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ABSTRACT The dynamical behaviors and chaos control in Indirect Field Oriented Control (IFOC) of 3-phase
induction motor is investigated in the present paper. The IFOC of 3-phase induction motor exhibits steady state
behavior, Hopf bifurcation and chaotic behavior through period-doubling. The chaotic behavior is strewed with
periodic oscillation. To eliminate the chaotic oscillations in IFOC of 3-phase induction motor, two self-feedback
delay controllers are designed: The first is the simple controller and the second controller is with sliding mode
method. Numerical simulations are used to show the efficiency of the both controllers. Among the both
controllers, the simple self-feedback delay controller gives the better results by comparison to sliding mode
self-feedback delay controller. Finally, the physical feasibility of simple self-feedback delay controller applied to
IFOC of 3-phase induction motor is validated through electronic circuit’s implementation on OrCAD-PSpice
software. The OrCAD-Pspice results are in agreement with the numerical results.
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INTRODUCTION

The success on nonlinear phenomena in many electronic systems
stimulated research in other system especially the electrical ma-
chine. Many works have been done in Research on nonlinear
phenomena like bifurcation and chaotic phenomena in electrical
machine so, in 1989 by Kuroe et al. Kuroe and Hayashi (1989) ap-
plying the Poincaré map approach to analyzed the period doubling
bifurcation in a three-phase inverter-fed induction drive system
employing V/F control. In 1994, Nagy Nagy (1994) studied the bi-
furcation and chaotic phenomena in tolerance-band based current
controlled induction motor drives. Also in 1994 Hemati Hemati
(1994) carried out the strange attractors in the Permanent mag-
net direct current drive by transforming the drives mathematical
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model into a Lorenz system. In 1997, Chau et al. Chau et al. (1997)
analyzed the bifurcation and chaotic phenomena in a simple DC
drive by taking the proportional gain and the supply voltage as
bifurcation parameters.

Two years later in 1999, Chau et al. Chen et al. (2002) extended
the nonlinear analysis to switched reluctance motor drives. In
2000, Suto et al. Suto et al. (2000) reported the period adding
route to chaos in a hysteresis current controlled AC drive. In
2002, Li et al. Li et al. (2002) investigated the chaotic behavior in a
permanent magnet synchronous motor (PMSM) by reducing the
system model to a Lorentz system. In 2004, Gao et al. Gao and
Chau (2004) reported the occurrence of a Hopf bifurcation and
chaos in a synchronous reluctance drive. The paper showed that
at some parameters of the drive, the attracting equilibrium point
may lose stability and the trajectories begin to converge on a limit
cycle.

Further variation of the parameter caused the trajectories to
depart from the limit cycle and converge on a strange or chaotic
attractor. In 2009, Dai et al. Dai et al. (2009) reported the Hopf
bifurcation and chaos resulting from torus break down in a simple
DC drive employing a PI controller. Due to the fact that the qualita-
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tive behavior of all nonlinear systems including electrical machine
often changes when some of the system parameters are being var-
ied, the nonlinear phenomena and chaotic behaviors in electrical
machine are viewed as undesirable by most engineers and some
work has been conducted on how to stabilize such systems Su
and Li (2015); Kholerdi et al. (2016); Rajagopal et al. (2016) because
chaotic oscillation in some electrical machine can affect their per-
formance which can cause torque breakdown, oscillation with low
frequencies and poor performance in speed control Rajagopal et al.
(2016); He and Han (2017).

Among some control technique which have been applied for the
stabilization of some electrical machine we can quote Pyragas with
its method based on time delay approch Pyragas (1992, 2001), an-
other’s methods are based on nonlinear feedback control Ren and
Liu (2006), sliding mode Cheng et al. (2011) adaptive back-stepping
method Ge and Huang (2005) and active controller Cheukem et al.
(2020). The previous method has been used to stabilize chaotic
oscillation in some machine. In 2000, Asakura et al. Asakura et al.
(2000) stabilize from the chaotic oscillation of an induction drive to
stable operating point by applying neural network method. The
disadvantage for many of the previous method is on the control
time too long. The time delay approach Zhang et al. (2012) may
force the system to operate in a desired periodic state. Despite
the fact that it is not easy to find the delay in reality, this method
can control the machine preserving the dynamic properties of the
latter.

In this paper, the nonlinear chaotic phenomena in the steady
state trajectories of IFOC of 3-phase induction motor were stabi-
lized by applying delay feedback method comparing to sliding
mode method to better show effectively of the choosing method.
This technique is less complex than existing methods and was
successfully applied to control chaotic behavior in IFOC of 3-phase
induction motor. This work is structured as follows, after general
introduction in section1, the mathematical description of IFOC of
3-phase induction motor and its numerical analysis are given in
section 2. Section 3 deals with the chaos control while section 4
presents the electronic implementation of chaos control in IFOC
of 3-phase induction motor. The last section is devoted to the
conclusion.

HOPF BIRFUCATION IN IFOC

The IFOC can be described by the following rate-equations Kem-
nang Tsafack et al. (2020):

dx1

dt
= −C1x1 +

k
τrisd

∗ x4x2 + C2isd
∗, (1a)

dx2

dt
= −C1x2 −

k
τrisd

∗ x4x1 + C2x4, (1b)

dx3

dt
= −C3x3 − C4

[
C5(x1x4 − x2i∗sd)− TL −

C3

C4
ωre f

]
, (1c)

dx4

dt
= (ki − kpC3)x3 − kpC4

[
C5(x1x4 − x2i∗sd)− TL −

C3

C4
ωre f

]
. (1d)

where x1,x2,x3,x4 are respectively the direct and quadratic rotor
flux component for the two first one and velocity for the third
variable and the fourth is the quadratic axis stator current. Another
parameters such as k, τr, isd

∗, TL , ωre f represents respectively the
ratio between the true value and the estimate value of rotor time
constant, the rotor time constant, the reference current, the load
torque and the reference speed. Figure 1 shows the bifurcation
diagram of the variable, x1 ,and it largest Lyapunov exponents
(LLE) versus the parameter k.

Figure 1 Bifurcation diagram depicting the local maxima of x1
(a) and the corresponding LLE (λmax) (b) versus the parameter
k for C1=13.67, C2=1.56, C3=0.59, C4=1176, C5=2.86. M=0.069,
φre f =0.4, 1

τri∗sd
=2.3581; TL=0.49, kp=0.01 and ki=0.5.

In Figure 1 (a), system (1) evolving to a steady state until k ≈ 1.3,
where there is appearance of the Hopf bifurcation followed by
period 1 then 2 and so on. Fig. 1 (b) confirms the dynamical
behavior found in Fig. 1 (a). The dynamical result of the machine
(1) is illustrate when varying the parameter k in the range 1 ≤
k ≤ 4, some phase portraits of system (1) are plotted in Fig. 2 for
specific value of parameter k.

Steady state behavior and period-1-oscillations are presented in
Figs. 2 (a) and (b) respectively while in Figs. 2 (c) to (f) chaos and
period doubling are found.

CHAOS CONTROL IN IFOC USING SELF-CONTROLLER
DELAY FEEDBACK

Chaos made IFOC of 3-phase induction motor unstable and should
be controlled to keep secure operation. The simple self-control de-
lay feedback method is used in this section to stabilize the chaotic
behavior in indirect field oriented control of three phase induc-
tion machine due to its simplicity proposal controller for simple
self-control delay feedback method is defined by:

u1(t) = K f [x4(t − τ)− x4(t)] (2)

where τ is the delay and K f is the coupling strength. Our controller
u1(t) is added to the equation (1d) of system (1):

dx1

dt
= −C1x1 +

k
τr isd

∗ x4x2 + C2isd
∗ (3a)

dx2

dt
= −C1x2 −

k
τr isd

∗ x4x1 + C2x4 (3b)

dx3

dt
= −C3x3 − C4

[
C5(x1x4 − x2isd

∗)− TL −
C3

C4
ωre f

]
, (3c)

dx4

dt
= (ki − kpC3)x3 − kpC4

[
C5(x1x4 − x2isd

∗)− TL −
C3

C4
ωre f

]
+

K f [x4(t − τ)− x4(t)] . (3d)

A bifurcation diagram illustrating the dependence of the dynam-
ical behavior of system (1) on the two parameters K f and τ is
plotted in Fig. 3.
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Figure 2 Phase portraits of system (1) in the plane (x2 , x1 ) obtained for some value of k :(a) k=1.2, (b) k=1.5, (c ) k=3.2 , (d) k=3.56, (e)
k=3.6 and (f) k=3.67. The initial conditions are (1,1,0.1,0.1) keeping the rest of parameters being identical to parameter of Fig.1.
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Figure 3 Regions of dynamical behaviors in the parameter space
spanned by the two parameters K f and τ for C1=13.67, C2=1.56,
C3=0.59, C4=1176, C5=2.86. M=0.069, φre f =0.4, 1

τri∗sd
=2.3581,

TL=0.49, kp=0.01 and ki=0.5. Periodic or steady state behaviors
are in black dots and chaotic behaviors are in white dots.

System (3) can exhibit periodic behavior or steady state behavior
or chaotic behavior depending on the parameters, K f and ,τ , as
presented in Fig.3. For, K f = 5, the bifurcation diagram taking, τ
as bifurcation parameter is presented in Fig. 4.

Figure 4 Bifurcation diagram of system (3) depicting the lo-
cal maxima of x4, versus the parameter, τ, for K f =5, C1=13.67,
C2=1.56, C3=0.59, C4=1176, C5=2.86. M=0.069, φre f =0.4,

1
τri∗sd

=2.3581; TL=0.49, kp=0.01 and ki=0.5.

In Figure 4, as the delay τ increases from zero to 1.2, the dy-
namics of system (3) alternates between a chaotic domain and a
periodic domain. The phase portraits of system (3) illustrating the
control of chaos in indirect field oriented control of three phase
induction machine displayed in Fig. 5.

Scenario of controlling chaotic behavior toward periodic behav-
iors in system (3) by varying the delay τ and K f = 5 is shown in
Fig. 5. For,τ=0.5, bifurcation diagram of system (3) taking ,K f as
bifurcation parameter is shown Fig. 6.

From Figure 6, we observe a gradual exit from chaos by pe-
riod doubling up to K f ≈ 7.88 where there is the appearance of
Hopf bifurcation followed by steady state behavior. Therefore, the
chaotic behavior found in IFOC of 3-phase induction motor can be
controlled to periodic or steady state depending on the parameters
K f and τ. The phase portraits system (5) illustrating the control of
chaos in IFOC of 3-phase induction motor is displayed in Fig. 7.

Scenario of controlling chaotic behavior toward steady state
behavior in IFOC of 3-phase induction motor by varying the cou-
pling strength K f and the delay time τ=0.5 is shown in Fig. 7. To
justify the choice of self-control delay feedback method, a sliding
mode delay control method is used to control chaotic behavior
IFOC of 3-phase induction motor. The sliding mode delay control
method, the controller is defined by:

u2(t) = K f Sgn [x4(t − τ)− x4(t)] (4)

where the parameters τ and K f are respectively the delay and the
coupling strength. Our controller, u1(t),is added to the equation
(1d) of system (1):

dx1

dt
= −C1x1 +

k
τr isd

∗ x4x2 + C2isd
∗ (5a)

dx2

dt
= −C1x2 −

k
τr isd

∗ x4x1 + C2x4 (5b)

dx3

dt
= −C3x3 − C4

[
C5(x1x4 − x2isd

∗)− TL −
C3

C4
ωre f

]
(5c)

dx4

dt
= (ki − kpC3)x3 − kpC4

[
C5(x1x4 − x2isd

∗)− TL −
C3

C4
ωre f

]
+

K f Sgn [x4(t − τ)− x4(t)] . (5d)

The bifurcation diagrams of systems (3) and (5) as function of
the parameter,K f , is plotted in Fig. 8 for, τ=0.5.

In Figure 8, the black dots represent the results obtained from
system (3) when the control is non-adaptive and its shape given
by u1(t) = K f [x4(t − τ)− x4(t)]. While the red dots represent the
results obtained from system (5) when the control law is given
by u2 (t) = K f Sign [x4(t − τ)− x4(t)]. System (3) displays upside
down period-doubling to chaotic behavior strew with periodic
oscillation until K f ≈ 7 where there is appearance of Hopf bifurca-
tion followed by steady state behavior. System (5) displays upside
down period-doubling to chaotic behavior strew with periodic
oscillation until K f ≈ 7.46 where there is appearance of Hopf bi-
furcation followed by steady state behavior. It is noted that system
(3) has a larger periodic or steady state behaviors domain and
smaller chaotic behavior domain compared to system (5) which
has a smaller periodic or steady state behaviors domain and a
larger chaotic behavior domain. Knowing that when the machine
exhibits periodic or steady state behaviors it is working in a secure
operation regime. Therefore, the simple self-control delay feed-
back method give better results in control of indirect field oriented
control compared to the sliding mode delay control method.
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Figure 5 Portraits system (5) illustrating the control of chaos in system (3) for K f =5 for specific value of delay,τ: (a) Chaotic attractor
at, τ =0.025, (b) Period-4-limit cycles at, τ =0.67, (c ) Period-2-limit cycles at, τ=0.7 and (d) Period-1-limit cycle at, τ =0.75. the figure is
obtained by keeping the parameters as in Fig.4. and the initial conditions (1,1,0.1,0.1)
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Figure 6 Bifurcation diagram of system (3) depicting the local
maxima of x4 versus the parameter, K f for, τ=0.5, C1=13.67,
C2=1.56, C3=0.59, C4=1176, C5=2.86. M=0.069, φre f =0.4,

1
τri∗sd

=2.3581; TL=0.49, kp=0.01 and ki=0.5.

Figure 7 Portraits system (5) illustrating the control of chaos in
IFOC of 3-phase induction motor of system (5) for, τ =0.5 for spe-
cific value of delay, τ: (a) Chaotic attractor at K f =1.5, (b) Period-
2-limit cycles at K f =2, (c ) Period-1-limit cycles at K f =4 and (d)
Steady state at K f =7.88. The initial conditions are (1,1,0.1,0.1)
and the rest of the parameters are the same as in the caption of
Fig. 6.

ELECTRONIC IMPLEMENTATION OF IFOC USING SELF-
CONTROLLER DELAY FEEDBACK

An alternative approach for exploring the controlled system (3) is
the implementation of an electronic circuit. The circuit implement-
ing the controlled system (3) is presented in Fig. 9.

Figure 8 Bifurcation diagrams depicting the local maxima
of x4 versus the parameter, K f for, τ=0.5, C1=13.67, C2=1.56,
C3=0.59, C4=1176, C5=2.86. M=0.069, φre f =0.4, 1

τri∗sd
=2.3581;

TL=0.49, kp=0.01 and ki=0.5.

The previous circuit is carried out with capacitors, resistors,
operational amplifiers and analog devices. Parameters values
are: R1 = 7.32,kΩ,R2 = 0.9,kΩ, R3 = 10,kΩ ,R4 = 7.32,kΩ
,c = 10,nF,R5=0.9,kΩ,R6=6.41,kΩ R7=169.5, kΩ,R8 = 0.3,kΩ,R =
10kΩ,R9=0.743kΩ,R10 = 10kΩ ,R11 = 20kΩ, R12 = 29.73kΩ
R13 = 212.59kΩ,R14 = 10kΩ V1 = 0.624V,V2 = 0.6468V,V3 =
6.468mV,ωo=1000rad.s−1, the phase portraits of controlled IFOC
of 3-phase induction motor generated from circuit diagram of Fig.
9 are shown in Fig. 10.

From Figure 10, the matching of Pspice results with the numeri-
cal simulations results of Figs. 5 (a) and (d) and Figs. 7 (a) and (d)
confirm the feasibility of the self-control delay feedback method.

45 | Tsafack et al. CHAOS Theory and Applications



[a]

[b]

Figure 9 [a] Circuit implementing the controlled system (3) and [b] Circuit implementing the time delay unit.
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Figure 10 Phase portraits in (VX1 , VX2 ) plane of the circuit in Fig. 8: (a) chaotic attractor for Rn = Rn1 = 0.6kΩ, (b) Period-1-limit cycle
for Rn = Rn1 = 0.7kΩ, (c) chaotic attractor for Rn = Rn1 = 0.84kΩ and (d) steady state behavior for Rn = Rn1 = 0.8kΩ. The initial
values of capacitors voltage are (VX1 (0) , VX2 (0) , VX3 (0) , VX4 (0)) =(0.1V, 0.1V, 0.1V, 0.1V)

CONCLUSION

This paper was devoted to dynamical behaviors and chaos control
in indirect field oriented control of 3-phase induction motor. The
numerical simulations revealed that this machine exhibits steady
state behavior, Hopf bifurcation and period doubling bifurcation
to chaotic oscillations with periodic oscillations windows. The
two self-feedback delay controllers: A simple and a sliding mode
delay controllers were designed to suppress the chaotic behav-
iors found in indirect field oriented control of 3-phase induction
motor. Among these self-feedback delay controllers, the simple
self-feedback delay controller is preferable because the controller
suppress chaotic behavior in indirect field oriented control of 3-
phase induction motor with a larger periodic or steady state be-
haviors domain and smaller chaotic behavior domain. Finally,
the physical feasibility of simple self-feedback delay controller
applied in indirect field oriented control of 3-phase induction mo-
tor was validated through electronic circuit’s implementation on
OrCAD-PSpice software.
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