https://communications.science.ankara.edu.tr

ON STAR COLORING OF MODULAR PRODUCT OF GRAPHS

K. KALIRAJ ${ }^{1}$, R. SIVAKAMI ${ }^{2}$, and J. VERNOLD VIVIN ${ }^{3}$
${ }^{1}$ Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chepauk, Chennai 600 005, Tamil Nadu, India
${ }^{2}$ Department of Mathematics, RVS College of Engineering and Technology, Coimbatore 641402 ,
Tamil Nadu, India, and, Part-Time Research Scholar (Category-B), Research \& Development Centre, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
${ }^{3}$ Department of Mathematics, University College of Engineering Nagercoil, (Anna University Constituent College), Konam, Nagercoil 629 004, Tamil Nadu, India

Abstract

A star coloring of a graph G is a proper vertex coloring in which every path on four vertices in G is not bicolored. The star chromatic number $\chi_{s}(G)$ of G is the least number of colors needed to star color G. In this paper, we find the exact values of the star chromatic number of modular product of complete graph with complete graph $K_{m} \diamond K_{n}$, path with complete graph $P_{m} \diamond K_{n}$ and star graph with complete graph $K_{1, m} \diamond K_{n}$.

1. Introduction

All graphs in this paper are finite, simple, connected and undirected graph and we follow [2, 3,7] for terminology and notation that are not defined here. We denote the vertex set and the edge set of G by $V(G)$ and $E(G)$, respectively. Branko Grünbaum introduced the concept of star chromatic number in 1973. A star coloring [1,5,6] of a graph G is a proper vertex coloring in which every path on four vertices uses at least three distinct colors. The star chromatic number $\chi_{s}(G)$ of G is the least number of colors needed to star color G.

During the years star coloring of graphs has been studied extensively by several authors, for instance see $[1,4,5]$.

Definition 1. A trail is called a path if all its vertices are distinct. A closed trail whose origin and internal vertices are distinct is called a cycle.

[^0]Definition 2. A graph G is complete if every pair of distinct vertices of G are adjacent in G. A complete graph on n vertices is denoted by K_{n}.
Definition 3. A star graph is a complete bipartite graph in which $m-1$ vertices have degree 1 and a single vertex have degree $(m-1)$. It is denoted by $K_{1, m}$.
Definition 4. The modular product $\lceil 8] G \diamond H$ of two graphs G and H is the graph with vertex set $V(G) \times V(H)$, in which a vertex (v, w) is adjacent to a vertex $\left(v^{\prime}, w^{\prime}\right)$ if and only if either

- $v=v^{\prime}$ and w is adjacent to w^{\prime}, or
- $w=w^{\prime}$ and v is adjacent to v^{\prime}, or
- v is adjacent to v^{\prime} and w is adjacent to w^{\prime}, or
- v is not adjacent to v^{\prime} and w is not adjacent to w^{\prime}.

2. Main Results

In this section, we find the exact values of the star chromatic number of modular product of complete graph with complete graph $K_{m} \diamond K_{n}$, path with complete graph $P_{m} \diamond K_{n}$ and star graph with complete graph $K_{1, m} \diamond K_{n}$.

2.1. Star chromatic number of $K_{m} \diamond K_{n}$.

Theorem 1. For any positive integers $m, n \geq 2$,

$$
\chi_{s}\left(K_{m} \diamond K_{n}\right)= \begin{cases}m, & \text { when } n=2 \\ n(m-1), & \text { Otherwise }\end{cases}
$$

Proof. Let K_{m} be the complete graph on m vertices and K_{n} be the complete graph on n vertices. Let

$$
V\left(K_{m}\right)=\left\{u_{i}: 1 \leq i \leq m\right\}
$$

and

$$
V\left(K_{n}\right)=\left\{v_{j}: 1 \leq j \leq n\right\}
$$

By the definition of the modular product, the vertices of $K_{m} \diamond K_{n}$ is denoted as follows:

$$
V\left(K_{m} \diamond K_{n}\right)=\bigcup_{i=1}^{m}\left\{\left(u_{i}, v_{j}\right): 1 \leq j \leq n\right\} .
$$

Case(i): When $m \geq 2$ and $n=2$
Let $\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$ be the set of m distinct colors. The vertices $\left(u_{i}, v_{j}\right)$ where $1 \leq i \leq m$ and $1 \leq j \leq 2$ can be colored with color c_{i}. Thus $\chi_{s}\left(K_{m} \diamond K_{n}\right)=m$.
Suppose $\chi_{s}\left(K_{m} \diamond K_{n}\right)<m$, say $m-1$. Then the vertices $\left(u_{i}, v_{j}\right)$ where $2 \leq i \leq$ $m, 1 \leq j \leq 2$ has to be colored with one of the existing colors $\{1,2, \ldots, m-1\}$ which results in improper coloring and also gives bicolored paths on four vertices (since the vertices $\left(u_{i}, v_{1}\right), 1 \leq i \leq m$ and the vertices $\left(u_{i}, v_{2}\right), 1 \leq i \leq m$ forms bipartite graphs) and so contradicts the star coloring. Hence $\chi_{s}\left(K_{m} \diamond K_{n}\right)=m$.

Case(ii): When $m \geq 2$ and $n>2$
Let $\left\{c_{1}, c_{2}, \ldots, c_{n(m-1)}\right\}$ be the set of $n(m-1)$ distinct colors. For $1 \leq i \leq 2$ and $1 \leq j \leq n$, the vertices $\left(u_{i}, v_{j}\right)$ can be colored with color c_{j}, and for $3 \leq i \leq m$ and $1 \leq j \leq n$, the vertices $\left(u_{i}, v_{j}\right)$ can be colored with color $c_{(i-2) n+j}$. Thus $\chi_{s}\left(K_{m} \diamond K_{n}\right)=n(m-1)$ when $m \geq 2, n \geq 3$.
Suppose $\chi_{s}\left(K_{m} \diamond K_{n}\right)<n(m-1)$, say $n(m-1)-1$. Then the vertex $\left(u_{m}, v_{n}\right)$ has to be colored with one of the existing colors $\{1,2, \ldots, n(m-1)-1\}$ which results in improper coloring and also gives bicolored paths on four vertices (since $\left(u_{m}, v_{n}\right)$ is adjacent to every vertices $\left.\left(u_{i}, v_{j}\right), 1 \leq i \leq m-1,1 \leq j \leq n-1\right)$ and this contradicts the star coloring. Hence $\chi_{s}\left(K_{m} \diamond K_{n}\right)=n(m-1)$.

2.2. Star chromatic number of $P_{m} \diamond K_{n}$.

Theorem 2. For any positive integers $m, n>1$,

$$
\chi_{s}\left(P_{m} \diamond K_{n}\right)= \begin{cases}3, & \text { when } m>4, n=2 \\ n, & \text { when } m=2,3 \text { and } n>2 \\ n+1, & \text { when } m=4, n \geq 2 \\ 2 n, & \text { Otherwise. }\end{cases}
$$

Proof. Let P_{m} be the path graph on m vertices and K_{n} be the complete graph on n vertices. Let

$$
V\left(P_{m}\right)=\left\{u_{i}: 1 \leq i \leq m\right\}
$$

and

$$
V\left(K_{n}\right)=\left\{v_{j}: 1 \leq j \leq n\right\} .
$$

By the definition of the modular product, the vertices of $P_{m} \diamond K_{n}$ is denoted as follows:

$$
V\left(P_{m} \diamond K_{n}\right)=\bigcup_{i=1}^{m}\left\{\left(u_{i}, v_{j}\right): 1 \leq j \leq n\right\}
$$

Case(i): When $m>4$ and $n=2$
Let $\left\{c_{1}, c_{2}, c_{3}\right\}$ be the set of 3 distinct colors. Then the vertices $\left(u_{i}, v_{j}\right)$ where $1 \leq i \leq\left\lceil\frac{m}{2}\right\rceil$ and $1 \leq j \leq 2$ are colored with color c_{1}. For $i \equiv 2(\bmod 4), 1 \leq i \leq m$ and $1 \leq j \leq 2$, the vertices $\left(u_{i}, v_{j}\right)$ can be colored with color c_{2}. Similarly, the vertices $\left(u_{i}, v_{j}\right)$ where $i \equiv 0(\bmod 4), 1 \leq i \leq m$ and $1 \leq j \leq 2$ can be colored with color c_{3}. It is obvious that $\chi_{s}\left(P_{m} \diamond K_{n}\right)=3$ when $m>4$ and $n=2$.

Case(ii): When $m=2,3$ and $n>2$
Let $\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ be the set of n distinct colors. The vertices $\left(u_{i}, v_{j}\right)$ where $1 \leq j \leq n$ and $i=1,2,3$ can be colored with color c_{j}. Thus $\chi_{s}\left(P_{m} \diamond K_{n}\right)=n$ when $m=2,3$ and $n>2$.
Suppose $\chi_{s}\left(P_{m} \diamond K_{n}\right)<n$, say $n-1$. Then the vertices $\left(u_{i}, v_{n}\right), 1 \leq i \leq m$ has to be colored with one of the existing colors $\{1,2, \ldots, n-1\}$ which results in improper coloring since the vertices $\left(u_{i}, v_{n}\right), 1 \leq i \leq m$ is adjacent to the vertices colored with colors $1,2, \ldots, n-1$ and so contradicts the star coloring. Hence $\chi_{s}\left(P_{m} \diamond K_{n}\right)=n$.

Case(iii): When $m=4$ and $n \geq 2$
Let $\left\{c_{1}, c_{2}, \ldots, c_{n+1}\right\}$ be the set of $n+1$ distinct colors. For $1 \leq i \leq 3$ and $1 \leq j \leq n$, the vertices $\left(u_{i}, v_{j}\right)$ can be colored with color c_{j}. And the vertices $\left(u_{4}, v_{j}\right), 1 \leq j \leq n$, can be given the color c_{j+1}. Thus $\chi_{s}\left(P_{m} \diamond K_{n}\right)=n+1$ when $m=4$ and $n \geq 2$.
Suppose $\chi_{s}\left(P_{m} \diamond K_{n}\right)<n+1$, say n. Then the vertices $\left(u_{4}, v_{j}\right), 1 \leq j \leq n$ has to be colored with the $j^{t h}$ color which results in bicolored paths on four vertices and so contradicts the star coloring. Hence $\chi_{s}\left(P_{m} \diamond K_{n}\right)=n+1$.

Case(iv): When $m>4$ and $n \geq 3$
Let $\left\{c_{1}, c_{2}, \ldots, c_{2 n}\right\}$ be the set of $2 n$ distinct colors. The vertices $\left(u_{i}, v_{j}\right)$ where $i \equiv 1,2,3(\bmod 4), 1 \leq i \leq m$ and $1 \leq j \leq n$ can be colored with color c_{j}, and the vertices $\left(u_{i}, v_{j}\right)$ where $i \equiv 0(\bmod 4), 1 \leq i \leq m$ and $1 \leq j \leq n$ can be given the color c_{n+j}. Thus $\chi_{s}\left(P_{m} \diamond K_{n}\right)=2 n$ when $m>4$ and $n \geq 3$.
Suppose $\chi_{s}\left(P_{m} \diamond K_{n}\right)<2 n$, say $2 n-1$. Then the vertices $\left(u_{i}, v_{n}\right)$ where $i \equiv 0$ $(\bmod 4), 1 \leq i \leq m$ has to be colored with one of the colors $\{1,2, \ldots, 2 n-1\}$ which results in bicolored paths on four vertices and so contradicts the star coloring. Hence $\chi_{s}\left(P_{m} \diamond K_{n}\right)=2 n$.
2.3. Star chromatic number of $K_{1, m} \diamond K_{n}$.

Theorem 3. For any positive integers $m \geq 2$ and $n \geq 3$,

$$
\chi_{s}\left(K_{1, m} \diamond K_{n}\right)=n .
$$

Proof. Let $K_{1, m}$ be the star graph on $m+1$ vertices and K_{n} be the complete graph on n vertices. Let

$$
V\left(K_{1, m}\right)=\left\{u_{1}\right\} \cup\left\{u_{i}: 2 \leq i \leq m+1\right\}
$$

and

$$
V\left(K_{n}\right)=\left\{v_{j}: 1 \leq j \leq n\right\}
$$

By the definition of the modular product, the vertices of $K_{1, m} \diamond K_{n}$ is denoted as follows:

$$
V\left(K_{1, m} \diamond K_{n}\right)=\bigcup_{i=1}^{m+1}\left\{\left(u_{i}, v_{j}\right): 1 \leq j \leq n\right\}
$$

Let $\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ be the set of n distinct colors. The vertices $\left(u_{i}, v_{j}\right)$ where $1 \leq$ $i \leq m+1$ and $1 \leq j \leq n$ can be colored with the color c_{j}. Thus $\chi_{s}\left(K_{1, m} \diamond K_{n}\right)=n$. Suppose $\chi_{s}\left(K_{1, m} \diamond K_{n}\right)<n$, say $n-1$. Then the vertices $\left(u_{i}, v_{n}\right), 1 \leq i \leq m+1$ has to be colored with one of the existing colors $\{1,2, \ldots, n-1\}$ which results in improper coloring (since the vertices $\left(u_{i}, v_{n}\right), 2 \leq i \leq m+1$ is adjacent to every vertices $\left(u_{1}, v_{j}\right), 1 \leq j \leq n-1$ which are colored $1,2, \ldots, n-1$ and also since the vertex $\left(u_{1}, v_{n}\right)$ is adjacent to every vertices $\left(u_{i}, v_{j}\right), 2 \leq i \leq m+1,1 \leq j \leq n-1$ which are colored $1,2, \ldots, n-1$ and this contradicts the star coloring. Hence $\chi_{s}\left(K_{1, m} \diamond K_{n}\right)=n$, when $m \geq 1, n \geq 3$.

References

[1] Albertson, M.O., Chappell, G.G., Kierstead, H.A., Kündgen, A., Ramamurthi, R., Coloring with no 2-colored P_{4} 's. The Electronic Journal of Combinatorics 11 (2004), R26, doi:10. 37236/1779
[2] Bondy, J.A., Murty, U.S.R. Graph theory with applications, MacMillan, London 1976.
[3] Clark, J., Holton, D. A., A first look at graph theory, World Scientific, 1991, doi:10.1142/ 1280
[4] Coleman, T.F., Moré, J., Estimation of sparse Hessian matrices and graph coloring problems, Mathematical Programming, 28(3) (1984), 243-270, doi:10.1007/BF02612334
[5] Fertin, G., Raspaud, A., Reed, B., On Star coloring of graphs, Journal of Graph theory, 47(3) (2004), 163-182, doi:10.1002/jgt. 20029
[6] Grünbaum, B., Acyclic colorings of planar graphs, Israel Journal of Mathematics, 14 (1973), 390-408, doi:10.1007/BF02764716
[7] Harary, F., Graph theory, Narosa Publishing Home, New Delhi, 1969.
[8] Imrich, W., Klavžar, S., Product Graphs: Structure and Recognition, Wiley, New York 2000.

[^0]: 2020 Mathematics Subject Classification. 05C15;, 05C75.
 Keywords and phrases. Star coloring, modular product, star graph Submitted via ICCSPAM 2020.

 ■ sk.kaliraj@gmail.com; sivakawin@gmail.com; vernoldvivin@yahoo.in-Corresponding author (D) 0000-0003-0902-3842; 0000-0001-6066-4886; 0000-0002-3027-2010.

