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COTANGENT BUNDLE

Fidan JABRA·ILZADE
Department of Algebra and Geometry, Baku State University, AZERBAIJAN

Abstract. This paper consist of three main sections. In the �rst part, we
obtain the complete lifts of the Fa(5; 1)�structure on tangent bundle. We have
also obtained the integrability conditions by calculating the Nijenhuis tensors
of the complete lifts of Fa(5; 1)�structure. Later we get the conditions of to be
the almost holomor�c vector �eld with respect to the complete lifts of Fa(5; 1)�
structure. Finally, we obtained the results of the Tachibana operator applied
to the vector �elds with respect to the complete lifts of Fa(5; 1)�structure on
tangent bundle. In the second part, all results obtained in the �rst section
investigated according to the horizontal lifts of Fa(5; 1)�structure in tangent
bundle T (Mn). In �nally section, all results obtained in the �rst and second
section were investigated according to the horizontal lifts of the Fa(5; 1)�
structure in cotangent bundle T �(Mn).

1. Introduction

The investigation for the integrability of tensorial structures on manifolds and
extension to the tangent or cotangent bundle, whereas the de�ning tensor �eld sat-
is�es a polynomial identity has been an actively discussed research topic in the last
50 years, initiated by the fundamental works of Kentaro Yano and his collabora-
tors, see for example [17]. Also, the idea of F�structure manifold on a di¤erentiable
manifold developed by Yano [14], Ish¬hara and Yano [7], Goldberg [6] and among
others. Moreover, Yano and Patterson [15, 16] studied on the horizontal and com-
plete lifts from a di¤erentiable manifold Mn of class C1 to its cotangent bundles.
Andreu has studied the structure de�ned by a tensor �eld F (6= 0) of type (1; 1)
satisfying F 5 + F = 0 [1]. Later Ram Nivas and C.S. Prasad [11] studied on more
form Fa(5; 1)�structure. This paper consist of three main sections. In the �rst part,
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we obtain the complete lifts of the Fa(5; 1)�structure on tangent bundle. We have
also obtained the integrability conditions by calculating the Nijenhuis tensors of the
complete lifts of Fa(5; 1)�structure. Later we get the conditions of to be the almost
holomor�c vector �eld with respect to the complete lifts of Fa(5; 1)�structure. Fi-
nally, we obtained the results of the Tachibana operator applied to the vector �elds
with respect to the complete lifts of Fa(5; 1)�structure on tangent bundle. In the
second part, all results obtained in the �rst section investigated according to the
horizontal lifts of Fa(5; 1)�structure in tangent bundle T (Mn). In �nally section,
all results obtained in the �rst and second section were investigated according to
the horizontal lifts of the Fa(5; 1)�structure in cotangent bundle T �(Mn).
LetMn be an n�dimensional di¤erentiable manifold of class C1. Suppose there

exist on Mn, a (1; 1) tensor �eld F (6= 0) satisfying [11]
F 5 � a2F = 0; (1)

where a is a complex number not equal to zero. If a = i where i =
p
�1, our

structure takes the form F 5 + F = 0 studied by Andreou [1].
Let us de�ne on Mn, the operators l and m as follows :

l = (F 4=a2) and m = I � (F 4=a2): (2)

I being unit tensor �eld.
In view of equations (1) and (2), we have

l2 = l, m2 = m and l +m = I: (3)

For a tensor �eld F (6= 0) of type (1; 1) satisfying (1) the operators l and m de�ned
by (2), when applied to the tangent space of Mn at a point, are complementary
projection operators.
Thus there exist complementary distributions L and M corresponding to the

projection operators l and m respectively. If the rank of F is constant every where
or equal to r, the dimensions of L and M are r and n� r respectively [10]. Us call
such a structure as Fa(5; 1)�structure of rank r [11].
For a tensor �eld F (6= 0) of type (1; 1) admitting Fa(5; 1)�structure and for the

projection operators l and m given by (2) we have

Fl = lF = F , Fm = mF = 0: (4)

and
F 2l = lF 2 = F 2, F 2m = mF 2 = 0: (5)

In the manifoldMn endowed with Fa(5; 1)�structure, the (1; 1) tensor �eld ~F given
by ~F = l �m = (2F 4=a2)� I gives an almost product structure [9].

1.1. Complete Lift of Fa(5; 1)�Structure on Tangent Bundle. LetMn be an
n�dimensional di¤erentiable manifold of class C1 and TP (Mn) the tangent space
at a point p of Mn and

T (Mn) = U
p2Mn

TP (M
n)
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is the tangent bundle over the manifold Mn:
Let us denote by T rs (M

n), the set of all tensor �elds of class C1 and of type
(r; s) inMn and T (Mn) be the tangent bundle overMn. The complete lift of FC of
an element of T 11 (M

n) with local components Fhi has components of the form [16]

FC =

�
Fhi 0

�hi Fhi

�
: (6)

Now we obtain the following results on the complete lift of F satisfying F 5 �
a2F = 0.
Let F;G 2 T 11 (Mn). Then we have [16]

(FG)C = FCGC : (7)

Replacing G by F in (7) we obtain

(FF )C = FCFC or (F 2)C = (FC)2: (8)

Now putting G = F 4 in (7) since G is (1; 1) tensor �eld therefore F 4 is also (1; 1)
so we obtain (FF 4)C = FC(F 4)C which in view of (8) becomes

(F 5)C = (FC)5: (9)

Taking complete lift on both sides of equation F 5 � a2F = 0 we get
(F 5)C � (a2F )C = 0

which in consequence of equation (9) gives

(FC)5 � a2FC = 0: (10)

Let F satisfying (1; 1) be an F�structure of rank r in Mn. Then the complete
lifts lC = (F 4)C of l and mC = I � (F 4)C of m are complementary projection
tensors in T (Mn). Thus there exist in T (Mn) two complementary distributions
LC and MC determined by lC and mC , respectively.

1.2. Horizontal Lift of Fa(5; 1)�Structure on Tangent Bundle. Let Fhi be
the component of F at A in the coordinate neighbourhood U ofMn. Then the hor-
izontal lift FH of F is also a tensor �eld of type (1; 1) in T (Mn) whose components
~FAB in ��1(U) are given by

FH = FC � (rF ) =
�

Fhi 0
��ht F ti + �tiFht Fhi

�
:

Let F , G be two tensor �elds of type (1; 1) on the manifold M . If FH denotes
the horizontal lift of F , we have

(FG)H = FHGH : (11)

Taking F and G identical, we get

(FH)2 = (F 2)H : (12)
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Multiplying both sides by FH and making use of the same (12), we get

(FH)3 = (F 3)H

and so on. Thus it follows that

(FH)4 = (F 4)H , (FH)5 = (F 5)H : (13)

Taking horizontal lift on both sides of equation F 5 � a2F = 0 we get
(F 5)H � (a2F )H = 0

view of (13), we can write
(FH)5 � a2FH = 0. (14)

2. Main Results

2.1. The Nijenhuis Tensor N(F 5)C(F 5)C (X
C ; Y C) of the Complete Lift F 5

on Tangent Bundle T (Mn).

De�nition 1. Let F be a tensor �eld of type (1; 1) admitting Fa(5; 1)�structure in
Mn: The Nijenhuis tensor of a (1; 1) tensor �eld F of Mn is given by

NF = [FX;FY ]� F [X;FY ]� F [FX; Y ] + F 2 [X;Y ] (15)

for any X;Y 2 =10(Mn) [2, 12, 13]. The condition of NF (X;Y ) = N(X;Y ) = 0 is
essential to integrability condition in these structures.
The Nijenhuis tensor NF is de�ned local coordinates by

Nk
ij@k = (F

s
i @

k
sF

k
j � F lj@lF ki � @iF ljF kl + @jF si F ks )@k;

where X = @i; Y = @j ; F 2 =11(Mn).

De�nition 2. Let X and Y be any vector �elds on a Riemannian manifold
(Mn; g), we have [17]�

XH ; Y H
�
= [X;Y ]

H � (R (X;Y )u)V ; (16)�
XH ; Y V

�
= (rXY )V ;�

XV ; Y V
�
= 0;

where R is the Riemannian curvature tensor of g de�ned by

R (X;Y ) = [rX ;rY ]�r[X;Y ]: (17)

In particular, we have the vertical spray uV and the horizontal spray uH on
T (Mn) de�ned by

uV = ui (@i)
V
= ui@i; u

H = ui (@i)
H
= ui�i; (18)

where �i = @i � uj�sji@s: uV is also called the canonical or Liouville vector �eld on
T (Mn).
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Theorem 3. The Nijenhuis tensor N(F 5)C(F 5)C
�
XC ; Y C

�
of the complete lift of

F 5 vanishes if the Nijenhuis tensor of the F is zero.

Proof. In consequence of De�nition 1 the Nijenhuis tensor of
�
F 5
�C
is given by

N(F 5)C(F 5)C
�
XC ; Y C

�
= [

�
F 5
�C
XC ;

�
F 5
�C
Y C ]�

�
F 5
�C
[
�
F 5
�C
XC ; Y C ]

�
�
F 5
�C
[XC ;

�
F 5
�C
Y C ] +

�
F 5
�C �

F 5
�C �

XC ; Y C
�

= a4f[(FX)C ; (FY )C ]� (F )C [(FX)C ; Y C ]
� (F )C [XC ; (FY )

C
] + (F )

C
(F )

C �
XC ; Y C

�
g

= a4f[FX;FY ]� F [FX; Y ]
�F [X;FY ] + F 2 [X;Y ]gC

= a4N (X;Y )
C

�

Theorem 4. The Nijenhuis tensor N(F 5)C(F 5)C
�
XC ; Y V

�
of the complete lift of

F 5 vanishes if the Nijenhius tensor F is zero.

Proof.

N(F 5)C(F 5)C
�
XC ; Y V

�
= [

�
F 5
�C
XC ;

�
F 5
�C
Y V ]�

�
F 5
�C
[
�
F 5
�C
XC ; Y V ]

�
�
F 5
�C
[XC ;

�
F 5
�C
Y V ] +

�
F 5
�C �

F 5
�C �

XC ; Y V
�

= a4f[(FX)C ; (FY )V ]� (F )C [(FX)C ; Y V ]
� (F )C [XC ; (FY )

V
] +
�
F 2
�C
[X;Y ]

V g
= a4f[FX;FY ]V � (F [FX; Y ])V

� (F [X;FY ])V �
�
F 2 [X;Y ]

�V g
= a4N (X;Y )

V

�

Theorem 5. The Nijenhuis tensor N(F 5)C(F 5)C
�
XV ; Y V

�
of the complete lift of

F 5 vanishes.

Proof. Thus
�
XV ; Y V

�
= 0 for all X;Y 2 =10 (Mn), easily we get

N(F 5)C(F 5)C
�
XV ; Y V

�
= 0:

�
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2.2. The Purity Conditions of Sasakian Metric with Respect to (F 5)C on
T (Mn).

De�nition 6. The Sasaki metric Sg is a (positive de�nite) Riemannian metric on
the tangent bundle T (Mn) which is derived from the given Riemannian metric on
M as follows:

Sg
�
XH ; Y H

�
= g (X;Y ) ; (19)

Sg
�
XH ; Y V

�
= Sg

�
XV ; Y H

�
= 0;

Sg
�
XV ; Y V

�
= g (X;Y )

for all X;Y 2 =10 (Mn).

Theorem 7. The Sasaki metric Sg is pure with respect to
�
F 5
�C

if rF = 0 and
F = a2I , where I=¬dentity tensor �eld of type (1; 1).

Proof. S( eX; eY ) =S g(�F 5�C eX; eY )�S g( eX; �F 5�C eY ) if S( eX; eY ) = 0 for all vector
�elds eX and eY which are of the form XV ; Y V or XH ; Y H then S = 0.
i)

S
�
XV ; Y V

�
= Sg(

�
F 5
�C
XV ; Y V )�S g(XV ;

�
F 5
�C
Y V )

= a2fSg((FX)V ; Y V )�S g(XV ; (FY )
V
)g

= a2f(g (FX; Y ))V � (g (X;FY ))V g

ii)

S
�
XV ; Y H

�
= Sg(

�
F 5
�C
XV ; Y H)�S g(XV ;

�
F 5
�C
Y H)

= �a2 Sg(XV ; (FY )
H
+ (rF )Y H)

= �a2 Sg
�
XV ; (rF )Y H

�
= �a2 Sg(XV ; (((rF )u)Y )V )
= �a2( g (X; ((rF )u)Y )V )

iii)

S
�
XH ; Y H

�
= Sg(

�
F 5
�C
XH ; Y H)�S g(XH ;

�
F 5
�C
Y H)

= a2 Sg((F )
C
XH ; Y H)� a2 Sg(XH ; (F )

C
Y H)

= a2 Sg((FX)
H
+ (rF )XH ; Y H)

�a2 Sg(XH ; (FY )
H
+ (rF )Y H)

= a2fg ((FX) ; Y )V � g (X; (FY ))V g

�
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De�nition 8. Let ' 2 =11(Mn), and =(Mn) =
P1

r;s=0 =rs(Mn) be a tensor alebra

over R: A map �' jr+si0 :
�
=(Mn) ! =(Mn) is called as Tachibana operatör or

�'operatör on M
n if

a) �' is linear with respect to constant coe¢ cient,

b) �' :
�
=(Mn)! =rs+1(Mn) for all r and s,

c) �'(K
C

 L) = (�'K)
 L+K 
 �'L for all K;L 2

�
=(Mn),

d) �'XY = �(LY ')X for all X;Y 2 =10(Mn); where LY is the Lie derivation
with respect to Y (see [3, 5, 8]),
e)

(�'X�)Y = (d({Y �))('X)� (d({Y (�o')))X + �((LY ')X)

= �X({Y �)�X({'Y �) + �((LY ')X)

for all � 2 =01(Mn) and X;Y 2 =10(Mn), where {Y � = �(Y ) = �
C

 Y;

�
=rs(Mn) the

module of all pure tensor �elds of type (r; s) on Mn with respect to the a¢ nor

�eld,
C

 is a tensor product with a contraction C [2, 4, 12](see [13] for applied to

pure tensor �eld).

Remark 9. If r = s = 0; then from c); d) and e) of De�nition8 we have �'X({Y �) =
�X({Y �) � X({'Y �) for {Y � 2 =00(Mn); which is not well-de�ned �'�operator.
Di¤erent choices of Y and � leading to same function f = {Y � do get the same

values. Consider Mn = R2 with standard coordinates x; y. Let ' =
�
0 1
1 0

�
.

Consider the function f = 1: This may be written in many di¤erent ways as {Y �.
Indeed taking � = dx, we may choose Y = @

@x
or Y = @

@x
+ x @

@y
. Nov the right-

hand side of �'X({Y �) = �X({Y �) � X({'Y �) is (�X)1 � 0 = 0 in the �rst case,
and (�X)1�Xx = �Xx in the second case. For X = @

@x
; the latter expression is

�1 6= 0. Therefore, we put r + s > 0 [12].
Remark 10. From d) of De�nition8 we have

�'XY = ['X; Y ]� '[X;Y ]:
By virtue of

[fX; gY ] = fg[X;Y ] + f(Xg)Y � g(Y f)X
for any f; g 2 =00(Mn), we see that �'XY is linear in X, but not Y [12].

Theorem 11. Let �' be the Tachibana operator and the structure
�
F 5
�C�a2FC =

0 de�ned by De�nition 8 and (10), respectively. If LY F = 0, then all results
with respect to

�
F 5
�C

is zero, where X;Y 2 =10 (M), the complete lifts XC ; Y C 2
=10 (T (M)) and the vertical lift XV ; Y V 2 =10 (T (M)).

i) �(F 5)CXCY C = �a2 ((LY F )X)C
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ii) �(F 5)CXCY V = �a2 ((LY F )X)V

iii) �(F 5)CXV Y C = �a2 ((LY F )X)V

iv) �(F 5)CXV Y V = 0

Proof. i)

�(F 5)CXCY C = �(LY C

�
F 5
�C
)XC

= a2f�LY C (FX)
C
+ (F )

C
LY CXCg

= �a2 ((LY F )X)C

ii)

�(F 5)CXCY V = �(LY V

�
F 5
�C
)XC

= �LY V

�
F 5
�C
XC +

�
F 5
�C
LY VXC

= a2f�LY V (FX)
C
+ (F )

C
LY VXCg

= �a2 ((LY F )X)V

iii)

�(F 5)CXV Y C = �(LY C

�
F 5
�C
)XV

= �LY C

�
F 5
�C
XV +

�
F 5
�C
LY CXV

= a2f�LY C (FX)
V
+ (F )

C
LY CXV g

= �a2 ((LY F )X)V

iv)

�(F 5)CXV Y V = �(LY V

�
F 5
�C
)XV

= �LY V

�
F 5
�C
XV +

�
F 5
�C
LY VXV

= 0

�

Theorem 12. If LY F = 0 for Y 2 M , then its complete lift Y C to the tangent
bundle is an almost holomor�c vector �eld with respect to the structure

�
F 5
�C �

a2FC = 0.

Proof. i)

(LY C

�
F 5
�C
)XC = LY C

�
F 5
�C
XC �

�
F 5
�C
LY CXC

= a2fLY C (FX)
C � (F )C LY CXCg

= a2 ((LY F )X)
C
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ii)

(LY C

�
F 5
�C
)XV = LY C

�
F 5
�C
XV �

�
F 5
�C
LY CXV

= a2fLY C (FX)
V � (F )C LY CXV g

= a2 ((LY F )X)
V

�
2.3. The Structure

�
F 5
�H � a2FH = 0 on Tangent Bundle T (Mn).

Theorem 13. The Nijenhuis tensor N(F 5)H(F 5)H
�
XH ; Y H

�
of the horizontal lift

of F 5 vanishes if the Nijenhuis tensor of the F is zero and f�(R̂ (FX;FY )u) +
(F (R̂ (FX; Y )u)) + (F (R (X;FY )u))� ((F )2 (R̂ (X;Y )u))gV = 0.

Proof.

N(F 5)H(F 5)H
�
XH ; Y H

�
= [

�
F 5
�H
XH ;

�
F 5
�H
Y H ]�

�
F 5
�H
[
�
F 5
�H
XH ; Y H ]

�
�
F 5
�H
[XH ;

�
F 5
�H
Y H ] +

�
F 5
�H �

F 5
�H �

XH ; Y H
�

= a4f([FX;FY ]� (F ) [FX; Y ]
� (F ) [X;FY ]� (F ) (F ) [X;Y ])H

�(R̂ (FX;FY )u)V + (F (R̂ (FX; Y )u))V

+(F (R̂ (X;FY )u))V � ((F )2 (R̂ (X;Y ))u)V g
= a4f(NFF (X;Y ))H � (R̂ (FX;FY )u)V

+(F (R̂ (FX; Y )u))V + (F (R̂ (X;FY )u))V

�((F )2 (R̂ (X;Y )u))V g:
�

IfNFF (X;Y ) = 0 and f�R̂ (FX;FY )u+(F (R̂ (FX; Y )u))+(F (R̂ (X;FY )u))�
((F )

2
(R̂ (X;Y )u))gV = 0; then we get N(F 5)H(F 5)H

�
XH ; Y H

�
= 0. The theorem

is proved.
Where R̂ denotes the curvature tensor of the a¢ ne connection r̂ de�ned by

r̂XY = rYX + [X;Y ] (see [17] p.88-89).

Theorem 14. The Nijenhuis tensor N(F 5)H(F 5)H
�
XH ; Y V

�
of the horizontal lift

of F 5 vanishes if the Nijenhuis tensor of the F is zero and rF = 0.

Proof.

N(F 5)H(F 5)H
�
XH ; Y V

�
= [

�
F 5
�H
XH ;

�
F 5
�H
Y V ]�

�
F 5
�H
[
�
F 5
�H
XH ; Y V ]

�
�
F 5
�H
[XH ;

�
F 5
�H
Y V ] +

�
F 5
�H �

F 5
�H �

XH ; Y V
�

= a4f[FX;FY ]V � (F [FX; Y ])V � (F [X;FY ])V

+((F )
2
[X;Y ])V + (rFY FX)V � (F (rY FX))V
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� (F (rFYX))V + ((F )2rYX)V g
= a4f(NFF (X;Y ))V + (rFY F )X � (F ((rY F )X))V g

�

Theorem 15. The Nijenhuis tensor N(F 5)H(F 5)H
�
XV ; Y V

�
of the horizontal lift

of F 5 vanishes.

Proof. Because of
�
XV ; Y V

�
= 0 for X;Y 2M , easily we get

N(F 5)H(F 5)H
�
XV ; Y V

�
= 0:

�

Theorem 16. The Sasakian metric Sg is pure with respect to
�
F 5
�H

if F = a2I,
where I =identity tensor �eld of type (1; 1).

Proof. S( eX; eY ) =S g(�F 5�H eX; eY )�S g( eX; �F 5�H eY ) if S( eX; eY ) = 0 for all vector
�elds eX and eY which are of the form XV ; Y V or XH ; Y H then S = 0.
i)

S
�
XV ; Y V

�
= Sg(

�
F 5
�H
XV ; Y V )�S g(XV ;

�
F 5
�H
Y V )

= a2fSg((FX)V ; Y V )�S g(XV ; (FY )
V
)g

= a2f(g (FX; Y ))V � (g (X;FY ))V g
ii)

S
�
XV ; Y H

�
= Sg(

�
F 5
�H
XV ; Y H)�S g(XV ;

�
F 5
�H
Y H)

= �a2 Sg(XV ; (FY )
H
)

= 0

iii)

S
�
XH ; Y H

�
= Sg(

�
F 5
�H
XH ; Y H)�S g(XH ;

�
F 5
�H
Y H)

= a2 f(Sg (FX)H ; Y H)�S g(XH ; (FY )
H
)g

= a2 f(g (FX) ; Y )V � (g(X; (FY )H))V g
�

Theorem 17. Let �' be the Tachibana operator and the structure
�
F 5
�H�a2FH =

0 de�ned by De�nition 8 and (14), respectively. if LY F = 0 and F = a2I, then
all results with respect to

�
F 5
�H

is zero, where X;Y 2 =10 (M), the horizontal lifts
XH ; Y H 2 =10 (T (Mn)) and the vertical lift XV ; Y V 2 =10 (T (Mn))

i) �(F 5)HXHY H = �a2f� ((LY F )X)H + (R̂ (Y; FX)u)V � (F (R̂ (Y;X)u))V g;

ii) �(F 5)HXHY V = a2f� ((LY F )X)V + ((rY F )X)V g;
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iii) �(F 5)HXV Y H = a2f� ((LY F )X)V � (rFXY )V + (F (rXY ))V g;
iv) �(F 5)HXV Y V = 0;

Proof. i)

�(F 5)HXHY H = �(LY H

�
F 5
�H
)XH

= �LY C

�
F 5
�H
XH +

�
F 5
�H
LY HXH

= �a2 [Y; FX]H + a2R̂ [Y; FX]
+a2 (F [Y;X])

H � a2 (F )H (R̂ (Y;X)u)V

= �a2f� ((LY F )X)H + (R̂ (Y; FX)u)V

�(F (R̂ (Y;X)u))V g

ii)

�(F 5)HXHY V = �(LY V

�
F 5
�H
)XH

= �LY V

�
F 5X

�H
+
�
F 5
�H
LY VXH

= �a2 [Y; FX]V + a2 (rY FX)V

+a2 (F [Y;X])
V � a2 (F (rYX))V

= a2f� ((LY F )X)V + ((rY F )X)V g

iii)

�(F 5)HXV Y H = �(LY H

�
F 5
�H
)XV

= �LY H

�
F 5X

�V
+
�
F 5
�H
LY HXV

= a2 [Y; FX]
V � a2 (rFXY )V

+a2 (F [Y;X])
H
+ a2 (F (rXY ))V

= a2f� ((LY F )X)V � (rFXY )V + (F (rXY ))V g

iv)

�(F 5)HXV Y V = �(LY V

�
F 5
�H
)XV

= �a2LY V (FX)
V
+ a2 (F )

H
LY VXV

= 0

�

2.4. The Structure (F 5)H �a2FH = 0 on Cotangent Bundle. In this section,
we �nd the integrability conditions by calculating Nijenhuis tensors of the horizontal
lifts of Fa(5; 1)�structure. Later, we get the results of Tachibana operators applied
to vector and covector �elds according to the horizontal lifts of Fa(5; 1)�structure
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in cotangent bundle T �(Mn). Finally, we have studied the purity conditions of
Sasakian metric with respect to the lifts of the structure.
Let F , G be two tensor �elds of type (1; 1) on the manifold M . If FH denotes

the horizontal lift of F , we have [17]

FHGH +GHFH = (FG+GF )H

Taking F and G identical, we get

(FH)2 = (F 2)H (20)

Multiplying both sides by FH and making use of the same (20), we get

(FH)3 = (F 3)H

and so on. Thus it follows that

(FH)4 = (F 4)H (21)

and so on. Thus
(FH)5 = (F 5)H (22)

Since F gives on M the Fa(5; 1)�structure, we have
F 5 � a2F = 0: (23)

Taking horizontal lift, we obtain

(F 5)H � a2FH = 0: (24)

In view of (22), we can write

(FH)5 � a2FH = 0. (25)

Theorem 18. The Nijenhuis tensor N(F 5)H(F 5)H (X
H ; Y H) of the horizontal lift

F 5 vanishes if F = a2I on M:

Proof. The Nijenhuis tensor N(XH ; Y H) for the horizontal lift of F 5 is given by

N(F 5)H ;(F 5)H (X
H ; Y H) = [(F 5)HXH ; (F 5)HY H ]� (F 5)H [(F 5)HXH ; Y H ]

�(F 5)H [XH ; (F 5)HY H ] + (F 5)H(F 5)H [XH ; Y H ]

= a4f[(F )HXH ; (F )HY H ]� (F )H [(F )HXH ; Y H ]

�(F )H [XH ; (F )HY H ] + (F )H(F )H [XH ; Y H ]g
= a4ff[FX;FY ]� F [(FX); Y ]� F [X;FY ]

+F 2[X;Y ]gH + fR(FX;FY )�R((FX); Y )F
�R(X;FY )F 2 +R(X;Y )F 2gg

Let us suppose that F = a2I on M . Thus, the equation becomes

N(F 5)H ;(F 5)H (X
H ; Y H) = a4ff[X;Y ]� [X;Y ]� [X;Y ] + [X;Y ]gH

+fR(X;Y )�R(X;Y )�R(X;Y ) +R(X;Y )g:
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Therefore, it follows
N(F 5)H ;(F 5)H (X

H ; Y H) = 0

�

Theorem 19. The Nijenhuis tensor N(F 5)H(F 5)H (X
H ; !V ) of the horizontal lift

F 5 vanishes if rF = 0.

Proof.

N(F 5)H ;(F 5)H (X
H ; !V ) = [(F 5)HXH ; (F 5)H!V ]� (F 5)H [(F 5)HXH ; !V ]

�(F 5)H [XH ; (F 5)H!V ] + (F 5)H(F 5)H [XH ; !V ]

= a4f(rFX(! � F ))V � ((rFX) � F )V

�((rX(! � F )) � F )V + ((rX!) � F 2)V g
= a4f(! � (rFXF )� (! � (rXF )FgV

where F 2 =11(M), X 2 =10(M), ! 2 =01(M). The theorem is proved. �

Theorem 20. The Nijenhuis tensor N(F 5)H ;(F 5)H (!
V ; �V ) of the horizontal lift F 5

vanishes.

Proof. Because of [!V ; �V ] = 0 and ! � F 2 =01(Mn) on T �(Mn), the equation
becomes

N(F 5)H ;(F 5)H (!
V ; �V ) = 0:

�

Theorem 21. Let (F 5)H be a tensor �eld of type (1; 1) on T �(Mn). If the
Tachibana operator �' applied to vector and covector �elds according to horizontal
lifts of F 5 de�ned by (25) on T �(Mn), then we get the following results.

i) �(F 5)HXHY H = a2f�((LY F )X)H � (pR(Y; FX))V

+((pR(Y;X))F )V g;

ii) �(F 5)HXH!V = a2f(rFX!)V � ((rX!) � F )V g;

iii) �(F 5)H!VX
H = �a2(! � (rXF ))V ;

iv) �(F 5)H!V �
V = 0;

where horizontal lifts XH ; Y H 2 =10(T �(Mn)) of X;Y 2 =10(Mn) and the vertical
lift !V ; �V 2 =10(T �(Mn)) of !; � 2 =01(Mn) are given, respectively.

Proof. i)

�(F 5)HXHY H = �(LY H (F 5)H)XH
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= �LY H (F 5)HXH + (F 5)HLY HXH

= a2f�((LY F )X)H � (pR(Y; FX))V

+((pR(Y;X))F )V g

ii)

�(F 5)HXH!V = �(L!V (F 5)H)XH

= �L!V (F 5)HXH + (F 5)HL!VX
H

= �a2L!V (FX)H � a2(F )H(rX!)V

= a2f(rFX!)V � ((rX!) � F )V g;

iii)

�(F 5)H!VX
H = �(LXH (F 5)H)!V

= �a2(rX(! � F ))V + a2((rX!) � F )V

= �a2(! � (rXF ))V

iv)

�(F 5)H!V �
V = �(L�V (F 5)H)!V

= �L�V (F 5)H!V + (F 5)HL�V !V

= 0

�

De�nition 22. A Sasakian metric Sg is de�ned on T �(Mn) by the three equations

Sg(!V ; �V ) = (g�1(!; �))V = g�1(!; �)o�; (26)

Sg(!V ; Y H) = 0; (27)

Sg(XH ; Y H) = (g(X;Y ))V = g(X;Y ) � �: (28)

For each x 2 Mn the scalar product g�1 = (gij) is de�ned on the cotangent
space ��1(x) = T �x (M

n) by

g�1(!; �) = gij!i�j ; (29)

where X;Y 2 =10(Mn) and !; � 2 =01(Mn). Since any tensor �eld of type (0; 2)
on T �(Mn) is completely determined by its action on vector �elds of type XH and
!V (see [17], p.280), it follows that Sg is completely determined by equations (26),
(27) and (28).

Theorem 23. Let (T �(Mn);S g) be the cotangent bundle equipped with Sasakian
metric Sg and a tensor �eld (F 5)H of type (1; 1) de�ned by (25). Sasakian metric
Sg is pure with respect to (F 5)H if F = a2I (I = identity tensor �eld of type (1; 1)):
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Proof. We put

S( ~X; ~Y ) =S g((F 5)H ~X; ~Y )�S g( ~X; (F 5)H ~Y ):

If S( ~X; ~Y ) = 0; for all vector �elds ~X and ~Y which are of the form !V ; �V or
XH ; Y H ; then S = 0: By virtue of (F 5)H � a2FH = 0 and (26), (27), (28), we get
i)

S(!V ; �V ) = Sg((F 5)H!V ; �V )�S g(!V ; (F 5)H�V )
= Sg((a2F )H!V ; �V )�S g(!V ; (a2F )H�V )
= a2(Sg((! � F )V ; �V )�S g(!V ; (� � F )V )):

ii)

S(XH ; �V ) = Sg((F 5)HXH ; �V )�S g(XH ; (F 5)H�V )

= Sg((a2F )HXH ; �V )�S g(XH ; (a2F )H�V )

= a2(Sg((FX)H ; �V )�S g(XH ; (! � F )V ))
= 0:

iii)

S(XH ; Y H) = Sg((F 5)HXH ; Y H)�S g(XH ; (F 5)HY H)

= Sg((a2F )HXH ; Y H)�S g(XH ; (a2F )HY H)

= a2(Sg((FX)H ; Y H)�S g(XH ; (FY )H)):

Thus, F = a2I, then Sg is pure with respect to (F 5)H . �
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