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DIGITAL HAUSDORFF DISTANCE ON A CONNECTED
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Abstract. A digital image X can be considered as a subset of Zn together
with an adjacency relation where Z is the set of the integers and n is a natural
number. The aim of this study is to measure the closeness of two subsets of
a connected digital image. To do this, we adapt the Hausdorff distance in the
topological setting to its digital version. In this paper, we define a metric on a
connected digital image by using the length of the shortest digital simple path.
Then we use this metric to define the r-thickening of the subsets of a connected
digital image and define the digital Hausdorff distance between them.

1. Introduction

Digital images can be considered to be subsets of Zn. We study digital images
to analyze not only their features but also their correlations with the others. Inves-
tigating the features of the digital images by their topological properties would be
fine but the problem here is that the digital images are not topological spaces, they
are just sets. This problem can be achieved by imposing an adjacency relation on
a digital image to adapt the topological concepts such as neighborhood, continuity,
connectivity, homotopy, and contractibility to their digital versions.

The distance between two points in a connected digital image is obtained via
the shortest simple path metric which is denoted by dκ. Then the distance, called
a digital Hausdorff distance, between two subsets of a connected digital image can
be calculated via dκ as follows: One starts with fattening each subset by taking
the union of the neighborhoods with radius r of all its points. We call this new set
the r-thickening of a subset. Then the distance between subsets is the minimum
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r such that the r-thickening of both include another. Like the Hausdorff distance
in topological setting [20], the digital Hausdorff distance will measure how close
the two subsets are to each other. Note that the distance may differ according
to the adjacency relation defined on a digital image. We also investigate that
assigning each point to its neighborhood with radius r leads to a strongly (hence a
weakly) continuous multi-valued function from a connected digital image to itself
(Theorem 6). We observe that the image of the r-thickening of a given subset under
a digital continuous map is contained in the r-thickening of the image of that subset
(Theorem 14). We also show that the digital Hausdorff distance between the image
of two subsets of a connected digital image under a continuous map is less than or
equal to the Hausdorff distance between these two subsets (Theorem 24).

2. Background

To study the features of the digital images, we start with an adjacency relation
defined on the points of Zn to adapt the fundamental concepts of topology. For
an integer ` with 1 ≤ ` ≤ n, we say two distinct points x = (x1, x2, . . . , x2) and
y = (y1, y2, . . . , yn) in Zn are c`-adjacent [11] if

i): |xi − yi| = 1 for at most ` indices i and
ii): for all indices j such that |xj − yj | 6= 1, we have xj = yj .

It turns out that c1-adjacency in Z is 2-adjacency, c1 and c2 adjacencies in Z2 are
4-adjacency and 8-adjacency, and c1, c2 and c3-adjacencies in Z3 are 6-adjacency,
18-adjacency and 26-adjacency respectively.

A digital image X is a subset of Zn for some natural number n together with an
adjacency relation κ inherited from Zn and represented by (X,κ).

The continuous functions between the digital images are defined in terms of ad-
jacency relations. Let (X,κ) and (Y, λ) be digital images and f : X → Y be a
function. Then we say that f is (κ, λ)-continuous iff f(x) = f(x′) or f(x) and
f(x′) is λ-adjacent whenever x and x′ are κ-adjacent for x, x′ ∈ X [2].

Consider the digital interval

[a, b]Z = {c ∈ Z : a ≤ c ≤ b}
for integers a, b with a < b where 2-adjacency relation is assumed [1]. Then a κ-
path from x to y in a digital image (X,κ) is a sequence (x = x0, x1, x2, . . . , xm = y)
in X such that xi is κ-adjacent to xi+1 for m ≥ 1 and 0 ≤ i ≤ m − 1 [26]. In
that case, m denotes the length of this path. A κ-path can be also considered as
a (2, κ)-continuous map α : [0,m]Z → X such that α(0) = x and α(m) = y [16].
Note that such a κ-path α from x to y can be reversed and the resulting map α,
which is explicitly defined by α(t) := α(m − t) for t ∈ [0,m]Z, is a κ-path from y
to x. We say that a κ-path (x = x0, x1, x2, . . . , xm−1 = y) from x to y is simple,
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provided xi and xj are κ-adjacent if and only if either j = i+ 1, i ∈ [0,m− 2]Z or
i = j + 1, j ∈ [0,m− 2]Z [11, 12]. A digital image (X,κ) is said to be κ-connected,
provided there exists a κ-path between any pair of elements in X [15].

The digital analogue of homotopy is given as follows [2,16]: Let (X,κ) and (Y, λ)
be two digital images and f, g : X → Y be (κ, λ)-continuous maps. Then we say f
and g are digitally (κ, λ)-homotopic if there is a positive integer m and a function

H : X × [0,m]Z → Y

such that

i): H(x, 0) = f(x) and H(x,m) = g(x);
ii): for each t ∈ [0,m]Z, the induced map Ht : X → Y defined by Ht(x) =
H(x, t) is (κ, λ)-continuous; and

iii): for each x ∈ X, the induced map Hx : [0,m]Z → Y defined by Hx(t) =
H(x, t) for t ∈ [0,m]Z is (2, λ)-continuous.

Such a function H is called a digital (κ, λ)-homotopy between f and g. We
denote f 'κ,λ g if there exists a digital (κ, λ)-homotopy between them.

3. Results

3.1. The shortest digital path. SupposeX is a κ-connected digital image, x ∈ X
and A is a nonempty subset of X. Boxer defines lκX(x,A) to be the length of the
shortest κ-path from x to any other point A in [3]. For our purpose, we would want
a digital path to be simple. Let `κ(x,A) denote the length of the shortest simple
κ-path in X from x to any point of A. In that case, if x1 is another point in X then
`κ(x, {x1}) turns into its original definition and denotes the length of the shortest
simple κ-path from x to x1 given in [11,12]. Since any digital path can be reversed,
`κ(x0, {x1}) = `κ(x1, {x0}) for any pair of elements x0, x1 in X. Throughout the
paper we assume `κ(x, {x}) = 0.

Under the assumption `κ(x, {x}) = 0, consider the function dκ : X×X → R defined
by

dκ(x0, x1) := `κ(x0, {x1}) (1)

for x0, x1 in X. It’s trivial that dκ(x0, x1) = 0 iff x0 = x1 and we have dκ(x0, x1) =
dκ(x1, x0) since every digital simple κ-path from x0 to x1 can be reversed as we
mentioned before.

dκ also satisfies the triangle inequality

dκ(x0, x1) ≤ dκ(x0, x2) + dκ(x2, x1)

for x0, x1, x2 ∈ X. Suppose α : [0,m]Z → X and β : [0, k]Z → X are simple κ-paths
with shortest lengths from x0 to x2 and x2 to x1 respectively. In that case, we
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have α(0) = x0, α(m) = x2, β(0) = x2, and β(k) = x1. Then γ : [0,m + k]Z → X
defined by

γ(t) =

{
α(t), 0 ≤ t ≤ i
β(t−m), i ≤ t ≤ m+ k

is a κ-path from x0 to x1. Note that γ may not be simple. Since there always exists
a simple κ-path from x0 to x1 with a shortest length, say i, then i should be less
than or equal to m+ k.

Hence dκ is a metric on a connected digital image X. We refer to [13, 14] for
further reading.

Definition 1. We call the metric dκ given in (1) the shortest simple κ-path metric
on a connected digital image.

Let X be a κ-connected digital image and x0 ∈ X. The κ-neighborhood of x0 in
X with some radius r ≥ 0 is given by [11]

Bκ(x0, r) = {x ∈ X : dκ(x0, x) ≤ r}.
Obviously, Bκ(x0, r) is a κ-connected subset of X and Bκ(x0, 0) = {x0}.

Lemma 2. Suppose (X,κ) is a digital image and x1, x2 ∈ X. If x1 and x2 are
κ-adjacent, then x2 ∈ Bκ(x1, 1) and x1 ∈ Bκ(x2, 1).

Proof. The shortest simple κ-path from x1 and x2 in X is a path α : [0, 1]Z → X
with α(0) = x and α(1) = y. �

A digital image (X,κ) is said to be κ-contractible if its identity function is digi-
tally (κ, κ)-homotopic to a constant map on X [1].

Theorem 3. Suppose X is a κ-connected digital image and x ∈ X. Then Bκ(x, r)
is κ-contractible for r = 1, 2 but Bκ(x, r) may not be κ-contractible for r ≥ 3.

Proof. To see the contractibility of Bκ(x, r) for r = 1, 2, we will construct a digital
homotopy between the identity map on it and a constant map at x. We define the
digital homotopy

H : Bκ(x, r)× [0, 1]Z → Bκ(x, r)

by H(y, 0) = y and H(y, 1) = x for every y ∈ Bκ(x, r). Then H is the desired
homotopy.

Consider the 8-connected digital image

MSC8 = {(0, 0), (1, 1), (2, 1), (3, 0), (2,−1), (1,−1)}
in Z2 illustrated in Figure 1. Observe that B8((0, 0), 3) is the entire image MSC8

which is not 8-contractible [11]. �
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Figure 1. The digital image MSC8 is 8-connected but not 8-
contractible [11].

Two subsets A and B of a digital image (X,κ) are said to be κ-adjacent if there
exist a ∈ A and b ∈ B such that a = b or a and b are κ-adjacent [3].

Corollary 4. If x and y are κ-adjacent in a κ-connected digital image (X,κ), then
Bκ(x, r) and Bκ(y, r) are κ-adjacent sets for every nonnegative integer r.

3.2. The κ-neighborhoods as multi-valued functions. Next consider a multi-
valued function F : X ( Y between two digital images (X,κ) and (Y, λ). That is,
F maps each point ofX to a subset of Y and for a subset A ofX, F (A) = ∪a∈AF (a).
The continuity notion for a multi-valued digital map is also defined (see [8—10]) but
in this paper we only consider the other two continuity notions given in [27].

Definition 5. [27] Suppose (X,κ) and (Y, λ) are two digital images and F : X (
Y is a multi-valued map.

i): F is said to be weakly continuous, provided whenever x0 and x1 are κ-
adjacent elements in X, F (x0) and F (x2) are λ-adjacent subsets of Y .

ii): F is said to be strongly continuous, provided whenever x0 and x1 are κ-
adjacent elements in X, every point of F (x0) is λ-adjacent to some point
in F (x1) and vice versa.

Let (X,κ) be a κ-connected digital image and r be a nonnegative integer. Define
the multi-valued function Fr : X ( X by Fr(x) = Bκ(x, r) for x ∈ X. Then the
following corollary is one of the immediate consequences of Lemma 2.

Theorem 6. The multi-valued function Fr is strongly continuous.

Proof. The multi-valued function F0 turns into a single-valued function and it sat-
isfies the strong continuity condition immediately. The proof is also trivial when
r = 1: Let x1 and x2 be κ-adjacent in X. Since x1 ∈ Bκ(x2, 1), any point of
Bκ(x1, 1) is κ-adjacent to a some point of Bκ(x2, 1) and vice versa. For r ≥ 2,
observe that any element x ∈ Bκ(x1, r) \Bκ(x2, r) is contained in Bκ(x2, r+ 1) and
this completes the proof. �
Corollary 7. Fr is weakly continuous.

By Corollary 7, the map Fr is also a connectivity preserving function. Note
that a multi-valued function F : X ( Y is connectivity preserving iff F is weakly
continuous and F (x) is a λ-connected subset of the digital image (Y, λ) for every
x ∈ X [6].
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Definition 8. Suppose (X,κ) is a κ-connected digital image and A is a nonempty
subset of X. For a nonnegative integer r, the r-thickening of A, A(r,κ), is given by

A(r,κ) = ∪a∈ABκ(a, r)

Remark 9. A(r,κ) = Fr(A).

Suppose κ1 and κ2 are two adjacency relations on a set X. Then we say that κ1

dominates κ2, κ1 ≥d κ2, if for x1, x2 ∈ X, if x1 and x2 are κ1-adjacent then x1 and
x2 are κ2-adjacent [4]. Further if X is κ1-(hence κ2)-connected and A is a subset
of X, then A(r,κ1) ⊆ A(r,κ2).

Example 10. Consider the 18-connected digital image MSS18 = {xi}9i=0 in Z3 [12]
where

x0 = (0, 0, 0), x1 = (1, 1, 0), x2 = (0, 1,−1), x3 = (0, 2,−1), x4 = (1, 2, 0),

x5 = (0, 3, 0), x6 = (−1, 2, 0), x7 = (0, 2, 1), x8 = (0, 1, 1), x9 = (−1, 1, 0)

(see Figure 2). Let A = {x0, x7} and B = {x5}. Then A(1,18) = B18(x0, 1) ∪
B18(x7, 1) = X \ {x3} and B(2,18) = X \ {x0}.

Figure 2. 18-connected digital image MSS18 [12].

Proposition 11. Let (X,κ) be a κ-connected digital image and A be a subset of
X. For two nonnegative integers r1 and r2, we have (A(r2,κ))(r1,κ) = A(r1+r2,κ).

Proof. It is trivial that A(r1+r2,κ) ⊆ (A(r2,κ))(r1,κ). Let a ∈ (A(r2,κ))(r1,κ). Then
there is b ∈ A(r2,κ) such that dκ(a, b) ≤ r1 and c ∈ A such that dκ(b, c) ≤ r2.
Therefore

dκ(a, c) ≤ dκ(a, b) + dκ(b, c) ≤ r1 + r2

so a ∈ A(r1+r2,κ) and this completes the proof. �
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The immediate consequence is the following Corollary.

Corollary 12. Suppose (X,κ) is a κ-connected digital image and A and C are κ-
adjacent subsets of X. Then there exists a ∈ A such that a ∈ C(1,κ) or vice-versa.

Proof. The proof follows from Lemma 2 �

Proposition 13. Suppose (X,κ) is a κ-connected digital image and A is a subset
of X. Then the following holds:

i): X \A and A are κ-adjacent,
ii): There exists x ∈ X \A such that x ∈ A(1,κ).

Proof. :
i): If X \ A and A were not κ-adjacent sets, this would mean that none of
the elements of X \A would be κ-adjacent to any elements of A so that X
would not be κ-connected.

ii): This follows from i) and Corollary 12.
�

Theorem 14. Suppose (X,κ) and (Y, λ) are digital images and X is κ-connected.
If A is a subset of X and f : X → Y is (κ, λ)-continuous, then f(A(r,κ)) ⊆ f(A)(r,λ)

for every positive integer r.

Proof. Let y ∈ f(A(r,κ)). Then there exists an element x ∈ A(r,κ) such that f(x) =
y. Let a be a point in A such that `κ(x, a) ≤ r; such a point a exists, since
x ∈ A(r,κ). That is, the length of the shortest simple κ-path from x to a in X is
less than or equal to r. We also have a λ-path between y = f(x) and f(a) by the
continuity of f and the length of this path cannot be greater than `κ(x, a). If this
λ-path is simple then we have `λ(y, f(a)) ≤ r. If it is not simple, we can reduce it
to a simple λ-path from y to f(a) so that the length of the reduced path cannot be
greater than `κ(x, a). Hence y ∈ f(A)(r,λ). �

For a digital image (X,κ) and its nonempty subset Y , we say Y is κ-dominating
in X [7] if for every x ∈ X, there exists y ∈ Y such that dκ(x, y) ≤ 1. Unlike
the definition of κ-dominating, in the following we consider two subsets of a digital
image which need not be contained in one another and we give a notion of κ-
monitoring. For more details on κ-dominating, see [5].

Definition 15. Let (X,κ) be a digital image, A and B be the subsets of X. We
say that A κ-monitors B if for any b ∈ B, there exists a ∈ A such that dκ(a, b) ≤ 1.

Suppose κ1 and κ2 are two adjacency relations on a set X such that κ2 ≥d κ1

and A and B are subsets of X. If A κ2-monitors B, then A also κ1-monitors B.

Remark 16. If A κ-monitors B, then A and B are κ-adjacent sets. However the
converse may not be true.
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Lemma 17. Let (X,κ) be a κ-connected digital image and A and B be the subsets
of X. Then A κ-monitors B if and only if B ⊆ A(1,κ).

Proof. Let A κ-monitors B and b ∈ B. Then there is a ∈ A such that dκ(a, b) ≤ 1
so that b ∈ A(1,κ). This is always true for every element b in B, hence B ⊆ A(1,κ).
On the contrary, let B ⊆ A(1,κ). This means that any element b in B is an element
in A(1,κ) so that there is a ∈ A such that dκ(a, b) ≤ 1. Therefore A κ-monitors
B. �

Theorem 18. Let (X,κ) and (Y, λ) be two digital images, X be κ-connected, f :
X → Y be a (κ, λ)-continuous function, and A and B be subsets of X. If A κ-
monitors B, then f(A) λ-monitors f(B).

Proof. If A κ-monitors B, then B ⊆ A(κ,1) by Lemma 17. Applying f to that
gives f(B) ⊆ f(A(κ,1)). Since f(A(κ,1)) ⊆ f(A)(1,λ) by Theorem 14, we have
f(B) ⊆ f(A)(1,λ) so that f(A) λ-monitors f(B). �

The following corollary follows from the definition of a strongly continuous multi-
valued function.

Corollary 19. Let (X,κ) and (Y, λ) be two digital images, x0, x1 ∈ X and F : X (
Y be a strongly continuous multi-valued function. If x0 and x1 are κ-adjacent, then
F (x1) λ-monitors F (x0) and vice versa.

3.3. Digital HausdorffDistance. We know that dκ is a metric on a κ-connected
digital image X. Next, we want to measure the distance between two nonempty
subsets A and B of X. We call the distance digital Hausdorff distance between
them. To do this, we will find the minimum r so that the r-thickening of each
subset will contain another.

Definition 20. The digital Hausdorff distance between two subsets A and B of a
κ-connected digital image X is

dκH(A,B) = min{r ≥ 0 : B ⊆ A(r,κ) and A ⊆ B(r,κ)} (2)

Suppose (X,κ) is a κ-connected digital image and A and B are subsets of X. If κ1

is another adjacency relation on X with κ ≥d κ1, then X is also κ1-connected digi-
tal image and dκH(A,B) ≥ dκ1H (A,B) since the length of the shortest simple κ-path
between any given pair in X might be greater than or equal to the length of the
shortest simple κ1-path between them.

Example 21. Consider the 8-connected digital image X = {xi}6i=1 in Z2 where

{x1 = (0, 0), x2 = (0,−1), x3 = (1,−1), x4 = (1, 0), x5 = (2, 1), x6 = (3, 1)}
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(see Figure 3) and let A = {x1, x2} and B = {x5, x6}. Then d8
H(A,B) = 3 since

A ⊆ B(2,8), B ⊆ A(3,8), and B * A(2,8). We also have

d8
H(F1(A), F1(B)) = 2

since F1(A) ⊆ F1(B)(1,8), F1(B) ⊆ F1(A)(2,8), and F1(B) * F1(A)(1,8) where
F1 : X ( X is a multimap defined by F1(x) = Bκ(x, 1) for x ∈ X.

Figure 3. The 8-connected digital image X and the points in red
rectanguls from left to right are A and B.

Proposition 22. Let (X,κ) be a κ-connected digital image and A be a subset of
X. Then dκH(A,A ∪ {x}) = `κ(x,A) for x ∈ X.

Proof. The proof follows from the fact that if `κ(x,A) = n then x ∈ A(n,κ). �

Proposition 23. For a nonnegative integer r,

dκH(Bκ(x1, r),Bκ(x2, r)) ≤ 1

whenever x1 is κ-adjacent to x2 in a κ-connected digital image (X,κ).

Proof. The proof follows from the fact that Bκ(x, r+1) = Bκ(x, r)(1,κ) for all x ∈ X
and every nonnegative integer r. �

Now we will prove the stability of the digital Hausdorff distance under a digital
continuous map.

Theorem 24. Let (X,κ) and (Y, λ) be digital images, X connected, A,B ⊆ X. If
f : X → Y is (κ, λ)-continuous, then

dλH(f(A), f(B)) ≤ dκH(A,B).

Proof. Assume that dκH(A,B) = s. Then by the definition of the digital Hausdorff
distance, s is the minimum number such that A ⊆ B(s,κ) and B ⊆ A(s,κ). By these
inclusions and Theorem 14, we have

f(A) ⊆ f(B(s,κ)) ⊆ f(B)(s,λ)

f(B) ⊆ f(A(s,κ)) ⊆ f(A)(s,λ).
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so that f(A) and f(B) can be covered by the s-thickening of f(B) and f(A) with
respect to the adjacency λ respectively. Hence dλH(f(A), f(B)) ≤ s. �

Example 25. Consider the following two 4-connected digital images
X = {x1, x2, x3, x4, x5} and Y = {y1, y2, y3} in Z2 illustrated in Figure 4. Let
A = {x1, x5} and B = {x2, x3, x4} be the two subsets of X. If the digital (4, 4)-
continuous map f : X → Y is given with

f(x1) = f(x4) = y2, f(x5) = y3, and f(x2) = f(x3) = y1,

then d4
H(A,B) = 2 and d4

H(f(A), f(B)) = 1.

Figure 4. The Hausdorff distance is stable under a digital con-
tinuous map between digital images. In this example, we have
d4
H(f(A), f(B)) ≤ d4

H(A,B).

Figure 5. Triangulated traffi c video frame shape.

4. Applications

This section briefly presents applications of Hausdorff Distance. The following
two applications were suggested by James F. Peters [21].
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4.1. Zero-Shot Surface Shape Recognition. This application of the proposed
Hausdorff distance between sets focuses on a zero-shot recognition approach in
the detection and classification of surface shapes recorded in video frames. Zero-
shot classification of images with no training data is highly attractive, since it is
less rigid than traditional classification techniques that rely on training data and,
hence, build into the learning process unwanted à priori assumptions implicit in
the training data. For more about this, see M. Molina and J. Sánchez [19], J. Lu
and J. Li and Z. Yan and C. Zhang [18] and J.F. Peters [22].
Let shE, bdy(shE) and int(shE) denote a surface shape in a video frame, shape

boundary and shape interior, respectively. Also, let p ∈ int(shE) be the shape
centroid and let th > 0 be a threshold. For each shape in a video frame, find the
Hausdorff distance D(p, bdy(shE)) between the centroid of shE and bdy(shE) that
is less than or equal to a threshold th, defined by

Hausdoff distance criterion︷ ︸︸ ︷
D(p, bdy(shE)) = inf {‖p− q‖ : q ∈ bdy(shE)} < th}.

This would be useful in finding video frames that contain shapes that have the
required distance property relative to a fixed threshold th.

Example 26. A sample traffi c video frame that displays a triangulated vehicle shape
shE is shown in Fig. 5. A green vertex p inside the yellow cycle on shE marks the
location of the shape centroid. Vertices along the shape boundary are represented by
red bullets. The Hausdorff distance D(p, bdy(shE)) would be computed and compared
with other vehicle shapes in this video to construct a vehicle shape class.

For a particular shape class, the members of the class satisfy the Hausdorf dis-
tance criterion.

4.2. Descriptive Leader Uniform Topology. A clusters form of proximity space-
based uniform topology was introduced by S. Leader [17], elaborated in [24, 25].
This application uses the Hausdorff distance property from Application 4.1 as a
feature for a set of video frame shapes equipped with a descriptive proximity map-
ping Φ : shE → R, which provides a basis for the formation of a descriptive Leader
uniform class of shapes CΦ(shE) for each shape shE in the following way.

th = selected threshold such that th > 0.

fr = video frame.

shE ∈ fr = video frame shape.

bdy(shE) = boundary of shE.

D(p ∈ shE,bdy(shE)) = inf {‖p− q‖ : q ∈ bdy(shE)} < th.

Φ(shE) = D(p ∈ shE,bdy(shE)).

CΦ(shE) =

Class of video frame shapes︷ ︸︸ ︷
{shE′ : ‖Φ(shE)− Φ(shE′)‖ < th} .
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Then, for each given shape shE in a video, a shape shE′ belongs to a class CΦ(shE)
of shapes relative to shE, provided Φ(shE) = Φ(shE′) in video frames fr and fr′

define a descriptive Leader uniform topology, i.e., a collection of shape classes in
which nonempty disjoint sets of shapes are descriptively near each other [23, §4.16,
p. 189].
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