarly as above, we get the following theorem:

Theorem 9. D; is parallel if and only if

01 (HVx, 0RXz, ®QZ1) = — g1 (Tx, 0RXz, 6PZy + $QZ1)
and

01 (HVx, wRX;, CZ2) = — g1 (7x, ©RX>, BZ,)

for all Xy, X2eI'(Dy), Z1eT'(D ® D,) and Z,eT'(ker F,)*.

Proof. For all X1, X;eI'(D2), Z:el'(D @ D) and Z,I" (Ker F,)*. Using Equations (2), (3), (8), (11) and
(12), we have

91 (Vx, X2, Z1) = g1 (Vx, IX2, JZ1)

=01 (Vx, oORXz, $PZ1+ ¢QZ1 + wQZ1)

= 01 (Tx, ©RXa2, $PZ1 + $QZ1) + g1 (HVx, ©RX2, ®QZ1).
Using Equations (2), (3), (8), (11) and (13), we have

91 (Vx, X2, Z2) = 91 (Vx, IXz, JZ2)

= 01(Vx, 0RXz, BZ>+ CZ,)

= g1 (Tx, ©RXz, BZ5) + g1 (HVx, ©RXz, CZ,)

which shows our assertion.

Theorem 10. F is a totally geodesic map if and only if

01 (7z,PZy + c08°017z, QZ2 — HVz, 0PZo—HVZ10$QZ2, V1) = 91 (T2, ®QZ2 + Tz, ®RZ,, BV1)
+01 (HVz, @$QZ2 + HVz, 0dRZ>, V1)

and

01 (Av, PZi +c0s?01.Av, QZ1 — HVv, 0dPZ1 — HVv, ©0QZ1, V2) = g1 (Av, ©QZ1 + Av, ©RZ1, BV)
+01 (HVv,0QZ1 + HVv, ®RZ1, CV,)

for all Z;, Z,eT'(kerF,) and V1,VoeT'(ker F,)*.
Proof. For F is a Riemannian map, we have

(VF*) (Vl, Vz) =0
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for all V1, VoeI'(kerF,)*. For all Z1, Z,eT'(kerF,) and V1, V2eI'(kerF,)*, using Equations (2), (3), (7), (8),
(10), (11), (12), (13) and the Lemma 4, we have

92 (VF.) (Z1, Z2), F. (V1)) = =01 (Vz, Z2, V1)

=—0 (VzlJZQ, JVl)

=—0 (Vzl JPZz, JV]_) -0 (VzlJQ22, \]Vl) -0 (VzlJRZZ, JVl)

= =01 (Vz,0PZ, V1) — 91 (Vz, 0QZ>, IV1)—01 (Vz, 0QZ2, V1) — 91 (Vz, @RZ;, IV1)

=—0 ('Tzl PZ,+ C05291,TZ1 QZ; — HVzZ1i0pPZ,, —HVZl(DQZz,Vl)—gl ('Tzl 0QZ> +'Tz1 (DRZZ,Vl)

—01 (HVZ109QZ2 + HVZ10$RZ,, V).

Similarly, from Equations (2), (3), (7), (8), (10), (11), (12), (13) and the Lemma 4, we get

92 ((VF.) (V1, Z1), F. (V2))= — 01 (VV1 Zy, Vo)

= —01 (Vv1JZ1, JV2)

= —01 (Vv,IPZ1+ IV2) — 91 (Vv, JQZ1, IV2) — g1 (VV1 IRZ,y, IV2)

=—0: (Vvld)PZl, JV2) — 01 (Vvld)QZl, Vo) —o1 (Vvl(DQZ1, Vo) -1 (Vvlo)RZ1, JV7)

= —01 (Av, PZ1 + c0s?01.Av, QZi—H Vv, 0dPZ1—HVv, 0dQZ1,V2)— 01 (Av, ©QZ1+ Ay, ®RZ;, BV>)
—01 (HVv,0QZ1 + HVv, ©RZ1, CV5)

which completes the proof.

4. EXAMPLE

Let (X1, Xa,..., Xon 1, X2n) be coordinates on Euclidean space R?™ .An almost complex structure J on R?" is
defined by

d
g —+a,—+...tan 17—+ ay, —

=(—ay=—+a;—+...—ay——+ a1 —

where ay, ay,..., azn are C* functions defined on R?™. This notation will use throughout this section.

Example 1. Let (R, gi4, J) be an almost Hermitian manifold as defined above. F: R**—R 8 is defined
by

F (X1, X2,...,X14) = (X3 sin o + X5 COS a, Xe, X7, X10, 4, b, X13, X14)

where 61€ (O,g) anda, b eR. Then F is a quasi-hemi-slant Riemannian map (where rank F,, = 6) such that
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d a d . d d _ 0 _ 0 _ 0 _ 0
Xl——l,Xz = a—xz,X3 = COS(Xa—x3— Sln(Xa—xs,X4 = 6_364’ X5 _6x8'X6 = = axu,Xg

0x415°

kerF,=D @ D:® D,

where

D=<X;= aixl,xz = aixz,x7 = %H,XS = a:u >,

D; =< X3= cosazaix3 — sinaaixs,X‘; = aim >,

D; =< Xs= 6ix8’X6 =aixg>,

and

(kerF, )= < a%ﬁ,sinaaix3 + cosaaixs,ai%,%m,%ls,%“ >

which D = Span {Xi, X, X7, Xg} is invariant, D: = Span {Xs, X4} is slant with slant angle 6; = o and D>
= Span {Xs, Xs} is anti-invariant.

Example 2. Let (R'2, g1, J) be an almost Hermitian manifold as defined above. F: R >R # is defined
by

F (X1, X2,..,X12) = (X1, X2, C, Xs, X7+V3%

, X10, 0, X12)

where 0:e (O,g) and c, d €R. Then F is a quasi-hemi-slant Riemannian map (where rank F, = 6) such that

0 0
o X T

0y 0
Axg’ 6 T Bxy,

1X3 =

a 1 d d
oxe’ X4= 5(\/§a—x7—a—xg),X5 =

kerF.=D @ D:® D,,

where

d 5}
=< = — —_ —
D Xl P 3,X2 3 4->’

1 7] 7] a
=< = - _— [ f—
D Xa 2 (\/?_) 0xy axg)’ X5 d0xg >
7] 7]
=< = —_— =
D Xs 0xe’ Xe 0x11

and

0x,’ 9xy’ 9xg’ 2 “9x, 0x9”’ 9x10  0X12

which D = span {Xi, Xz} is invariant, D1 = Span {Xs, Xs} is slant with slant angle 0, = gand D; = Span
{Xs, Xs} is anti-invariant.
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