
Turk. J. Math. Comput. Sci.
13(1)(2021) 6–13
©MatDer
DOI : 10.47000/tjmcs.766711

A New Approach on Roman Graphs

Doost AliMojdeh1 , Ali Parsian2 , ImanMasoumi2,∗

1Department of Mathematics, University of Mazandaran, Babolsar, Iran.
2Department of Mathematics, Tafresh University, Tafresh, Iran.

Received: 08-07-2020 • Accepted: 06-01-2021

Abstract. Let G = (V, E) be a simple graph with vertex set V = V(G) and edge set E = E(G). A Roman
dominating function (RDF) on a graph G is a function f : V → {0, 1, 2} satisfying the condition that every vertex
u for which f (u) = 0 is adjacent to at least one vertex v such that f (v) = 2. The weight of f is ω( f ) = Σv∈V f (v).
The minimum weight of an RDF on G, γR(G), is called the Roman domination number of G. γR(G) ≤ 2γ(G) where
γ(G) denotes the domination number of G. A graph G is called a Roman graph whenever γR(G) = 2γ(G). On the
other hand, the differential of X is defined as ∂(X) = |B(X)| − |X| and the differential of a graph G, written ∂(G), is
equal to max{∂(X) : X ⊆ V}. By using differential we provide a sufficient and necessary condition for the graphs to
be Roman. We also modify the proof of a result on Roman trees. Finally we characterize the large family of trees
T such that ∂(T ) = n − γ(T ) − 2.
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1. Introduction

Graph protection involves the placement of mobile guards on the vertices of a graph to protect its vertices and
edges against single or sequences of attacks and has its historical roots in the time of the ancient Roman Empire. The
modern study of graph protection was initiated in the late twentieth century by the appearance of four publications
in quick succession that referred to the military strategy of Emperor Constantine (Constantine The Great, 274-337
AD). The seminal paper is Ian Stewart’s ”Defend the Roman Empire!” in Scientific American, December 1999 [16],
which contains a reply to C. S. ReVelle’s ”Can you protect the Roman Empire?”, Johns Hopkins Magazine, April
1997 [14], and which is based on ReVelle and K. E. Rosing’s ”Defendens Imperium Romanum: A Classical Problem
in Military Strategy” in American Mathematical Monthly, August-September 2000 [15]. ReVelle’s work [14] in turn is
a response to the paper ” Graphing’ an Optimal Grand Strategy” by J. Arquilla and H. Fredricksen [2], which appeared
in Military Operations Research in 1995 and which is the oldest reference we could find that places the strategy of
Emperor Constantine in a mathematical setting.

According to ancient history-some say mythology-Rome was founded by Romulus and Remus in 760-750 BC on
the banks of the Tiber in central Italy. It was a country town whose power gradually grew until it was the centre of
a large empire. In the third century AD Rome dominated not only Europe, but also North Africa and the Near East.
The Roman army at that time was strong enough to use a forward defense strategy, deploying an adequate number
of legions to secure on-site every region throughout the empire. However, the Roman Empire’s power was greatly
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Figure 1. The Roman Empire, fourth century AD

reduced over the following hundred years. By the fourth century AD only twenty-five legions of the Roman army were
available, which made a forward defense strategy no longer feasible.

According to E. N. Luttwak, The Grand Strategy of the Roman Empire, as cited in [15], to cope with the reducing
power of the Empire, Constantine devised a new strategy called a defense in depth strategy, which used local troops to
disrupt invasion. He deployed mobile Field Armies (FAs), units of forces consisting of roughly six legions powerful
enough to secure any one of the regions of the Roman Empire, to stop the intruding enemy, or to suppress insurrection.
By the fourth century AD there were only four FAs available for deployment, whereas there were eight regions to be
defended (Britain, Gaul, Iberia, Rome, North Africa, Constantinople, Egypt and Asia Minor) in the empire. See Figure
1. An FA was considered capable of deploying to protect an adjacent region only if it moved from a region where there
was at least one other FA to help launch it. The challenge that Constantine faced was to position four FAs in the eight
regions of the empire. Consider a region to be secured if it has one or more FAs stationed in it already, and securable if
an FA can reach it in one step. Constantine decided to place two FAs in Rome and another two FAs in Constantinople,
making all regions either secured or securable -with the exception of Britain, which could only be secured after at least
four movements of FAs. It is mentioned in [2,15,16] that Constantine’s ”defense in depth” strategy was adopted during
World War II by General Douglas MacArthur. When conducting military operations in the Pacific theatre he pursued
a strategy of ”island-hopping” -moving troops from one island to a nearby one, but only when he could leave behind
a large enough garrison to keep the first island secure. The efficiency of Constantine’s strategy under different criteria,
and ways in which it can be improved, were also discussed in these three articles. It should be noted that this history is
entirely from the article [10].

Let G = (V, E) be a simple undirected graph with set of vertices V = V(G) and set of edges E = E(G). We refer the
reader to [17] for any terminology and notation not given here. We denote minimum degree of a graph G with δ(G) and
maximum degree with ∆(G). The open neighborhood of a vertex v ∈ V is the set N(v) = {u : uv ∈ E(G)} and closed
neighborhood of a vertex v ∈ V is the set N(v)∪{v}. The open neighborhood of a set S ⊆ V is the set N(S ) =

⋃
v∈S N(v).

The closed neighborhood of a set S ⊆ V is the set N[S ] = N(S )
⋃

S . Let Ev be the set of edges incident with v in
G, that is, Ev = {uv ∈ E(G) : u ∈ N(v)}. We denote the degree of v by dG(v) = |Ev|. A leaf or pendant vertex of G
is a vertex with degree one, a support vertex is a vertex adjacent to a leaf, a strong support vertex is a support vertex
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adjacent to at least two leaves, and an end-support vertex is a support vertex, all of whose neighbors with the exception
of at most one are leaves. The set of all leaves adjacent to a vertex v is denoted by L(v). The distance dG(u, v) between
two vertices u and v in a connected graph G is the length of a shortest uv-path in G. The diameter of a graph G, denoted
by diam(G), is the greatest distance between two vertices of G. Given a set S ⊆ V , the private neighborhood pn[v, S ]
of v ∈ S is defined by pn[v, S ] = N[v] − N[S − {v}], equivalently, pn[v, S ] = {u ∈ V : N[u] ∩ S = {v}}. Each vertex in
pn[v, S ] is called a private neighbor of v. From the definition of pn[v, S ], it is possible that v ∈ pn[v, S ].

The external private neighborhood epn(v, S ) of v with respect to S consists of those private neighbors of v in V −S .
Thus epn(v, S ) = pn[v, S ] ∩ (V − S ).

A set S ⊆ V is a dominating set if N[S ] = V . The domination number γ(G) is the minimum cardinality of a
dominating set of G. A dominating set S ⊆ V is called a γ(G)-set if |S | = γ(G). A set S ⊆ V is an independent
dominating set if N[S ] = V and the induced subgraph by S has no edge. The independent domination number γi(G)
is the minimum cardinality of an independent dominating set of G. Let G be a graph with no isolated vertex. A set
S ⊆ V is a total dominating set if N(S ) = V . The total domination number γt(G) is the minimum cardinality of a total
dominating set of G [8].
A graph G has property EPN if for every γ(G)-set S and for every v ∈ S , epn(v, S ) , ∅. We call a tree with property
EPN, an EPN-tree [11].

Let G = (V, E) be a graph, X ⊆ V and B(X) be the set of vertices in V − X that have a neighbor in the set X. If
X ⊆ V , ∅, we define C(X) = V − (X ∪ B(X)). We define the differential of a set X to be ∂(X) = |B(X)| − |X| [11],
and the differential of a graph G to be equal to ∂(G) =max {∂(X) : X ⊆ V}. A set D satisfying ∂(D) = ∂(G) is called a
∂-set or differential set. A graph G is said to be a dominant differential if it contains a ∂-set which is also a dominating
set, [3, 4]. Some examples of dominant differential graphs are complete graphs, stars, wheels, paths P3k, P3k+2, cycles
C3k and C3k+2. An enclaveless number(or B-differential) of a graph G = (V, E) is Ψ(G) = max{|B(X)| : X ⊆ V}.

A rooted tree is a tree in which one vertex has been designated the root. For a vertex v in a rooted tree T , let Ch(v)
denote the set of children of v, D(v) denotes the set of descendants of v, and D[v] = D(v)∪ {v}. The maximal subtree at
v is the subtree of T induced by D[v], and is denoted by Tv. We denote a star with a central vertex and r leaves as K1,r.
A double star is a tree with exactly two vertices of degree at least two. We present a double star with respectively, r
and t leaves attached to its support vertices by notation DS r,t. The subdivision graph S (G) of a graph G is that graph
obtained from G by replacing each edge uv of G by a vertex w and edges uw and vw. A healthy spider is the subdivision
graph of a star K1,r for r ≥ 2. A wounded spider S r,t is a graph obtained from a star K1,r by subdividing t edges exactly
once, where 1 ≤ t ≤ r − 1. In a wounded spider S r,t , the vertex of degree r is called the head vertex and the vertices
that are placed at the distance of two from head vertex are called the foot vertices.

For a graph G = (V, E), let f : V → {0, 1, 2} be a function, and let f = (V0,V1,V2) be the ordered partition of V
induced by f , where Vi = {v ∈ V(G) : f (v) = i}. A Roman dominating function (or just an RDF) on graph G is a
function f : V → {0, 1, 2} such that if v ∈ V0 for some v ∈ V , then there exists a vertex w ∈ N(v) such that f (w) = 2.
The weight of a Roman dominating function is the sum w f =

∑
v∈V(G) f (v), and the minimum weight of w f of a Roman

dominating function f on G is called Roman domination number of G. We denote this number with γR(G). A Roman
dominating function on G with weight γR(G) is called a γR-function of G. For more on the Roman domination number
see for example [3].

Let f : V → {0, 1, 2, 3} be a function, and let f = (V0,V1,V2,V3) be the ordered partition of V induced by f ,
where Vi = {v ∈ V(G) : f (v) = i}. A double Roman dominating function (or just a DRDF) on graph G is a function
f : V → {0, 1, 2, 3} such that the following conditions are met:

(a) if f (v) = 0, then vertex v must have at least two neighbors in V2 or one neighbor in V3.
(b) if f (v) = 1 , then vertex v must have at least one neighbor in V2

⋃
V3.

The weight of a double Roman dominating function is the sum w f =
∑

v∈V(G) f (v), and the minimum weight of w f

for every double Roman dominating function f on G is called double Roman domination number of G. We denote
this number with γdR(G). A double Roman dominating function of G with weight γdR(G) is called a γdR-function of
G. Beeler et al. [4] have studied double Roman domination of graphs and Mojdeh et al. [13] have studied the double
Roman trees. For a double Roman dominating function f if V \ V0 is an independent set, then f is an independent
double Roman dominating function [12], and if V \V0 has no isolated vertex, then f is a total double Roman dominating
function [7].

A graph G is said to be a Roman graph if γR(G) = 2γ(G). Henning [9] has studied the Roman trees. He specified
exactly the family of Roman trees. But finding Roman graphs in general is still an open question. In the second section
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of this paper, we present a necessary and sufficient condition for a general graph to be Roman. Also, Lewis [11]
introduced a necessary condition for the general graphs to be dominant differential. This necessary condition states:
“If G does not have property EPN, then ∂(G) ≥ n − 2γ(G) + 1”. Also, he determined the family of trees T with the
property ∂(T ) = n − γ(T ) − 1. In the third section of this paper, we specify exactly the family of dominant differential
trees. Then in the fourth section, we determine a family of trees T such that ∂(T ) = n − γ(T ) − 2.

The following results are useful for the proofs of our main theorems.
Theorem A ( [5].) A graph is dominant differential if and only if ∂(G) = n − 2γ(G).
Theorem B ( [3].) If G is a graph of order n, then γR(G) = n − ∂(G).
Theorem C ( [5].) For any graph G of order n without isolated vertices,

n − 2γ(G) ≤ ∂(G) ≤ n − γ(G) − 1.

Theorem D ( [6].) For any graph G, γ(G) ≤ γR(G) ≤ 2γ(G).
Theorem E ( [13].) Let G be a graph without isolated vertices. Then γdR(G) ≤ 2n − ∂(G) − Ψ(G). This bound is

sharp.
Theorem F ( [4].) If T is a non-trivial tree, then γdR(T ) ≥ 2γ(T ) + 1.
Theorem G ( [13].) For any tree T of order n ≥ 2, γdR(T ) = 2γ(T ) + 1 if and only if ∂(T ) = n − γ(T ) − 1.
Theorem H ( [11].) For any graph G of order n, Ψ(G) = n − γ(G).
Theorem I ( [6].) If T is a tree of order n ≥ 2, then γR(T ) = γ(T ) + 2 if and only if (i) T is a healthy spider or (ii) T

is a pair of wounded spiders T1 and T2, with a single edge joining v ∈ V(T1) and w ∈ V(T2), subject to the following
conditions:

(1) if either T is a P2, then neither vertex in P2 is joined to the head vertex of the other tree.
(2) v and w are not both foot vertices.

2. A Necessary and Sufficient Condition for Roman Graphs

In this section we investigate a necessary and sufficient condition to identify Roman graphs. Recall that a graph
consisting of one central vertex c and d neighbors that in turn have no further neighbors other than c is also known as
a star S d = K1,d. We say S d is a big star if d ≥ 2.

Theorem 2.1. A connected graph G is a Roman graph if and only if V(G) can be partitioned into sets X1, . . . , Xk,Y1, . . . ,Yk,
such that

(i) G[Xi] is a big star for each i = 1, . . . , k, and G[Y j] � K2 for each j = 1, . . . , k′,
(ii) k + k′ = γ(G), and
(iii)Σk

i=1(|Xi| − 2) = ∂(G).

Proof. Let G be a Roman graph. Then by definition, we have γR(G) = 2γ(G). Thus by Theorem B, we deduced ∂(G) =

n − γR(G) = n − 2γ(G). Now we suppose that D = {x1, ..., xk, y1, ..., yk′ } is a γ(G)-set such that xi’s and y j’s are central
vertices of big stars Xi and edges Y j respectively that do not have a common vertex. We put S = {X1, ..., Xk,Y1, ...,Yk′ }.
Therefore, k+k′ = γ(G) and

∑
Z∈S(|Z|−2) = |X1|+ ...+ |Xk |+ |Y1|+ ...+ |Yk′ |−2− ...−2 = n−2(k+k′) = n−2γ(G) = ∂(G).

Conversely, if G can be partitioned into a set of it’s subgraphs, such as S = {X1, ..., Xk,Y1, ...,Yk′ }, so that for any i, j;
Xi’s and Y j’s are the big stars and the edges respectively that do not have a common vertex and the same time we have,
k+k′ = γ(G) and

∑
Z∈S(|Z|−2) = ∂(G) then we have ∂(G) =

∑
Z∈S(|Z|−2) = |X1|+ ...+ |Xk |+ |Y1|+ ...+ |Yk′ |−2− ...−2 =

n − 2(k + k′) = n − 2γ(G). Thus, by Theorem B, γR(G) = n − ∂(G) = n − (n − 2γ(G)) = 2γ(G). �

In [9], Henning introduced a large family T of trees T so that γR(T ) = 2γ(T ). We now modify the proof of Roman
trees that has been given by Henning [9].

Theorem 2.2. Let T be a tree. Then T is a Roman tree if and only if V(T ) can be partitioned into sets X1, . . . , Xk, such
that

(i) G[Xi] is a big star for each i = 1, . . . , k, or
(ii) V(T ) can be partitioned into sets X1, . . . , Xk,Y1, . . . ,Yk′ such that G[Xi] is a big star for each i = 1, . . . , k, and

G[Y j] � K2 for each j = 1, . . . , k′, where
1. no vertex of Y js is adjacent to the center of any Xi and a vertex of another Yl,
2. for each Xis there is at most one Y j for which one of vertex of Xi is adjacent to one of vertex of Y j.
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Proof. Let T be tree. If T can be partitioned to a set S consists of k big stars X1, ..., Xk, then we put D = {x1, ..., xk}

which x1, ..., xk are central vertices for Xi’s respectively. Now assigning label 2 to the vertices x1, ..., xk and use the
Theorem B, we have γR(T ) = 2k = 2|D| = 2γ(T ). But if T can be partitioned to a set S consists of k big stars X1, ..., Xk

and k′ edges Y1, ...,Yk′ such that no vertex of Yi’s are connected to the central vertices of X j’s or vertices in another
Yl and each X j is connected to at most one edge Yi, then we put D = {x1, ..., xk, y1, ..., yk′ } where x1, ..., xk, y1, ..., yk′

are central vertices for Xi’s and Y j’s respectively. Now assigning label 2 to the vertices x1, ..., xk, y1, ..., yk′ and use the
Theorem B, we have γR(T ) = 2(k + k′) = 2|D| = 2γ(T ).

Conversely, if T is a Roman tree, then by Theorem 2.1, T can be partitioned into a set of it’s subgraphs, such as
S = {X1, ..., Xk,Y1, ...,Yk′ }, in which for any i, j; Xi’s and Y j’s are the big stars and the edges respectively without any
common vertex and k + k′ = γ(T ), and also

∑
Z∈S(|Z| − 2) = ∂(T ). If k′ = 0, then the result is obtained. Otherwise, we

have k′ ≥ 1. On the other hand, since k + k′ = γ(T ), and also
∑

Z∈S(|Z| − 2) = ∂(T ) we must have the set S consists
of k big stars X1, ..., Xk and k′ edges Y1, ...,Yk′ such that no vertex of Y js is adjacent to the central vertices of X j’s or
vertices in another Yl and for each Xis there is at most one Y j for which one of vertex of Xi is adjacent to one of vertex
of Y j. �

3. Dominant Differential Trees

Lewis in [11] has posed the following open problem.
Problem. Characterize the dominant differential graphs, in particular, characterize the dominant differential trees.

According to the Theorems A and C we must find trees of T such that ∂(T ) = n− 2γ(T ). We would like to characterize
the dominant differential trees.

For a vertex v in a (rooted) tree T , we let Ch(v) and De(v) denote the set of children and descendants, respectively.
We denote the set of support vertices of T by S (T ). In the paper [9], Henning describes a procedure to build Roman
trees. For this purpose, he defines two families of trees as follows. Let F∗1 denote the family of all rooted trees such that
every leaf different from the root is at distance 2 from the root and all, except possibly one, child of the root is a strong
support vertex. Let F∗2 denote the family of all rooted trees such that every leaf is at distance 2 from the root and all but
two children of the root are strong support vertices. For a tree T we let VS (T ) = {v ∈ V(T ) : v ∈ S (T ) and γdR(T − v) ≥
γdR(T )}. Note that every strong support vertex of T belongs to VS (T ). Let T be the family of unlabelled trees T that
can be obtained from a sequence T1, ...,T j ( j ≥ 1) of trees such that T1 is a star K1,r for r ≥ 1, and if j ≥ 2, Ti+1 can be
obtained recursively from Ti by one of the three operations T1,T2 and T3.

Operation T1. Assume w ∈ VS (Ti). Then the tree Ti+1 is obtained from Ti by adding a star K1,s for s ≥ 2 with
central vertex v and adding the edge vw.

Operation T2. Assume x ∈ V(Ti). Then the tree Ti+1 is obtained from Ti by adding a tree T from the family F∗1 by
adding the edge xw, where w is a leaf of T if T = P3 or w is the central vertex of T if T , P3.

Operation T3. Assume x ∈ VS (Ti). Then the tree Ti+1 is obtained from Ti by adding a tree T from the family F∗2 and
adding the edge xw, where w denotes the central vertex of T .
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Theorem J ( [9].) A tree T is a Roman tree if and only if T ∈ T .

Theorem 3.1. A tree T is dominant differential if and only if T ∈ T .

Proof. If T is a dominant differential tree then by Theorem A, we have ∂(T ) = n − 2γ(T ). On the other hand, by
Theorem B, γR(T ) = n − ∂(T ). Thus, we conclude, γR(T ) = n − (n − 2γ(T )) = 2γ(T ). Hence, T is a Roman tree. Now
by Theorem J, T ∈ T . Conversely, if T ∈ T , then by Theorem J, T is a Roman tree. Thus, we have γR(T ) = 2γ(T ).
Now by Theorem B, ∂(T ) = n − γR(T ) = n − 2γ(T ). Finally, by Theorem A we conclude, T is a dominant differential
tree. �
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4. Characterization of Trees with ∂(T ) = n − γ(T ) − 2

Lewis in his thesis [11], entitled Differential of graphs, showed that for any graph G, we have ∂(G) ≤ n − γ(G) − 1.
Also, he determined the family of trees T such that ∂(T ) = n − γ(T ) − 1. On the other hand, Mojdeh et al. in the
paper [13], showed that for any graph G, γdR(G) ≤ 2n−ψ(G)− ∂(G). They also showed a necessary condition for trees
T such that ∂(T ) = n−γ(T )−2. In this section, we identify the family of trees T with the property ∂(T ) = n−γ(T )−2.
For this, we introduce the families of trees.

Let T be a family of trees, each of which is either a non-trivial star or a wounded spider. In 2004, Cockayne et
al. [6] identified, the family of trees T with γdR(T ) = 2γ(T ) + 2.(Theorem I)

In [1], Ahangar et al. showed the whole family of trees with γdR(T ) = 2γ(T ) + 2 is the same as the trees represented
in the Theorem I. To this end, they introduced eight families of trees as follows with more details:

Let T0 be the class consisting of the path P2 and all wounded spiders different from a path P4 whose head vertex has
a unique leaf. Since T0 ⊆ T , we letH = T − T0. Let c denote either the unique leaf adjacent to the head of wounded
spiders in class T0 or a vertex of the path P2. Then they introduced the following families of trees.

1. T1 is the family of trees T obtained from a tree T ′ ∈ T by adding a star K1,r(r ≥ 2) and joining a leaf of K1,r to a
vertex of T ′.

2. T2 is the family of trees T obtained from a tree T ′ ∈ T0 by adding a double star DS 1,q (q ≥ 2) and joining the
support vertex of degree 2 in DS 1,q to the head vertex or a support vertex of T ′.

3. T3 is the family of trees T obtained from a tree T ′ ∈ H by adding a double star DS 1,q (q ≥ 2) and joining the
support vertex of degree 2 in DS 1,q (q ≥ 2) to a vertex of T ′ different from leaves at distance 2 of the head vertex in T ′.

4. T4 is the family of trees T obtained from a tree T ′ ∈ H by adding P4 (resp. K1,r(r ≥ 2)) and joining a support
vertex of P4 (resp. the center of K1,r) to a vertex of T ′.

5. T5 is the family of trees T obtained from a tree T ′ ∈ T0 by adding P4 (resp. K1,r(r ≥ 2)), and joining a support
vertex of P4 (resp. the center of K1,r) to a vertex of T ′ different from c.

6. T6 is the family of trees T obtained from a tree T ′ ∈ T0 − P2 by adding a corona P3oK1 and joining an end-
support vertex of P3oK1 to a support vertex adjacent to the head of T ′. 7. T7 is the family of trees T obtained from a
tree T ′ ∈

⋃6
i=1 Ti

⋃
{P6oK1} by adding r ≥ 1 copies of P2 and joining a vertex of each copy of P2 to a strong support

vertex or a support vertex adjacent to an end-support vertex or a support vertex adjacent to a vertex of degree 2 of T ′.
8. T8 is the family of trees T obtained from a tree T ′ ∈ T0 − P2 by adding the healthy spider and joining the head

of healthy spider to c.
Theorem K ( [1].) Let T be a tree of order n ≥ 5. Then γdR(T ) = 2γ(T ) + 2 if and only if T ∈

⋃8
i=1 Ti or T is a

healthy spider or T = P6oK1.

Theorem 4.1. Let T be a tree of order n ≥ 5. Then ∂(T ) = n − γ(T ) − 2 if and only if T ∈
⋃8

i=1 Ti or T is a healthy
spider or T = P6oK1.

Proof. If ∂(T ) = n − γ(T ) − 2 then by Theorems E and H, we have γdR(T ) ≤ 2n − ψ(T ) − ∂(T ) = 2n − (n − γ(T )) −
(n − γ(T ) − 2) = 2γ(T ) + 2. On the other hand, by Theorem F, 2γ(T ) + 1 ≤ γdR(T ). But 2γ(T ) + 1 , γdR(T ) because
otherwise by Theorem G, we obtain ∂(T ) = n−γ(T )−1 which is contradiction. Thus, we conclude 2γ(T )+2 = γdR(T ).

Conversely, we show that, if T ∈
⋃8

i=1 Ti or T is a healthy spider or T = P6oK1, then ∂(T ) = n − γ(T ) − 2.
To this end, by Theorem K γdR(T ) = 2γ(T ) + 2. Thus, by Theorems E and K, ∂(T ) ≤ 2n − γdR(T ) − ψ(T ) =

2n − (2γ(T ) + 2) − (n − γ(T )) = n − γ(T ) − 2. So, it is enough to show that ∂(T ) ≥ n − γ(T ) − 2. So, we have to
find a set X ⊆ V(T ), such that ∂(X) ≥ n − γ(T ) − 2. If T is a healthy spider, then we suppose T = S (K1,r) and v is a
central vertex of T . Now we put X = {v}. Thus, we have ∂(X) = |B(X)| − |X| = r − 1, n = 2r + 1 and γ(T ) = r. Hence,
∂(X) = γ(T ) − 1 = n − γ(T ) − 2. So in this case, ∂(G) ≥ ∂(X) ≥ n − γ(T ) − 2. If T = P6oK1, then we suppose that
x and y are two vertices at the distance of 3 from each other in tree T . Thus, clearly n = 12, γ(T ) = 6. Now we put
X = {x, y}. Hence, ∂(X) = |B(X)| − |X| = 6− 2 = 4 = 12− 6− 2 = n− γ(T )− 2. Therefore, ∂(T ) ≥ n− γ(T )− 2. Hence,
let T ∈

⋃8
i=1 Ti. Now there are the following cases.

Case 1. T ∈ T1.
Then T is obtained from a tree T ′ ∈ T with the central vertex x by adding a star K1,r (r ≥ 2) centered at y and

joining a leaf of K1,r to a vertex of a T ′. If T ′ is a star K1,t, then clearly γ(T ) = 2 and n = r + t + 1 + 1. We put
X = {x, y}. Thus, ∂(X) = |B(X)| − |X| = r + t − 2 = r + t + 2 − 2 − 2 = n − γ(T ) − 2. If T ′ is a wounded spider
S t, j (1 ≤ j ≤ t − 1), then clearly, n = r + 1 + t + 1 + j and γ(T ) = t + 1. Thus, we have r + t = n − 2 − j. Now
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we put X = {x, y}. Hence, ∂(X) = |B(X)| − |X| = t + r − 2 = n − 2 − j − 2. But clearly, γ(T ) ≥ j + 2. So, we have
∂(X) = |B(X)| − |X| = t + r − 2 = n − 2 − j − 2 ≥ n − γ(T ) − 2.

Case 2. T ∈ T2.
Then T is obtained from a tree T ′ ∈ T0 by adding a double star DS 1,q (q ≥ 2) and joining the support vertex

of degree 2 in DS 1,q to the head vertex or a support vertex of T ′. So, we have two cases that are as follows. Let
T ′ = P2 = xy. We suppose that z is the support vertex of degree q + 1 in DS 1,q. We put X = {y, z}. Then, clearly
γ(T ) = 3 and n = 2+q+1+2 = q+5 = q+3+2 = q+γ(T )+2. Hence, ∂(X) = |B(X)|−|X| = 2+q−2 = q = n−γ(T )−2.
Now let T ′ = S r,t is a wounded spider different from a path P4 whose head vertex has a unique leaf. We suppose that
z is the support vertex of degree q + 1 in DS 1,q and x is head vertex of T ′. Now we put X = {x, z}. Then clearly,
n = 3 + t + r + 1 + q = 4 + t + r + q and γ(T ) = 5. Thus we have ∂(X) = |B(X)| − |X| = q + 1 + t − 2 = q + t − 1. Hence,
∂(X) = n − 4 − r − 1 = n − 5 − r. But clearly, γ(T ) ≥ r + 3. Therefore, we have ∂(T ) ≥ n − γ(T ) − 2.

With the same method, we can follow that if T ∈
⋃8

i=3 Ti, then we have ∂(T ) ≥ n − γ(T ) − 2. �

Theorem L ( [11]). A tree T has ∂(T ) = n − γ(T ) − 1 if and only if T is nontrivial wounded spider.
Theorem M ( [4]). In a double Roman dominating function of weight γdR(G), no vertex needs to be assigned the

value 1.

Theorem 4.2. If T is a tree of order n, then γdR(T ) = 2γ(T ) + 2 if and only if
(1) T does not have a vertex of degree n − γ(T ).
(2) T has a vertex of degree n − γ(T ) − 1 or T has two vertices x and y such that |N[x]

⋃
N[y]| = n − γ + 2.

Proof. ⇐: Let two conditions (1) and (2) hold. By Theorem F, we have γdR(T ) ≥ 2γ(T ) + 1. By Theorems G and
L, if γdR(T ) = 2γ(T ) + 1, then T is a wounded spider and thus, T has a vertex of degree n − γ(T ), is a contradiction
with the condition (1). Therefore, γdR(T ) > 2γ(T ) + 1. Now if T has a vertex x of degree n − γ(T ) − 1, then we put
D = {x}. Hence, we have ∂(T ) ≥ ∂(D) = (n − γ(T ) − 1) − 1 = n − γ(T ) − 2. On the other hand, by Theorems E and
H, γdR(T ) ≤ 2n − ψ(T ) − ∂(T ) ≤ 2n − (n − γ(T )) − (n − γ(T ) − 2) = 2γ(T ) + 2. Now we deduce γdR(T ) = 2γ(T ) + 2.
Similarly, if there are two vertices, x and y such that |N[x]

⋃
N[y]| = n− γ + 2, then we put D = {x, y}. Hence, we have

∂(T ) ≥ ∂(D) = n−γ(T )− 2. So, by Theorems E and H, γdR(T ) ≤ 2n−ψ(T )− ∂(T ) ≤ 2n− (n−γ(T ))− (n−γ(T )− 2) =

2γ(T ) + 2. Therefore we have also γdR(T ) = 2γ(T ) + 2.
⇒: Conversely, let γdR(T ) = 2γ(T ) + 2. First of all it is simply verifiable the condition (1) holds. Now by Theorem

M, let f = (V0,V2,V3) be a γdR-function on T . Thus, γdR(T ) = 2|V2|+ 3|V3| = 2(|V2|+ |V3|) + |V3| ≥ 2γ(T ) + |V3|. Since,
γdR(T ) = 2γ(T )+2, 2γ(T )+2 = 2(|V2|+|V3|)+|V3|. Thus |V3| is even and 0 ≤ |V3| ≤ 2, that is |V3| = 0 or |V3| = 2. Now if
|V3| = 2, then we say V3 = {x, y}. So we have |V2| = γ(T )−2 and |V2|+ |V3| = γ(T ). This shows V2

⋃
V3 is a γ(T )-set of

T . Thus the vertices with label 2 are not adjacent to the x or y, and we have |N[x]
⋃

N[y]| = n−(γ(T )−2) = n−γ(T )+2.
If |V3| = 0, then |V2| = γ(T ) + 1. According to the definition of DRDF of a graph, γ(T ) + 1 = |V2| > |V0| ≥ γ(T ). So, we
have |V0| = γ(T ). On the other hand, no two vertices of the labels 2 and no two vertices of the labels 0 adjacent to each
other because otherwise, we find a dominating set with cardinality at most γ(T ) − 1 which is a contradiction. So, the
tree T is a V0,V2-bigraph. It is clearly that, for all S ⊆ V0, we have |N(S )| ≥ |S |. Therefore, by Hall’s Theorem [17], T
has a matching that saturates V0. Hence, T has a vertex x ∈ V2 such that deg(x) = n− (γ(T ) + 1) or T have two vertices
x, y ∈ V0

⋃
V2 such that |N[x]

⋃
N[y]| = n − γ(T ) + 2. �

Discussions. In the introduction section, we expressed the definition of Total double Roman domination in graphs
[7] and independent double Roman domination in Graphs [12].

In Theorem 4.2 we discuss the relationship between γdR(T ) and γ(T ). Therefore we have the following problems.
1. Is there a such relationship between Total double Roman domination number and total domination number of

trees?
2. The problem 1, may be raised between independent double Roman domination number and independent domi-

nation number of trees.
We discussed on the dominant differential trees versus domination number and order of trees. Therefore we may

have the problems as follows:
3. Let γt(T ) be the total domination of T . What is the relationship between ∂(T ), γt(T ) and order of T?
4. Let γi(T ) be the independent domination number of T . What is the relationship between ∂(T ), γi(T ) and order

of T?
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