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Abstract

Using Cayley-Hamilton equation for matrices, we obtain a simple formula for trace of pow-
ers of a square matrix. The formula becomes simpler in particular cases. As a consequence,
we also demonstrate the formula for trace of negative powers of a matrix.
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1. Introduction

With the advancement of highly complex computer network topologies and eternally
growing number of nodes in the existing networks, certain applications require to find the
number of cliques in the graph of a given network. Using the adjacency matrix A of the
graph, one clique of vertices vy, vo, v3 contributes the 2 to each of the ai1,ass,ass. Thus

the count of cliques will be %’43) [2]. In [6], an identity involving the Eulerian congruence
on trace of powers of integer matrices modulo p” is obtained, where p is prime, and r € N.
[4] makes a short survey of related results. For a square matrix A = [a;;], the trace of A
denoted by T'r(A), is the sum of main diagonal entries of A, that is Tr(A) = >, a;i. [5]
obtains the formula of computation of the eigenvalue with maximum modulus of a matrix
using the trace of its higher powers. Our formula thus contributes to finding the spectral
radius of a matrix. [1] also developes the similar formula for n*® power of a 2 x 2 matrix.
Our formula is a general one and does not require computation of entries of n't power.
The current paper is in the sequel of [3], wherein we have obtained the formula for the
sum of the powers of matrices and its consequences. In Section 2, we set the required
notations and recall the terminology. We also state the main result Theorem 2.1. The
simplification of the long computations in the proofs are achieved by introducing the
functions I, (n, ko, k1, ..., km_2) used for finding trace of n'" power of an m x m matrix
A. The introduction of [,,,(-) is motivated by the list of expression of Tr(A™) for a 3 x 3
matrix A for first few powers of A. The jargon of notations, as one will be convinced, is
used only for the proof to be simplified. However, the actual application of our formulae
to real computation does not require much of knowledge except the definition of the
Trace and a couple of related definitions. The proof of the main theorem is discussed in
Section 3. In fact, a technical formula (3.1) for /,,,(-) is obtained in a series of Lemmas
using Mathematical Induction. Very important and useful particular cases are discussed
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in Section 4. Finally the formula for the trace of negative powers of nonsingular matrices is
demonstrated in Section 5. To maintain the brevity, we restrict ourselves to 2 x 2 matrices
for negative powers. However, we should impress upon the reader that this restrictions
can easily be done away with.

2. Main result

In what follows, A = [a;;] denotes an m x m matrix. For any integer 1 < k < m and
the integers 1 < i1 < i9 < i3 < -+ < i < m, the determinant of the k x k submatrix
obtained by removing all rows except i1, 12,73, ...,1x rows and i1,1%9,13,...,1%; columns is
called a principal minor of A of order k, thereby obtaining (TZ) minors. We denote their
sum as Si(A) or for Sy for brevity whenever there is no confusion. Thus, S; will become
the trace of the given matrix and S,, will be the determinant of A.

The characteristic equation of A is given by

det(A — \I) =0,

where I is m x m identity matrix. The roots of the characteristic equation are called the
characteristic roots of A. We shall denote them by A1, Ao, ..., Ap.

The motivation for defining ingredients required for the formula of trace of powers of
A lies in the analysis of a 3 x 3 matrix, and hence, for time being, A will denote a 3 x 3
matrix.

The characteristic equation of A is

)\3—Sl>\2+52)\—53 =0,

3
where S1 = T’I“(A) =AM+ A+ A3= Zaii, Sy = Z )\i)\j and S3 = A\ )3 = det(A).
i=1 i#]
By the Cayley-Hamilton theorem, we have A% — S;A? + Sy A — S31 = 0. This, in turn,
implies the following for n € N.

A3 G A2 4 Sy AT G AT = 0. (2.1)
Applying the trace, a linear operator, on (2.1) gives a recursive relation,
Tr(A™3) = §1Tr(A™2) — SoTr(A™Y) + SsTr(A™), (2.2)
which is central to this note. Observe that
Tr(A) = A2+ X2+ 22 = (A +Xo+ A3)2 —2(A1ha + Aads + AL ds)
=57 —25,.
Putting particular values of n € Z, U {0} in (2.2) and simplifying, we have the following.
Tr(A3) = 51 — 39155 + 3Ss.
Tr(A%) = S} — 4525, + 252 + 45, Ss.
r(A%) = 51 — 55385 + 55155 4 (587 — 559)53.
Tr(A%) = S — 6515y + 95252 — 283 + (653 — 1251599)S3 + 3(S3)%
Tr(AT) = S] — 7878y 4 145352 — 75155 + (75} — 215285 4+ 752)S3 + (751)55.

S

It is quite apparent that the complexity of the formula increases as the power increases.
Well within the ninth power, the formula really becomes highly involved.

Tr(A%) = S) — 9578, + 275753 — 305355 + 95155 + (959 — 45515y + 545753 — 955)S3
+ (1857 — 275152)53 + 353
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k1=0 ko=0

9(9 — ko — 2k — 1)(9— ko — 2k — 2) - O— 32k oo et
{ (9 — 2ko — 3ky + 1) % [Sl 52 53]'

Before we conclude the general formula for Tr(A™), we define

1
———n(n — ko — 2k1 — 1)(n — ko — 2k1 — 2)
kolkq!
x(n—k0—2k1—3)---(n—2/~c0—3k‘1—|—1), if kg + k1 > 2;
I3(n, ko, k1) =
n, ifko+ki=1;
1, if kg + k1 = 0.
The above definition is applied only when each k; > 0. In the course of different order
of matrices we get different l,,,(n, ko, k1, -+ , km—2). Throughout this note, we adopt the
convention that if at least one k; < 0, then we define l,,,(n, ko, k1, ,km—2) = 0. As a
consequence, In general, for m x m matrix
(n—k0—2k1—---—(m—l)k:m_g—l)
n x(n—ko—2ky—-—(m—1)kp_2—2)
Ln(n, ko, k1, - ooy k) Tl 1ol ‘...
><(n—2k0—3k1 —~~-—mkm_2+1)
To shorten the displayed identities, when n, kg, k1, ..., kn_o are already mentioned in the
summation, we write l,,, for l,,,(n, ko, k1, ..., km—2). Our main result in terms of a function

l;n, is Theorem 2.1.

Theorem 2.1. For a m x m matriz A = [a;j], we have

{n73k174k27m7mkm_2
2
Tr(A") = ) > (-1 T
k;>0 ko=0
% [517,—2]60—3161—4k2—~.-—mkm—25«§05§1 fz . anni—ldsfnm_z] (23)
For a nonsingular m x m matrix A, one observes that
_ _ 11 1 Sp1(A)
A Y =Tr(A™)y = —+ — — =
S1(A™Y) r(A™") N + " +oeF N S (A)
_ u 1 Sm—Z(A)
Sy(A™1) = =
;1 Aidj Sm(A)
i<j
_ Ui 1 S1(A)
Spm_1(A71) = =
1(47) ; MA2 A Aig1 o Am Sm(A)
1 1

Using all this, and replacing A by A~! in the Theorem 2.1, the following is at once.

Theorem 2.2. For a m X m nonsingular matriz A = [a;j], we have

stkr%zf-nfmkm_z
2
1 ko+ko+kat-k m—2
VDR D D e,
[det(A)" 2, X
x [Sfmﬁsgmf‘l . 5:1:21’“0—31431—"'—mkm72Sﬁ$+2k1+3k2+-~~+(m—1)km72]. (2.4)
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3. Proof of the main theorem

In order to prove the main theorem, we first prove the following.

lm(”v k07 k17 s 7km—2) = lm(n - ]-7 kOv kl) SRR km—Q)
+Zlm(n*’i,k0,kj1,...,ki,2*1,...,km,2). (31)
i=2
We establish (3.1) by applying mathematical induction on the order of the matrix
A = [aj;]. The proof is divided into a couple of Lemmas.
Lemma 3.1. la(n, ko) = la(n — 1, ko) + la(n — 2,kg — 1).

Proof. Since the cases kg = 0 and kg = 1 are trivial, we can assume that kg > 2. Now

o — 1, ko) + la(n — 2, kg — 1) == D= ko =2)(n—ko =3) -~ (n = ko)

ko!
n (n—2)(n—kog—2)(n—ko—3)---(n—2ko+1)
(ko — 1)!
:(n—k‘o—2)(n—ko—3)---(n—2k0—|—1)
(ko — 1)!
(n—1)(n — 2ko)
ko —|—n—2]
_(n—k:o—2)(n—k0—3)---(n—2k0—|—1)
a (ko — 1!
[n2 — 2nky — n + 2kg + nko — 2kg
X - o
:(n—ko—2)(n—k0—3)--~(n—2k0+1)
(ko — 1)!
n(n —ko—1)
X T
Zlg(n,k()).

]
Lemma 3.2. I35(n, ko, k1) =l3(n — 1,ko, k1) + I3(n — 2, ko — 1, k1) + l3(n — 3, ko, k1 — 1).

Proof. 1If k1 = 0, then I3(n, ko, k1) = l2(n, ko) and l3(n — 3, kg, k1 — 1) = 0. Consequently,
our case reduces to the Lemma 3.1. For kg = 0 and k1 > 1, we have,

R.H.S. :lg(n — 1,0,k1) + lg(n —-3,0,k1 — 1)
(n—1)(n —2k1 —2)(n —2k1 — 3) -+ (n — 3ky)

k!
+(n—3)(n—2k1—2)(n—2k1—3)---(n—3k1+1)
(k1 — 1!
n—2k —2)(n—2k —3 -~~(n—3k1+1 (n—l)(n—3k1
N o= 213 JUER RS A
:(n—2k:1—2)(n—2k1—3)-~-(n—3k1+1) [n(n—le—l)}
(k1 — 1) k1
:lg(n,O,kl)

=L.H.S.
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Since the case kg = 0 = ky is trivial, we assume now kg, k > 1.
R.H.S. =l3(n — 1,ko, k1) +l3(n —2,ko — 1,k1) + I3(n — 3, ko, k1 — 1)
(n—1)(n—ko—2k1 —2)(n — ko —2k; —3)--- (n — 2ko — 3k1)

kolky!
(n—2)(n—k‘o—2k1—2)(n—k0—2k1—3)---(n—2k‘0—3k1—|—1)
* (ko — 1)'kq!
(n—3)(n—k‘o—2k1—2)(n—k0—2k1—3)---(n—2k‘0—3k1—|—1)
- Fol(kr — 1)!

(n—kO—le—2)(n—k0—2k1—3)---(n—2/~cg—3k1—|—1)
(ko — )1(k1 — 1!

(n—1)(n —2kg — 3kq) +n—2 +n—3

I kok1 k1 ko

(n—k0—2k1—2)(n—k:0—2k1—3)---(n—2k0—3k1—|—1)
(ko — )1 (k1 — 1!

(n(n —ko— 2k, — 1)

kok1

X

X

:l3 (n7 k(]a kl)
=L.H.S.

Lemma 3.3. As an induction hypothesis, assume that
lt(na k07 kla kQ, B k/’t72) — ltfl(n - ]-a kO) kla k?a ey kt72)
t
+ > loi(n—i ko, ki ko, . kise — 1, ko) (3.2)

i=2
fort <m —1. Then

lm(n, k‘o, ey km_g) = lm(n — 1, ko, ey km_2>
—I—Zlm(n—i,ko,kl,...,ki_g—1,...,]{Zm_2). (33)
=2
Proof. 1If ky,—o = 0, then I, (n, ko, . .., km—2) = lm—1(n, ko, - - ., km—3)

and Ly, (n, ko, k1, ..., km—2—1) = 0. Therefore, (3.3) follows from the Induction Hypothesis
(3.2). Let kj = 0 for some 0 < j <m — 1. Then

L.H.S. :lm(n - 1, ]{0, ce ,k‘jfl, 0, k‘j+1, ey k’m72)

+ Z lm(n—i,ko,...,ki_g—1,...,km_2)

i=2,i£j+2
1
T kol k11! ko)
(n—1)(n—ko—2ki — - —jkj—1 — (j+ Dkjp1 — (m — D)ky—2 — 2)
(n—k0—2k1—-"—jkj_l—(j+2)kj+1—-"—(m—l)km_g—?))
(n - 2]{30 - 3]€1 — (] + 1)kj_1 - (j + 3)]€j+1 — mkm_g)

1

_|_
i:z%s:m kolk! -+ (kip = Dlkiathil - ko]
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(n—i)(n—k0—2k1—---—(i—1)ki,2—---—(m—1)km,2—2)
% (n—k‘o—2k‘1—---—(i—1)ki,2—---—(m—1)k‘m,2—3)
(n—2k:0—3k:1—---—(j—l—l)kj,1—(j+3)k:j+1—---—mk:m,2+1)
1
(ko — 1) (kjmy — D kjpr — D (k2 — 1)!
[ (n—k?(]—le—"‘jkjfl—(j+2)]{7j+1—"‘—(m—l)km,2—2)
% (n—k‘o—Qk‘l—---—jkj,l—(j—|—2)/<:j+1—---—(m—l)k‘m,g—?))
L(n —2ko —3k1 — - — (j + Dkj1 — (§ + 3)kjp1 — -+ — mhp—2 + 1)
_(nfl)(n*Qkof?)kl*--'*(j+1)kj,1*(]’+3)k§j+1-'-*mk‘m,2)
Kok - kj—1kj1 - km—2
o n n—2 n n—3 n
kikg - kj1kji1---km—o  koka- - kj_1kji1 - kp—o
+ n—m
L koky -+ kj_1kjy1- - km—3
_ 1
_ko!kl!'-'k]’,ﬂk‘j+1!'-'km,2!
n(n— ko —2k1 — - — jhj1 — (G + 2kjor — - — (m — ks — 1)
(n—ko—2ki — - —jkjo1 — (J+2)kjp1— - — (m—1D)kp_2 —2)
(’I”L—Qko—?)kl—"'—(j+1)]€j_1—(j—‘r3)kj+1—~--—mkm_2+1)
:lm(nu k07k17' o 7kj—17jkj+17' T 7km—2)
=R.H.S.

For other possibilities of more than one k; = 0, the proof is analogous to the previous case
or follows from the induction hypothesis. The following takes care of the case when each
k; > 1:

(n—1)(n —2ky — 3ky —4ko — - — mky,—2) n—2
kokiks -+ km—2 kiko -+ ko
n—3 n—m
T okaks T T hokaka - Foma
1 (n? — 2nkg — 3nky; — 4nky — - - — mnky,_2)

+(—n + 2ko + 3k1 + 4kg + - - - + mky,_2)

kokks - km—2 nko — 2ky +nky — 3k1 + -+ + nkp_o — mky_o
’I’L(’I’L*k‘o*le*3k§2*'-'*(m*1)k‘m,2*1)
B kokika -+ - km—2

0

Proof of the Theorem 2.1. Let A1, Ao, -+ , Ay, be the eigenvalues of A. We prove the-
orem by mathematical induction on the power of the matrix, that is, n. For n = 1, it is
trivial and for n = 2,

Tr(A%) = AT+ X3+ + )2,
= (A Aot An)? = 2D N
i#]
= S - 28,

In the similar way, the direct computation using the manipulation of eigenvalues yields
the proof of the identity (2.4) for 3 < n < m — 1. Henceforth we assume that (2.4) holds
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for any positive integer less than n, where n > m. The characteristic equation of A is
AT — ST L G A2 g A3 L (—1)™S,, = 0.
This, in turn, by the Cayley-Hamilton theorem implies the following:
AT — ST A™TE 4 G AT GeAm TS 4 (—1)™S,, ] = 0.

The trace being a linear operator, gives, a recursive relation,

Tr(A™) =S1Tr(A" 1) — SoTr(A"2) 4+ S3Tr(A"73) — -« — (=1)™S,, Tr(A"™™)

n—1-3ky —dky—-—mky_2 kot+kotkat+k| m_
\‘ 5 J (_1) ot+ka+kat+-+ LTZJ

= Z Z lm(n - 17k0a T akmf2)

k>0 ko=0 S?—2ko—3k1_..._mkm725§0 o Sf;lm72

{n—2—3k1—4k2—m—mkm,2 +1J

5 k0+k2+k4+"'+kLMJ

(1) ?
+Z Z lm(n_Qak‘O_lakl"'vk)m72)

k>0 ko=1 n—2ko—3k1——mkm_2 ok K —
2> 0 5’1 0 1 2520“'5771 2
n—3ky—4kg—--—mky,_o ko+ko+ka+---+k _2
L 2 ] (—1) L=
+ Z Z lm(n_37k07k1_1ak27"' ak:m72)
k:>0 ko=0 n—2ko—3ky1—-—mkm_2 gko  ckm-2
kizl Sl S2 Sm
+ e
n73k174k27~-7mkm_2J ko+kotkst-+k| m_o
{ 2 (~1) [#2*]
+ Z Z lm(n_mu k07"' 7km—37km—2_ 1)
k:>0 ko=0 n—2ko—3ki—-—mkm_2 gko _ ckm-2
K21 5 55 Sini

Taking certain terms out of the summations and using Lemma 3.3 the theorem follows. [

4. Particular cases

As the particular cases, we put on record some interesting observations in this section.
Corollary 4.1. For a 2 x 2 matriz A = [ai;],
5]

Tr(A™) = " (=1)kly(n, ko) [Tr(A)]" 2 [det(A)]* .
ko=0

The following is an interesting fact stating that power and trace commute in case of a
singular matrix.

Corollary 4.2. If A is a singular matriz, then Tr(A™) = [Tr(A)]".
Corollary 4.3. If Tr(A)=0, then

n 2(—1)% [det(A))2, if n is even;
Tr(A") = ! ’
r(4") { 0, if n is odd.

Corollary 4.4. If Tr(A) =0 = det(A), then Tr(A™) = 0.

Now, we apply our scheme of computation to a block matrix. It’s noteworthy that in
statistics block matrices play a crucial role.
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Corollary 4.5. For a block matriz A of order 2m of the type

Ay o0
A= 42 :
0 --- A,
m 5]
Tr(A") =3 3 (=1)F0ly(n, ko) [Tr(A)])" " [det(A,)]™ .
r=1 k‘():O
AT 0
Ap :
Proof. Clearly A™ = ' for all n € N. Consequently,
0 An

Tr(A") = i Tr(A7})

r=1
m 3]
= > (= 1)Mly(n, ko) [Tr(A,)]" " [det(A,)]*
r=1ko=0
n
The following is an analogue of [3, Theorem 2.10].
Proposition 4.6. If A = {Z lj , with a,b,c >0, then 2Tr(A3) > Tr(A) - Tr(A?).
Proof.
2Tr(A3) — Tr(A) - Tr(A%) = 2[Tr(A)]* — 6Tr(A)det(A)
— [Tr(A)]® 4 2Tr(A) det(A)
= Tr(4) [[Tr(A) — 4det(4)]
= Tr(4)[(a+¢)? — 4(ac— 1)
= Tr(A) [(a -+ 462} > 0.
O

5. Trace of a negative power of A

The analogue of the formula (2.4) also holds for the trace of negative powers. We
limit ourselves to the matrices of order 2 x 2, and hence, A will denote a 2 x 2 matrices
throughout the rest. The proof is on the same line following Lemma 3.3. The proofs are
either direct evidence of the results in the previous sections or an obvious workout. From
the characteristic equation and the linearity of the trace, we have

Tr(A™) — detl( 5 [Tr(A)YTr(A™) — Tr(A™?)] (5.1)

For different values of n in (5.1), we have the following

B Tr(A)

Tr(A™) = det(A

~—
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_ 1

Tr(A™2) = FRSE [Tr(A)]* - 2det(4)] (5.3)
)= ! [ 3 _ T e

Tr(A=3) = ERT [Tr(A)f - 3Tr(4)d t(A)] (5.4)
- —71 [ T 4 T 2 e e 2

Tr(A~) = AR [Tr(A)]* = 4[Tr(A)] det(A) + 2 [det(A)]"] .

We conclude the following on the basis of the above observations.

Theorem 5.1. If A is nonsmgular then

Tr(A™") = AT Z Y*oly(n, ko) [Tr(A)]" 2k [det(A)]* .

det

Proof. Follows from Lemma 3.3. O
Corollary 5.2. If A is nonsingular and Tr(A) =0, then
2(-1)% o ]
Tr(A") = { fewa)s’ if n is even,
0, if n is odd.

Now we obtain the inequality which is completely analogous to the Proposition 4.6.

Proposition 5.3. For a nonsingular matrix A = {Z [2] with a,b,c > 0,

2Tr(A™3) > Tr(A™Y - -Tr(A™2); ifdet(A) > 0. (5.5)
2Tr(A™3) < Tr(A™Y) -Tr(A™?); ifdet(A) <0. (5.6)
Proof. From (5.2), (5.3) and (5.4),
N a N —72 T 3 _3Tr e
2Tr(A3) — Tr(A™Y) - Tr(A™2) RFETSE ([Tr(A)]° = 3Tr(A) det(4)]
Tr(A) 2
= Jer T ([Tr(A)]* — 2det(4)]
_ Tr(A) . 2 _ 4de
a4 ([Tr(A4))? — 4det(4)]
_ Tr(A) . e
" [det(A)P oo+ 4],
Hence, inequalities (5.5) and (5.6) follow. O

Remark 5.4. Similar observations could be made for 3 x 3 and even higher order matrices.
However, we have limited ourselves to just one order in this note.
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