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Abstract. The aim of the paper is to obtain generalized convergence results
for nonlinear multidimensional integrals of the form:

Lη(ω;x) =
ηn

Ωn−1

∫
D

K(η |t− x| , ω(t))dt.

We will prove some theorems concerning pointwise convergence of the family
Lη(ω;x) as η → ∞ at a fixed point x ∈ D which represents any generalized
Lebesgue point of the function ω ∈ L1 (D) , where D is an open bounded
subset of Rn. Moreover, we will consider the case D = Rn.

1. Introduction

The studies so far showed that Musielak [14] was the first researcher who in-
vestigated the approximation characteristics of convolution type nonlinear integral
operators of the form:

Tw(f ; s) =

b∫
a

Kw(x− s, f(x))dx, (1.1)

where s ∈ (a, b) ⊂ (−∞,∞) , w ∈ I and I is a non-empty index set. His research
was an intriguing contribution to literature related to this kind of nonlinear integral
operators. Later, Swiderski and Wachnicki [19] studied the pointwise convergence
of the operators of type (1.1). Extensive knowledge concerning this theory can
be found in the monograph by Bardaro et al. [7]. Later on, multidimensional
counterparts of the operators of type (1.1) were studied by Angeloni and Vinti [6] in
some function spaces. Then, Jackson-type generalization of the operators defined
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in [6] were considered by Yilmaz [22]. Some studies on nonlinear operators in
different settings can be found in [5,9,13,21]. Also, results and applications in wide
range concerning linear operators can be found in [1,4,8,12,17,20]. Some weighted
approximation results concerning well-known Gauss-Weierstrass and Picard integral
operators can be found in the recent articles [23] and [24], respectively. In [16],
a class of summation-integral-type operators covering many well-known ones was
considered.
In the year 2016, Almali and Gadjiev [3] considered the following certain non-

linear integrals:

Lη(ω;x) =
ηn

Ωn−1

∫
D

K(η |t− x| , ω(t))dt, (1.2)

where D = Rn, t, x ∈ Rn, |t− x| =

√√√√ n∑
k=1

(tk − xk)
2 and Ωn−1 is the surface

area of unit sphere Sn−1 = {x ∈ Rn : |x| = 1} in Rn. Here, Rn denotes usual
n−dimensional Euclidean space. Also, a real number η is considered as a posi-
tive parameter. They obtained pointwise convergence result for Lebesgue points of
integrable functions. In the same article, exponential nonlinear integrals were also
introduced. Some related works can be given as [2, 11].
The aim of the current manuscript is to obtain convergence results for the oper-

ators of type (1.2) in two different settings via assigning two different definitions to
a symbol D. We will prove pointwise convergence of the family Lη(ω;x) as η →∞
at a fixed point x ∈ D which represents any generalized Lebesgue point of function
ω ∈ L1 (D) , whereD is an open bounded subset ofRn, and ω ∈ L1 (Rn) , separately.

The space L1 (D) consists of the measurable functions satisfying
∫
D

|ω(t)| dt < ∞.

The norm formula in this space is given as follows: ‖ω‖L1(D) =

∫
D

|ω(t)| dt. The

definition of the space L1 (Rn) is analogous. Our results generalize and improve
Theorem 2.2 in [3] in two different directions in view of the usages of generalized
domain of integration and generalized characteristic point, respectively. Now, we
consider the kernel function of the operators of type (1.2). Since η |.| ∈ R+

0 , for
simplicity, we may denote η |.| by ην. Therefore, K(η |.| , ω(t)) =: K(ην, ω), where
ν ∈ R+

0 and ω : Rn → R.
The conditions on the kernel function to be given below are revised versions of

the conditions used by Almali and Gadjiev [3].
We assume that real-valued kernel function K(ην, ω), where ην ∈ R+

0 and ω :
Rn → R, satisfies the following conditions:

a: For every ν ∈ R+
0 and η ∈ R+, K(ην, 0) = 0 and K(ην, ω) is analytic at

ω = 0 with radius of analyticity R = ∞ for all values of its first variable,
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that is, its Maclaurin series converges for all ω ∈ R and for all values of its
first variable.

b: ∂mK(ην,ω)
∂ωm

∣∣∣
ω=0

is a non-negative and non-increasing function with respect

to ν on R+
0 for any m = 1, . . . and for all values of η ∈ R+.

c: The first partial derivative ∂K(ην,ω)
∂ω

∣∣∣
ω=0

is a majorant function for all re-

maining derivatives, that is, ∂mK(ην,ω)
∂ωm

∣∣∣
ω=0
≤ ∂K(ην,ω)

∂ω

∣∣∣
ω=0

, where m =

1, . . . , for all values of ν ∈ R+
0 and η ∈ R+.

d: ηn

Ωn−1

∫
Rn

∂mK(η|t|,ω)
∂ωm

∣∣∣
ω=0

dt = Am < ∞, where Am with m = 1, . . . are

certain positive constants which are independent of η and

lim
η→∞

ηn

Ωn−1

∫
ζ<|t|<∞

∂mK(η |t| , ω)

∂ωm

∣∣∣∣
ω=0

dt = 0

for all ζ > 0 and m = 1, . . . .

Definition 1. A point x ∈ Rn at which the following relation holds:

lim
r→0+

1

rn(α+1)

∫
0<|t|≤r

|ω(t+ x)− ω(x)| dt = 0,

where 0 ≤ α < 1, is called a generalized Lebesgue point of function ω ∈ L1 (Rn) (or
for any function ω which is integrable on suffi ciently large domain).

Definition of one-dimensional version of this point can be found in some recent
papers, such as [13] and [5]. Definition of d−point analogue of this point in one-
dimensional case was also considered by Gadjiev [12].

2. Main Theorems

Theorem 1. Suppose that K(., ω) satisfies conditions (a)-(d). If x ∈ Rn is a
generalized Lebesgue point of function ω ∈ L1 (Rn) and ω is a bounded function
on Rn, that is, there exists a number M > 0 which depends on only ω such that
|ω| ≤M, then for the operators Lη(ω;x) which are defined in (1.2), we have

lim
η→∞

Lη(ω;x) =

∞∑
m=1

Am
m!

[ω(x)]
m

provided that the function

ηn
∫

0<r<∞

{
rn(α+1)

}′
r

∂K(ηr, ω)

∂ω

∣∣∣∣
ω=0

dr,

where r = |t| , is bounded as η →∞.
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Proof. By definition of generalized Lebesgue point, for every ε > 0 there exists a
number δ > 0 such that ∫

0<|t|≤r

|ω(t+ x)− ω(x)| dt < εrn(α+1)

holds provided that r ≤ δ and 0 ≤ α < 1.
Denoting the surface of unit sphere {t′ ∈ Rn : |t′| = 1} in Rn by Sn−1, we define∫

Sn−1

|ω(rt′ + x)− ω(x)| dt′ =: u (r) ,

where dt′ is the surface element on Sn−1 (see p.14 in [18]). For further details about
polar coordinates transformation, we refer the reader to [10]. Therefore, we define
the auxiliary function as

f(r) :=

r∫
0

u (ρ) ρn−1dρ (2.1)

for which there holds:

f(r) ≤ εrn(α+1) (2.2)

provided that r ≤ δ and 0 ≤ α < 1.
Following [3], we write the Maclaurin expansion of the function K(., ω) with

respect to ω as follows:

K(η |t− x| , ω(t)) =

∞∑
m=0

1

m!
K(m)
ω (η |t− x| , 0) [ω(t)]

m

=

∞∑
m=1

1

m!
K(m)
ω (η |t− x| , 0) [ω(t)]

m
,

where K(m)
ω (η |t− x| , 0) := ∂mK(η|t−x|,ω)

∂ωm

∣∣∣
ω=0

and for every ν ∈ R+
0 and η ∈ R+

with K(ην, 0) = 0. Since the conditions of Lebesgue dominated converge theorem
(see, for example, [15]) are fulfilled, we can change the order of summation and
integration. Since Rn is a locally compact abelian group, using change of variables
and binomial representation of [ω(t+ x)]

m
, we have

Lη(ω;x) =
ηn

Ωn−1

∞∑
m=1

∫
Rn

1

m!
K(m)
ω (η |t| , 0)

m−1∑
k=0

(
m
k

)
[ω(t+ x)− ω(x)]

m−k
[ω(x)]

k
dt

+
ηn

Ωn−1

∞∑
m=1

∫
Rn

1

m!
K(m)
ω (η |t| , 0) [ω(x)]

m
dt.
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Let

I =

m−1∑
k=0

(
m
k

)
[ω(t+ x)− ω(x)]

m−k
[ω(x)]

k
.

Now, without loss of generality, we consider the case ω is not identically zero on
Rn. Since ω is bounded by a certain positive number M such that |ω(z)| ≤ M for
all z ∈ Rn, there holds

|I| =

∣∣∣∣∣
m−1∑
k=0

(
m
k

)
[ω(t+ x)− ω(x)]

m−k
[ω(x)]

k

∣∣∣∣∣
≤

m−1∑
k=0

(
m
k

)
|ω(t+ x)− ω(x)|m−k−1 |ω(t+ x)− ω(x)| |ω(x)|k

≤ |ω(t+ x)− ω(x)|
m−1∑
k=0

(
m
k

)
(2M)

m−k−1
(M)

k

≤ |ω(t+ x)− ω(x)| 1

2M

m−1∑
k=0

(
m
k

)
(2M)

m−k
(M)

k

+ |ω(t+ x)− ω(x)| 1

2M

(
m
m

)
(2M)

m−m
(M)

m

= |ω(t+ x)− ω(x)| 1

2M

m∑
k=0

(
m
k

)
(2M)

m−k
(M)

k

= |ω(t+ x)− ω(x)| 1

2M
(3M)

m
.

Therefore, using condition (c), we can write∣∣∣∣∣Lη(ω;x)−
∞∑
m=1

1

m!
Am [ω(x)]

m

∣∣∣∣∣
≤ ηn

Ωn−1

∞∑
m=1

∫
Rn

1

m!
K(m)
ω (η |t| , 0) |ω(t+ x)− ω(x)| (3M)

m

2M
dt

≤ ηn

Ωn−1

1

2M

∞∑
m=1

(3M)
m

m!

∫
Rn

K(1)
ω (η |t| , 0) |ω(t+ x)− ω(x)| dt.

Fixing δ > 0, we have the following inequality:∣∣∣∣∣Lη(ω;x)−
∞∑
m=1

1

m!
Am [ω(x)]

m

∣∣∣∣∣
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≤ ηn

Ωn−1

(
e3M − 1

)
2M


∫
|t|>δ

+

∫
|t|≤δ

K(1)
ω (η |t| , 0) |ω(t+ x)− ω(x)| dt

= :
1

Ωn−1

(
e3M − 1

)
2M

{
ηnI ′η + ηnI ′′η

}
.

Let us show that ηnI
′

η → 0 as η → ∞. The following deductions are the natural
consequences of conditions satisfied by our kernel function. Since

0 ≤ Ωn−1K
(1)
ω (ηr, 0)

1

n
rn
(

1− 1

2n

)
≤

∫
r
2≤|t|≤r

K(1)
ω (η |t| , 0)dt,

by (d) and well-known squeeze theorem, we see that rnK(1)
ω (ηr, 0) → 0 as r → ∞

and r → 0. In particular, this observation leads to K(1)
ω (ηr, 0) → 0 as r → ∞ and

r → 0. This type analysis is also performed in [3, 18]. For ηnI ′η, we obtain

ηnI ′η ≤ ηnK(1)
ω (ηδ, 0)

∞∫
δ

∫
Sn−1

|ω(rt′ + x)| rn−1dt′dr

+ηn |ω(x)|
∫

δ<|t|<∞

K(1)
ω (η |t| , 0)dt

≤ ηnK(1)
ω (ηδ, 0) ‖ω‖L1(Rn) + ηn |ω(x)|

∫
δ<|t|<∞

K(1)
ω (η |t| , 0)dt.

The terms on the right-hand side tend to zero as η → ∞ by overall hypotheses
discussed previously. Hence, lim

η→∞
ηnI ′η = 0.

Now, we consider ηnI ′′η . By relation (2.1), we can write

ηnI ′′η = ηn
δ∫

0

∫
Sn−1

|ω(rt′ + x)− ω(x)|K(1)
ω (ηr, 0)rn−1dt′dr

= ηn
δ∫

0

u (r)K(1)
ω (ηr, 0)rn−1dr

= ηn
δ∫

0

K(1)
ω (ηr, 0)df(r).
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Using integration by parts for Stieltjes integrals and relation (2.2), we get the
following inequality:

ηnI ′′η ≤ εηn
∞∫

0

{
rn(α+1)

}′
r
K(1)
ω (ηr, 0)dr.

Since ε > 0 is arbitrarily small and the following expression:

ηn
∞∫

0

{
rn(α+1)

}′
r
K(1)
ω (ηr, 0)dr

remains bounded as η →∞, we have

lim
η→∞

ηnI ′′η = 0.

Combining all results gives

lim
η→∞

Lη(ω;x) =

∞∑
m=1

1

m!
Am [ω(x)]

m
.

Thus, the proof is completed. �

In the second theorem, we give a local approximation result for nonlinear multi-
dimensional integrals of the form:

Tη(ω;x) =
ηn

Ωn−1

∫
D

K(η |t− x| , ω(t))dt, (2.3)

where x ∈ D and D is any bounded open subset of Rn. We replaced Rn by D
compared to operators of type (1.2).

Theorem 2. Suppose that K(., ω) satisfies conditions (a)-(d). If x ∈ D is a
generalized Lebesgue point of function ω ∈ L1 (D) with ω : Rn → R and ω is a
bounded function on D, that is, there exists a number P > 0 which depends on only
ω such that |ω| ≤ P, then for the operators Tη(ω;x) which are defined in (2.3), we
have

lim
η→∞

Tη(ω;x) =

∞∑
m=1

Am
m!

[ω(x)]
m

provided that the function

ηn
∫

0<r≤δ

{
rn(α+1)

}′
r

∂K(ηr, ω)

∂ω

∣∣∣∣
ω=0

dr,

where r = |t| and δ > 0 is a number chosen to ensure the existence of the integral,
is bounded as η →∞.
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Proof. We follow mainly the proof steps of previous theorem with some additional
considerations.
By definition of generalized Lebesgue point, for every ε > 0 there exists a number

δ > 0 such that ∫
0<|t|≤r

|ω(t+ x)− ω(x)| dt < εrn(α+1)

holds provided that r ≤ δ and 0 ≤ α < 1.
Denoting the surface of unit sphere {t′ ∈ Rn : |t′| = 1} in Rn by Sn−1, we define∫

Sn−1

|ω(rt′ + x)− ω(x)| dt′ =:
∼
u (r) ,

where dt′ is the surface element on Sn−1 (see p. 14 in [18]). Therefore, we define
the new function as

∼
f (r) :=

r∫
0

∼
u (ρ) ρn−1dρ

for which there holds:
∼
f (r) ≤ εrn(α+1)

provided that r ≤ δ and 0 ≤ α < 1.
Now, we define the auxiliary function g by

g(t) :=

{
ω(t), t ∈ D,
0, t ∈ Rn\D. (2.4)

We recall the Maclaurin series of K(., ω) at ω = 0 expressed as

K(η |t− x| , ω(t)) =

∞∑
m=1

1

m!
K(m)
ω (η |t− x| , 0) [ω(t)]

m
,

where K(m)
ω (η |t− x| , 0) := ∂mK(η|t−x|,ω)

∂ωm

∣∣∣
ω=0

and for every ν ∈ R+
0 and η ∈ R+

with K(ην, 0) = 0. In view of this, we infer that

Tη(ω;x)

=
ηn

Ωn−1

∞∑
m=1

∫
D

1

m!
K(m)
ω (η |t− x| , 0)

m∑
k=0

(
m
k

)
[ω(t)− ω(x)]

m−k
[ω(x)]

k
dt

+
ηn

Ωn−1

∞∑
m=1

∫
Rn

1

m!
K(m)
ω (η |t− x| , 0) [ω(x)]

m
dt

− ηn

Ωn−1

∞∑
m=1

∫
Rn

1

m!
K(m)
ω (η |t− x| , 0) [ω(x)]

m
dt.
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Let

I =

m−1∑
k=0

(
m
k

)
[ω(t)− ω(x)]

m−k
[ω(x)]

k
.

Without loss of generality, we consider the case ω is not identically zero on D. Since
ω is bounded by a certain positive number P such that |ω(z)| ≤ P for all z ∈ D,
there holds

|I| =

∣∣∣∣∣
m−1∑
k=0

(
m
k

)
[ω(t)− ω(x)]

m−k
[ω(x)]

k

∣∣∣∣∣
≤

m−1∑
k=0

(
m
k

)
|ω(t)− ω(x)|m−k−1 |ω(t)− ω(x)| |ω(x)|k

≤ |ω(t)− ω(x)| 1

2P
(3P )

m
.

Therefore, in view of (2.4) and using condition (c), we obtain the following inequal-
ity: ∣∣∣∣∣Tη(ω;x)−

∞∑
m=1

1

m!
Am [ω(x)]

m

∣∣∣∣∣
≤ ηn

Ωn−1

∞∑
m=1

∫
D

1

m!
K(m)
ω (η |t− x| , 0) |ω(t)− ω(x)| (3P )

m

2P
dt

+

∣∣∣∣∣∣∣
ηn

Ωn−1

∞∑
m=1

∫
Rn\D

1

m!
K(m)
ω (η |t− x| , 0)

m−1∑
k=0

(
m
k

)
[−ω(x)]

m−k
[ω(x)]

k
dt

∣∣∣∣∣∣∣
≤ ηn

Ωn−1

1

2P

∞∑
m=1

(3P )
m

m!

∫
D

K(1)
ω (η |t− x| , 0) |ω(t)− ω(x)| dt

+

∣∣∣∣∣∣∣
ηn

Ωn−1

∞∑
m=1

∫
Rn\D

1

m!
K(1)
ω (η |t− x| , 0)

m−1∑
k=0

(
m
k

)
[−ω(x)]

m−k
[ω(x)]

k
dt

∣∣∣∣∣∣∣
= : I1 + I2.

Fixing δ > 0, we define Bδ := {t, x ∈ D : |t− x| ≤ δ} ⊂ D. Therefore, we have the
following inequality:

I1 ≤ ηn

Ωn−1

(
e3P − 1

)
2P

∫
t∈D\Bδ

K(1)
ω (η |t− x| , 0) |ω(t)− ω(x)| dt
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+
ηn

Ωn−1

(
e3P − 1

)
2P

∫
|t|≤δ

K(1)
ω (η |t| , 0) |ω(t+ x)− ω(x)| dt

= :
1

Ωn−1

(
e3P − 1

)
2P

{
ηnI ′η + ηnI ′′η

}
.

Let us show that ηnI ′η → 0 as η →∞. For ηnI ′η, we obtain

ηnI ′η ≤ ηnK(1)
ω (ηδ, 0) ‖ω‖L1(D) + ηn |ω(x)|

∫
δ<|t|<∞

K(1)
ω (η |t| , 0)dt.

The terms on the right-hand side tend to zero as η →∞ by (d). Hence, lim
η→∞

ηnI ′η =

0.
It is easy to see that I2 tends to zero as η →∞. The remaining part is analogous

to proof of the preceding theorem. Hence

lim
η→∞

Tη(ω;x) =

∞∑
m=1

1

m!
Am [ω(x)]

m
.

Thus, the proof is completed. �

Example 1. In [3], the authors considered the following kernel function satisfying
the hypotheses:

K (ηv, ω) =
1√
2π

[
exp

(
e−(ηv)2ω

)
− 1
]
.

Inspiring from the kernel given above and also Picard kernel, we consider the fol-
lowing kernel function without scaling:

K (ηv, ω) = exp
(
e−ηvω

)
− 1,

where for ηv ∈ R+
0 , K (ηv, 0) = 0 and K(m)

ω (ηv, 0) = e−mηv with m = 1, . . . .
Clearly, this function is non-negative and non-increasing with respect to ν on R+

0

for any m = 1, . . . and for all values of η ∈ R+, and the first partial derivative
majorizes the remaining derivatives. Lastly, in view of the well-known identity
related to gamma function

∞∫
0

e−mλλn−1dλ =
(n− 1)!

mn
,

where λ = ηv, we see that the condition (d) easily holds there.
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3. Final Comments

Some theorems which are analogous to Theorem (3.3) and Theorem (3.5) in the
article by Almali and Gadjiev [3] can be stated and proved using similar arguments.
Also, more general theorems with respect to other characteristic points, such as
µ−generalized Lebesgue point, can also be proved.

Acknowledgements. The authors would like to thank the referees for their valu-
able comments and suggestions.
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