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Abstract
The geometry of image domain of analytic functions is of substantial importance to have
a comprehensive study of analytic functions. Malik et al. [Analytic functions associated
with cardioid domain, submitted] introduced a new class of functions connected with
cardioid domain and established coefficient bounds for functions in this class. Also the
bounds for the coefficients of Taylor series and their related functional inequalities are of
major interest. In this article, we aim to find the sharp bounds for the coefficients and to
estimate the Fekete-Szegö functional for certain analytic functions associated with cardioid
domain. The same type results are obtained for inverse functions and for log(f(z)/z).
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1. Introduction
Let A be the class of functions f of the form

f(z) = z +
∞∑

n=2
anzn, (1.1)

which are analytic in the open unit disk U = {z : |z| < 1} and S be the class of functions
from A which are univalent in open unit disk U. Several results dealing with maximizing
the non-linear functional

∣∣a3 − λa2
2
∣∣ for various classes and subclasses of univalent functions

have been proved and named as the solution of the Fekete-Szegö problem, see [4]. If f ∈ S

and it is of the form (1.1) , then

∣∣∣a3 − λa2
2

∣∣∣ ≤


3 − 4λ, if λ ≤ 0,

1 + 2 exp
(

2λ
λ−1

)
, if 0 ≤ λ < 1,

4λ − 3, if λ ≥ 1.
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This result is sharp [4]. The Fekete-Szegö problem has a rich history in literature. The
Fekete-Szegö problem has been examined also for complex λ.

The function f is said to be subordinate to the function g, written as f ≺ g, if there
exists a function w such that

f (z) = g (w (z)) , z ∈ U, (1.2)

where w (0) = 0, |w (z)| < 1 for z ∈ U. For any univalent function f there exists an inverse
function f−1 defined on some disc |w| ≤ 1/4 ≤ r(f), with Taylor series expansion

f−1 (w) = w + A2w2 + A3w3 + · · · . (1.3)

The logarithmic coefficients γn of a function f in S are defined by

log f (z)
z

= 2
∞∑

n=2
γnzn. (1.4)

The class C of convex univalent functions is defined to be the set of functions f ∈ S such
that

1 + zf ′′ (z)
f ′ (z)

≺ p (z) , (1.5)

where p ∈ P = {p : p is analytic in U, p (0) = 1, ℜp (z) > 0, z ∈ U} .
Using the concept of subordination, several subclasses of analytic functions are defined

on the basis of geometrical interpretation of their image domains. Some interesting ge-
ometrical classes we obtain when this domain is like right half plane [5], circular disk
[6], conic domain [7, 8], generalized conic domains [11], oval and petal type domains [12],
leaf-like domain [13], and the most concerning one is shell-like curve [1–3,15].

The shell-like curve is caused by the function p (z) = 1+τ2z2

1−τz−τ2z2 , where τ = 1−
√

5
2 . The

image of unit circle under the function p gives the conchoid of Maclaurin’s, that is

p
(
eiφ
)

=
√

5
2 (3 − 2 cos φ)

+ i
sin φ (4 cos φ − 1)

2 (3 − 2 cos φ) (1 + cos φ)
, 0 ≤ φ < 2π.

The function p (z) = 1+τ2z2

1−τz−τ2z2 has the following series representation

p (z) = 1 + τ2z2

1 − τz − τ2z2

= 1 +
∞∑

n=1
(un−1 + un+1) τnzn, where un = (1 − τ)n − τn

√
5

, τ = 1 −
√

5
2

.

This generates a Fibonacci series of coefficient constants which made it closer to Fibonacci
numbers.

Getting inspiration from the concept of shell-like curves and circular disk, Malik et al.
[9] defined and considered a new geometrical structure as image domain. For those, a class
of analytic functions is defined as follows, for more detail, see [9].

Definition 1.1. [9] Let CP [A, B] be the class of functions p which are defined by the
subordination relation

p (z) ≺ p̃ (A, B; z) ,

where p̃ (A, B; z) is defined by

p̃ (A, B; z) = 2Aτ2z2 + (A − 1) τz + 2
2Bτ2z2 + (B − 1) τz + 2

, (1.6)

with −1 < B < A ≤ 1 and τ = 1−
√

5
2 , z ∈ U.
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For in-depth understanding of the class CP[A, B], it would be worthwhile here to
have a geometrical description of the function p̃ (A, B; z) defined by (1.6) . If we denote
ℜp̃
(
A, B; eiθ

)
= u and ℑp̃

(
A, B; eiθ

)
= v, then the image p̃

(
A, B; eiθ

)
of the unit circle

is a cardioid like curve defined by the following parametric form as

u = 4 + (A − 1) (B − 1) τ2 + 4ABτ4 + 2λ cos θ + 4 (A + B) τ2 cos 2θ

4 + (B − 1)2 τ2 + 4B2τ4 + 4 (B − 1) (τ + Bτ3) cos θ + 8Bτ2 cos 2θ
,

(1.7)

v = (A − B)
(
τ − τ3) sin θ + 2τ2 sin 2θ

4 + (B − 1)2 τ2 + 4B2τ4 + 4 (B − 1) (τ + Bτ3) cos θ + 8Bτ2 cos 2θ
,

where λ = (A + B − 2) τ + (2AB − A − B) τ3, −1 < B < A ≤ 1, τ = 1−
√

5
2 and 0 ≤ θ <

2π.
Furthermore, we note that

p̃ (A, B; 0) = 1 and p̃ (A, B; 1) = AB + 9 (A + B) + 1 + 4 (B − A)
√

5
B2 + 18B + 1

.

The cusp of the cardioid like curve defined by (1.7) , is given by

γ (A, B) = p̃
(
A, B; e±i arccos(1/4)

)
= 2AB − 3 (A + B) + 2 + (A − B)

√
5

2 (B2 − 3B + 1)
.

If we consider the open unit disk U as the collection of concentric circles having origin as
center, then the image of each inner circle is a nested cardioid like curve. Therefore, the
function p̃ (A, B; z) maps the open unit disk U onto a cardioid region. That is, p̃ (A, B;U)
is a cardioid domain. The above discussed cardioid like curve with different values of
parameters can be seen in the following figures.

Figure 1. The curve (1.7) with A = 0.8; B = 0.6 and the curve (1.7) with A =
0.5; B=-0.5.

The parameters A, B are related by the relation B < A. Its voilation flips over the
cardioid like curve as shown in the following figures.

If we consider the open unit disk U as the collection of concentric circles having origin
as center, then we have the following image of open unit disk U.
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Figure 2. The curve (1.7) with A = 0.6; B = 0.8 and the curve (1.7) with A
=-0.5; B = 0.5.

Figure 3

The above figure shows the images of certain concentric circles. The image of each inner
circle is a nested cardioid like curve. Therefore, the function p̃ (A, B; z) maps the open
unit disk U onto a cardioid region. That is, p̃ (A, B;U) is a cardioid domain. For more
details, see [9].

Lemma 1.2. [9] Consider the function p̃ (A, B; z) defined by (1.6) . Then
i. The function p̃ (A, B; z) is univalent in the disk |z| < τ2, where τ = 1−

√
5

2 .
ii. If p (z) ≺ p̃ (A, B; z) , then Rep (z) > α, where

α = 2 (A + B − 2) τ + 2 (2AB − A − B) τ3 + 16 (A + B) τ2η

4 (B − 1) (τ + Bτ3) + 32Bτ2η
, (1.8)

where η = 4+τ2−B2τ2−4B2τ4−(1−Bτ2)
√

5(2Bτ2−(B−1)τ+2)(2Bτ2+(B−1)τ+2)
4τ(1+B2t2) , −1 < B < A ≤ 1

and τ = 1−
√

5
2 .
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iii. If p̃ (A, B; z) = 1 +
∑∞

n=1 p̃nzn, then

p̃n =



(A − B) τ
2 , for n = 1,

(A − B) (5 − B) τ2

22 , for n = 2,

1−B
2 τpn−1 − Bτ2pn−2, for n = 3, 4, 5, ...

(1.9)

and −1 < B < A ≤ 1.
iv. Let p (z) ≺ p̃ (A, B; z) and of the form p (z) = 1 +

∑∞
n=1 pnzn. Then, for a complex

number ν ∣∣∣p2 − νp2
1

∣∣∣ ≤ (A − B) |τ |
4

max {2, |τ (ν(A − B) + B − 5)|} .

Now we consider the following class of starlike functions associated with cardioid do-
main.

Definition 1.3. [10] The class of starlike functions associated with cardioid domain,
denoted by CS∗ [A, B], is defined to be the set of functions f such that

zf ′(z)
f(z)

≺ p̃ (A, B; z) , (1.10)

where p̃ (A, B; z) is defined by (1.6) .

In other words, the function f will belong to the class CS∗ [A, B] when the function
zf ′/f takes its values from the cardioid domain p̃ (A, B;U) . Furthermore, it is worthwhile
here to note that

(1) The class CS∗ [1, −1] coincides with the class SL of starlike functions connected
with Fibonacci numbers, introduced and studied by Sokół [15].

(2) CS∗ [A, B] ⊂ S∗ (α) =
{

f ∈ S : ℜ zf ′(z)
f(z) > α, z ∈ U

}
, where α is defined by (1.8) .

Lemma 1.4. [14] Let p ∈ P such that p (z) = 1 +
∞∑

n=1
cnzn. Then

|cn| ≤ 2, n ≥ 1. (1.11)∣∣∣∣c2 − v

2
c2

1

∣∣∣∣ ≤ max {2, 2 |v − 1|} =
{

2, 0 ≤ v ≤ 2,
2 |v − 1| , elsewhere.

(1.12)

2. Main results
Theorem 2.1. Let p (z) = 1 + p1z + p2z2 + . . . be in the class CP [A, B] . Then

|p1| ≤ (A − B) |τ |
2

, (2.1)

|p2| ≤ (A − B) (5 − B) |τ |2

22 . (2.2)

Results are sharp.

Proof. Let p ∈ CP [A, B] . Then by using (1.6) , we have p (z) ≺ p̃ (A, B; z). Therefore
there exists a Schwarz function ω such that ω (0) = 0 and |ω (z)| < 1 in U with

p (z) = p̃ (A, B; ω (z)) .

So function p1 (z) = 1+ω(z)
1−ω(z) = 1 + c1z + c2z2 + . . . is in class P of functions with positive

real part. Therefore

ω (z) = c1z

2
+
(

c2 − c2
1
2

)
z2

2
+ · · · .
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Now if p̃ (A, B; z) = 1 +
∑∞

n=1 p̃nzn, then

p̃ (A, B; ω (z))

= 1 + p̃1

{
c1z

2
+
(

c2 − c2
1
2

)
z2

2
+ · · ·

}
+ p̃2

{
c1z

2
+
(

c2 − c2
1
2

)
z2

2
+ · · ·

}2

+ · · ·

= 1 + p̃1c1
2

z +
{

1
2

(
c2 − c2

1
2

)
p̃1 + c2

1p̃2
4

}
z2 + · · · . (2.3)

Also consider the function

p̃ (A, B; z) = 2Aτ2z2 + (A − 1) τz + 2
2Bτ2z2 + (B − 1) τz + 2

.

Letting τz = α. Then

p̃ (A, B; z) = 2Aα2 + (A − 1) α + 2
2Bα2 + (B − 1) α + 2

=
Aα2 + (A−1)α

2 + 1
Bα2 + (B−1)

2 α + 1

=
(

Aα2 + (A − 1) α

2
+ 1

)[
1 + 1

2
(1 − B) α +

(
B2 − 6B + 1

4

)
α2 + · · ·

]

= 1 + 1
2

(A − B) α + 1
4

(A − B) (5 − B) α2 + · · ·

This implies that

p̃ (A, B; z) = 1 + A − B

2
τz + (A − B) (5 − B)

4
τ2z2 + · · · . (2.4)

Therefore, we have p̃1 = A−B
2 τ and p̃2 = (A−B)(5−B)

4 τ2. Now using (2.3) and (2.4) , we
obtain

p1 = A − B

4
τc1 (2.5)

and

p2 = 1
2

(
c2 − c2

1
2

)
A − B

2
τ + c2

1
4

(A − B) (5 − B)
4

τ2. (2.6)

From (2.5) and (1.11) , we get (2.1) . Also from (2.6) , we can write

|p2| =
∣∣∣∣∣A − B

4
c2τ − c2

1
4

A − B

2
τ + c2

1
4

(A − B) (5 − B)
4

τ2
∣∣∣∣∣

=
∣∣∣∣∣A − B

4
τ

{
c2 − c2

1
2

(
1 − (5 − B)

2
τ

)}∣∣∣∣∣
= (A − B) |τ |

4

∣∣∣∣c2 − v

2
c2

1

∣∣∣∣ ,
where v = 1 − (5−B)

2 τ. Now v ≥ 2 for B ≤ 1.763, therefore by using Lemma 1.4, we have
the required result, that is,

|p2| ≤ (A − B)
4

(5 − B) |τ |2 .

The result is sharp for the function p̃ (A, B; z) defined in (1.6) . �



Cardiod domain 2023

Theorem 2.2. Let f ∈ CS∗ [A, B] , −1 ≤ B < A ≤ 1 and of the form (1.1) . Then

|a2| ≤ 1
2

|τ | (A − B) , (2.7)

|a3| ≤ |τ |2

8
(A − B) (A − 2B + 5) . (2.8)

These results are sharp.

Proof. Let f ∈ CS∗ [A, B] and of the form (1.1) . Then

zf ′ (z)
f (z)

≺ p̃ (A, B; z) , (2.9)

where

p̃ (A, B; z) = 2Aτ2z2 + (A − 1) τz + 2
2Bτ2z2 + (B − 1) τz + 2

.

By using the definition of subordination, there exists a function ω with ω (0) = 0 and
|ω (z)| < 1 in U such that

zf ′ (z)
f (z)

= p̃ (A, B; ω (z)) . (2.10)

From (2.3), it is easy to see that

p̃ (A, B; ω (z)) = 1 + A − B

4
τc1z +

{
A − B

4
τ

(
c2 − c2

1
2

)
+ (A − B) (5 − B)

16
c2

1τ2
}

z2 + · · · .

(2.11)
Since f ∈ CS∗ [A, B] and of the form (1.1) , therefore

zf ′ (z)
f (z)

= 1 + a2z +
(
2a3 − a2

2

)
z2 + · · · . (2.12)

By using (2.10) and comparing the coefficients from (2.11) and (2.12) , it is easy to see
that

a2 = A − B

4
τc1 (2.13)

and

a3 = A − B

8
c2τ − A − B

8
c2

1
2

τ + (A − B) (A − 2B + 5)
32

c2
1τ2. (2.14)

From (2.13) and (1.11) , we get (2.7) . Also from (2.14) , we can write

|a3| =
∣∣∣∣∣A − B

8
τ

{
c2 − c2

1
2

(
1 − τ

2
(A − 2B + 5)

)}∣∣∣∣∣
= A − B

8
|τ |
∣∣∣∣c2 − v

2
c2

1

∣∣∣∣ ,
where v = 1 − τ

2 (A − 2B + 5) . Now v > 2 for A ≥ 2B − 1.7637, which is satisfied by the
relation A > B. Hence by using Lemma 1.4, we have the required result.

Let a function f∗ : U → C be defined as

f∗ (z) = z exp
z∫
0

p̃ (A, B; t) − 1
t

dt = z + τ

2
(A − B) z2 + τ2

8
(A − B)(A − 2B + 5)z3 + · · · ,

(2.15)
where p̃ (A, B; .) is defined in (1.6) . Then it is clear that f∗ (0) = f ′

∗ (0) − 1 = 0 and
zf ′

∗ (z) /f∗ (z) = p̃ (A, B; z) . This shows that f∗ ∈ CS∗ [A, B] . Hence result is sharp for the
function f∗. �
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Theorem 2.3. Let f ∈ CS∗ [A, B] and of the form (1.4) . Then∣∣∣a3 − µa2
2

∣∣∣ ≤ (A − B) |τ |
8

max {2, |τ (− (A − 2B + 5) + 2 (A − B) µ)|} . (2.16)

This result is sharp.

Proof. Since f ∈ CS∗ [A, B] , so we can write
zf ′ (z)
f (z)

= p̃ (A, B; ω (z)) , z ∈ U,

where ω is Schwarz function such that ω (0) and |ω (z)| < 1 in U. Therefore

z + 2a2z2 + 3a3z3 + · · · =
{

z + a2z2 + a3z3 + · · ·
}{

1 + p1z + p2z2 + · · ·
}

.

Comparing the coefficients of both sides, we get
a2 = p1, 2a3 = p1a2 + p2.

This implies that ∣∣∣a3 − µa2
2

∣∣∣ =
∣∣∣(p1a2 + p2) /2 − µp2

1

∣∣∣
=

∣∣∣(p2
1 + p2

)
/2 − µp2

1

∣∣∣
= 1

2

∣∣∣p2 − (2µ − 1) p2
1

∣∣∣ .
By using Lemma 1.2 iv for ν = 2µ − 1, we have the required result. The equality∣∣∣a3 − µa2

2

∣∣∣ = (A − B) |τ |2

8
|(A − 2B + 5) − 2 (A − B) µ|

holds for the function f∗ given in (2.15). Now consider the function f0 : U → C be defined
as

f0 (z) = z exp
z∫
0

p̃
(
A, B; t2)− 1

t
dt = z + τ

4
(A − B) z3 + · · · , (2.17)

where p̃ (A, B; .) is defined in (1.6) . Then it is clear that f0 (0) = f ′
0 (0) − 1 = 0 and

zf ′
0 (z) /f0 (z) = p̃

(
A, B; z2) . This shows that f0 ∈ CS∗ [A, B] . Hence the equality∣∣∣a3 − µa2

2

∣∣∣ = (A − B) |τ |
2

holds for the function f0. �
Inverse coefficients

Theorem 2.4. Let f ∈ CS∗ [A, B] and f−1 have the coefficients of the form (1.3) . Then
for τ = 1−

√
5

2 ,

|A2| ≤ |τ |
2

(A − B) ,

|A3| ≤ |τ |
8

(A − B) max {2, |τ (3A − 2B − 5)|} .

These results are sharp.

Proof. Let f ∈ CS∗ [A, B] and of the form (1.1) . Then using (2.13) and (2.14) , we can
write

a2 = A − B

4
τc1

and

a3 = A − B

8
τ

(
c2 − c2

1
2

)
+ (A − B) (A − 2B + 5)

32
c2

1τ2.
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Since f
(
f−1 (w)

)
= w, therefore using (1.3) it is easy to see that

A2 = −a2, A3 = 2a2
2 − a3.

Putting the values of a2 and a3 in the above relation, we obtain

A2 = −A − B

4
τc1,

A3 = −τ

8
(A − B)

(
c2 − 1

2
c2

1

)
− τ2c2

1
32

(A − B) (5 − 3A + 2B) .

By using (1.11), it is easy to see that

|A2| ≤ |τ |
2

(A − B) .

Consider

|A3| =
∣∣∣∣∣−τ

8
(A − B) c2 + −τc2

1
16

(A − B) − τ2c2
1

32
(A − B) (5 − 3A + 2B)

∣∣∣∣∣
= |τ |

8
(A − B)

∣∣∣∣c2 − v

2
c2

1

∣∣∣∣ ,
where v = 1 − τ

2 (5 − 3A + 2B). By using Lemma 1.4, we obtain the required result.
The first result and the inequality |A3| ≤ |τ |

8 (A − B) |τ (3A − 2B − 5)| are sharp for the
function f∗ given in (2.15). The result

|A3| ≤ |τ |
4

(A − B) ,

is sharp for the function f0 given in (2.17). �
Theorem 2.5. Let f ∈ CS∗ [A, B] and having inverse coefficients of the form (1.3) . Then
for µ a complex number and for |z| < τ2, where τ = 1−

√
5

2 ,∣∣∣A3 − µA2
2

∣∣∣ ≤ (A − B) |τ |
8

max {2, |τ (3A − 2B − 5 − 2µ (A − B))|} .

This result is sharp.

Proof. Since A2 = −a2, A3 = 2a2
2 − a3, therefore by using a2 = p1 and 2a3 = p1a2 + p2

one can write ∣∣∣A3 − µA2
2

∣∣∣ =
∣∣∣∣(2 − µ) p2

1 − p1a2 + p2
2

∣∣∣∣
=

∣∣∣∣∣(2 − µ) p2
1 − p2

1 + p2
2

∣∣∣∣∣
=

∣∣∣p2 − (3 − 2µ) p2
1

∣∣∣ .
Now using Lemma 1.2 vi for ν = 3 − 2µ, we obtain the required result.

Equality is attained by the functions f∗ and f0 given in (2.15) and (2.17) . �

Logarithmic coefficients

Theorem 2.6. Let f ∈ CS∗ [A, B] and the coefficients of log f(z)
z be given by (1.4) . Then

|γ1| ≤ |τ |
4

(A − B) ,

|γ2| = τ2

16
(A − B) (5 − B).

These results are sharp.
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Proof. Differentiating (1.4) and comparing coefficients give

γ1 = 1
2

a2, γ2 = 1
2

(
a3 − 1

2
a2

2

)
.

Thus the inequalities yield from Theorem 2.2 and Theorem 2.3 with µ = 1/2. Both results
are sharp for the function f∗ defined in (2.15). �

Theorem 2.7. Let f ∈ CS∗ [A, B] and the coefficients of log f(z)
z be given by (1.4) . Then

for µ, a complex number, we have∣∣∣γ2 − µγ2
1

∣∣∣ ≤ (A − B) |τ |
16

max {2, |τ (B − 5 + µ (A − B))|} .

Proof. Since γ1 = 1
2a2, γ2 = 1

2

(
a3 − 1

2a2
2

)
, therefore by using a2 = p1 and 2a3 = p1a2+p2

one can write ∣∣∣γ2 − µγ2
1

∣∣∣ = 1
4

∣∣∣p1a2 + p2 − (1 + µ) p2
1

∣∣∣
= 1

4

∣∣∣p2
1 + p2 − (1 + µ) p2

1

∣∣∣
= 1

4

∣∣∣p2 − µp2
1

∣∣∣ .
Now using Lemma 1.2 vi for ν = µ, we obtain the required result.

Results are sharp for the functions f∗ and f0 defined in (2.15) and (2.17) . �
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