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LATTICE STRUCTURES OF AUTOMATA

S. Ebrahimi ATANI and M. Sedghi Shanbeh BAZARI

Department of Mathematics, University of Guilan, P.O.Box 1914, Rasht, IRAN

Abstract. Structures and the number of subautomata of a finite automaton
are investigated. It is shown that the set of all subautomata of a finite automa-
ton A is upper semilattice. We give conditions which allow us to determine
whether for a finite upper semilattice (L,≤) there exists an automaton A
such that the set of all subautomata of A under set inclusion is isomorphic to
(L,≤). Examples illustrating the results are presented.

1. Introduction

With the advent of electronic computers in the 1950’s, the study of simple formal
models of computers such as automata was given a lot of attention. The aims
were multiple: to understand the limitations of machines, to determine to what
extent they might come to replace humans, and later to obtain effi cient schemes
to organize computations. One of the simplest models that quickly emerged is
the finite automaton which, in algebraic terms, is basically the action of a finitely
generated free semigroup on a finite set of states and thus leads to a finite semigroup
of transformations of the states. From its very beginning, the theory of automata,
especially the algebraic one, was based on numerous algebraic ideas and methods.
The fact that automata without outputs, and hence the automata without outputs
belonging to arbitrary automata, can be treated as algebras whose all fundamental
operations are unary, that is as unary algebras. This makes possible to investigate
automata from the aspect of Universal algebra and to use its ideas, methods and
results [1, 3, 4, 5, 6, 8, 9, 10].
Here we deal with some important concepts of lattice theory and automata theory

that will be used in the paper. Let (P,≤) be a poset and let a, b ∈ P with a 6= b.
Then a is called a predecessor of b, and b is called a successor of a if a ≤ c ≤ b and
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c ∈ P imply c = a or c = b. We denote this relation by < a, b >. By |D| we denote
the cardinality of D. For every element a of P we set |{b ∈ P :< b, a >}| = o(a),
o(P ) denotes max{o(a) : a ∈ P} and B(P ) = {a ∈ P : o(a) ≤ 1}. Two posets
(P1,≤1) and (P2,≤2) are said to be isomorphic, denoted by (P1,≤1) ∼= (P2,≤2), if
there exists a bijection f of P1 onto P2 such that for any a, b ∈ P1, a ≤1 b if and
if only f(a) ≤2 f(b). A poset (L,≤) is said to be an upper semilattice if for any
x, y ∈ L there exists the least upper bound of x and y [1, 7, 8].
Let Σ be a nonempty finite set. Denote by Σ∗ the free monoid over Σ and

ε the empty string of Σ. A finite automaton is a triple A = (X,Σ, λ) where
X and Σ are nonempty finite sets called a state set and alphabet, respectively
and λ : X × Σ∗ → X is the transition function satisfying ∀x ∈ X, ∀a, b ∈ Σ∗,
λ(x, ab) = λ(λ(x, a), b) and λ(x, ε) = x. Define a relation ∼ on X by ∀p, q ∈ X,
p ∼ q if and only λ(p, u) = q, λ(q, v) = p for some u, v ∈ Σ∗. The relation ∼ is an
equivalence relation. Let p ∈ X. We denote the equivalence class {q ∈ X : p ∼ q}
by Tp. This subset Tp is called a layer of X. If ρ( A) = {Tp : p ∈ X}, we
define a partial order 4 on ρ( A) as follows: For p, q ∈ X, Tp 4 Tq if and only
if there exists v ∈ Σ∗ such that λ(q, v) = p. An automaton B = (X ′,Σ, θ) is
called a subautomaton of automaton A = (X,Σ, λ) if and only if X ′ ⊆ X and
θ = λ|X′×Σ∗ , i.e., θ is the restriction of λ to X ′ × Σ∗. We denote the set of all of
subautomata of A by σ( A). Let B, C ∈ σ( A). By B v C, we mean that B is
a subautomaton of C. Then v is a partial order on σ( A); hence (σ( A),v) is a
poset, see [7]. Moreover, (σ( A),v) is a finite upper semilattice by [7, Proposition
2]. Throughout this paper, we shall assume unless otherwise stated, that posets,
upper semilattices, lattices and automata are finite.
A directed graph is a graph that is a set of vertices connected by edges, where the

edges have a direction associated with them. We define a directed graph on finite
poset (A,≤), G(A), with vertices as elements of A and for two distinct vertices a
and b, we have edge (a, b) if and only if < a, b > (for a vertex a, the in-degree of a,
deg−(a), is the number of edges going to a).

2. Subautomaton

Our starting point is the following lemma.

Lemma 1. Let (L,≤) be a finite poset. Then there exists an automaton A =
(X,Σ, λ) such that (ρ( A),4) ∼= (L,≤).

Proof. We construct an automaton A = (X,Σ, λ) in the following way. Let X = L
and Σ = {a1, a2, · · · , an}, where n = o(L) + 1 ( so n ≥ 1). Now by the same
technique as in [ 7,Theorem 1], for each l ∈ L, consider l1, l2, · · · , lo(l), all the
predecessors of l. Define λ as follows: λ(l, ai) = li for i = 1, 2, · · · , o(l) and λ(l, ai) =
l for i = o(l) + 1, · · · , n. This gives λ(l, w) ≤ l for any l ∈ L and w ∈ Σ∗. Thus
Tl = {l}.
Define f : L→ ρ( A) = {Tl : l ∈ L} by f(l) = Tl. Clearly, f is a bijective mapping.
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It remains to prove l ≤ l′ and l 6= l′ if and only if Tl � Tl′ and Tl 6= Tl′ . Suppose
that l ≤ l′ and l 6= l′. Since L is finite set, there exist x1 = l, x2, · · · , xm = l′ of L
such that < xi−1, xi > (i = 2, · · · ,m). Therefor there is an element ai−1 ∈ Σ such
that λ(xi, ai−1) = xi−1. Thus we have Txi−1 � Txi and Txi−1 6= Txi . It follows
Tl � Tl′ and Tl 6= Tl′ . The other implication is clear. So (ρ( A),4) ∼= (L,≤). �

At this point we investigate structures and the number of subautomata of a finite
automaton. The following proposition is a reformulation of [7, Theorem 2] and it
gives a more explicit description of subautomaton of an automaton.

Proposition 2. Let A = (X,Σ, λ) be an automaton. Then B = (X ′,Σ, θ) is a
subautomaton of A if and only if the following conditions are satisfied:

(i) The set X ′is an union of layers of X.
(ii) If Tp and Tq are two layers of X with Tp ⊆ X ′ and Tq 4 Tp, then Tq ⊆ X ′.
(iii) θ = λ|X′×Σ∗ .

Proof. The suffi ciency follows by (i), (ii) and (iii). Conversely, suppose that B
is a subautomaton of A. To see that (i), let p ∈ X ′. Then p ∈ Tp ⊆ ∪q∈X′Tq;
so X ′ ⊆ ∪q∈X′Tq. For the reverse inclusion, assume that t ∈ ∪q∈X′Tq. Then
t ∈ Tp for some p ∈ X ′; hence there exists ω ∈ Σ∗ such that λ(p, ω) = t. Now
λ(p, ω) = θ(p, ω) = t gives t ∈ X ′. Thus X ′ = ∪q∈X′Tq. To prove that (ii), from
Tq 4 Tp we conclude that there exists ω ∈ Σ∗ such that λ(p, ω) = q. Therefore
p ∈ Tp ⊆ X ′ gives λ(p, ω) = θ(p, ω) = q ∈ X ′. By an argument like that (i), we get
Tq ⊆ X ′. (iii) is clear. �

Example 3. Consider automaton D = (X,Σ, λ), where X = {s1, s2, · · · , s7},
Σ = {a, b} and λ is given in the state diagram below:

By the definition of layer, we have layers: T1 = {s1}, T2 = {s2}, T3 = {s3},
T4 = {s4, s5}, T5 = {s6, s7} are all of layers of D. The following Figure describes
relationship between Ti, (1 ≤ i ≤ 7). Set X ′1 = T5, X ′2 = T4 ∪X ′1, X ′3 = T2 ∪X ′2,
X ′4 = T3 ∪X ′2, X ′5 = X ′4 ∪X ′3, X ′6 = T1 ∪X ′3 and X ′7 = X ′5 ∪ T1. By Proposition
2, any subautomaton of D is of the form: Bi = (X ′i,Σ, θi) where θi = λ|X′i×Σ∗ for
i = 1, . . . , 7.

Definition 4. A non-empty subset L of a poset (P,≤) is called a lower set, if for
a ∈ P , b ∈ L and a ≤ b implies a ∈ L. In particular, for any a ∈ P one obtains the
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Figure 1. G(ρ(D))

principle lower set < a >= {t ∈ P : t ≤ a}.

The set of all lower sets of a poset P is denoted by LS(P ). The following theorem
shows that relationship between (σ(A),v) and (LS(ρ(A)),⊆).

Theorem 5. Let A be any automaton. Then (σ(A),v) ∼= (LS(ρ(A)),⊆).

Proof. By Proposition 2, B is a subautomaton of A if and only if ρ(B) ∈ LS(ρ(A)).
We define the mapping f : σ(A) → LS(ρ(A)) as follows: f(B) = ρ(B) for each
subautomaton B of A. An inspection will show that f is a poset isomorphism. �

Corollary 6. Let A1 and A2 be two automata such that

(ρ(A1),�) ∼= (ρ(A2),�).

Then
(σ(A1),v) ∼= (σ(A2),v).

Proof. Apply Theorem 5. �

Proposition 7. Let L1, L2 and L be Lower sets of a poset (P,≤).
(i) < L1, L2 > if and only if L2 = L1 ∪ {t}, where t is a maximal element in

L2.
(ii) If deg−(L) 6= 0 and D = {ti : ti is a maximal element in L}, then
|D| = deg−(L). Moreover, if deg−(L) = 0, then L has an unique maximal
element.

(iii) If either L1, L2 are minimal elements in LS(P ) or < L,L1 > and <
L,L2 >, then there exists L′ ∈ LS(P ) with < L1, L

′ > and < L2, L
′ >.

Proof. (i) Assume that < L1, L2 >. Then L2 = L1 ∪ {t1, t2, . . . , tn} for some
ti 6∈ L1, (1 ≤ i ≤ n). If n ≥ 2, then the set H = {t1, t2, . . . , tn} has a
minimal element, say t′. Set L′ = L1 ∪ {t′}. By the definition of lower
set, L′ ∈ LS(P ) such that L1 $ L′ $ L2 which is a contradiction. Thus
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L2 = L1∪{t1}. Now we show that t1 is a maximal element in L2. Otherwise,
there exists an element t in L2 such that t1 ≤ t and t1 6= t. Therefore t ∈ L1

(since L2 = L1 ∪ {t1}). So t1 ∈ L1 which is a contradiction . The other
implication is clear.

(ii) Let t1, · · · , tk be the all of distinct maximal elements in L. If L1 is a lower
set of P with < L1, L >, then there exists an unique element ti (for some
1 ≤ i ≤ k) such that L = L1 ∪ {ti} and ti 6∈ L1) by (i). Also, each lower
set L′ with L′ ⊆ L such that |{ti : ti 6∈ L′}| = 1 implies that < L′, L >;
hence |D| = deg−(L). Finally, If deg−(L) = 0, then L has not a proper
subset in LS(P ). Therefore L = {t} for some element t in P , and the proof
is complete.

(iii) Suppose that L1, L2 are minimal elements in LS(P ). Then L1 = {t1} and
L2 = {t2}. Set L′ = {t1, t2} . Clearly, < L1, L

′ > and < L2, L
′ > by (i).

Similarly, if < L,L1 > and < L,L2 >, then we set L′ = L1 ∪ L2; thus
L′ ∈ LS(P ) gives < L1, L

′ > and < L2, L
′ > by (i).

�
Lemma 8. Let P be a poset. Then P is a chain with |P | = n if and only if LS(P )
is a chain with |LS(P )| = n.

Proof. Let LS(P ) = {L1, · · · , Ln} with L1 ⊆ L2 ⊆ · · · ⊆ Ln. Then we can take
L1 = {t1}, L2 = {t1, t2}, . . . , and Ln = L = {t1, t2, . . . , tn} by Proposition 7 (i).
We claim that t1 ≤ t2 ≤ . . . ≤ tn . Assume to the contrary, let tk � tk+1 for
some k (1 ≤ k < n). Since tk+1 is a maximal element in Lk+1 by Proposition 7
(i), we get tk+1 � tk. Set L′ = {ti : ti ≤ tk+1}. Then L′ ∈ LS(P ) with L′ * Lk
and Lk * L′ that is a contradiction. Conversely, suppose t1 ≤ t2 ≤ . . . ≤ tn.
For each j (1 ≤ j ≤ n), we set Lj = {t1, t2, . . . , tj}. Then by the definition of
lower set and Proposition 7 (i), Lj (1 ≤ j ≤ n) is an element of LS(P ) with
L1 ⊆ L2 ⊆ . . . ⊆ Ln. �
In view of the proof of the Proposition 7 and Lemma 8, we have the following

corollary for automata.

Corollary 9. •
(a) Let A1, A2 and C be subautomata of A = (X,Σ, λ).

(i) < A1,A2 > if and only if ρ(A1) ⊆ ρ(A2) and ρ(A2) = ρ(A1) ∪ {T},
where T is a maximal element in ρ( A2).

(ii) If deg−(C) 6= 0 and D = {Ti : Ti is a maximal element in ρ(C)},
then |D| = deg−(C). Moreover, if deg−(C) = 0, then C has an unique
maximal layer.

(iii) If either A1, A2 are minimal elements in σ(A) or < C,A1 > and <
C,A2 >, then there exists A′ ∈ σ(A) with < A1,A′ > and < A2,A′ >.

(b) Let A = (X,Σ, λ) be an automaton. Then ρ(A) is a chain with |ρ(A)| = n
if and only if σ(A) is a chain with |σ(A)| = n
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Definition 10. A poset (P,≤) is called decomposable, if there exist proper subpoests
(P1,≤), · · · , (Pn,≤) of P such that P = ∪ni=1Pi , Pi∩Pj = ∅ for i 6= j (1 ≤ i, j ≤ n)
and for every couple ai ∈ Pi, bj ∈ Pj be incomparable where i 6= j (1 ≤ i, j ≤ n).
In this case, we say that Pi is a decomposition component of P (1 ≤ i ≤ n).

Proposition 11. Let (P1,≤) and (P2,≤) be decomposition components of a poset
(P,≤). Then L is a lower set of P if and only if it satisfies one of the following
conditions:

(i) Either L is a lower set of P1or is a lower set of P2.
(ii) There exist a lower set L1 of P1 and a lower set L2 of P2 such that L =

L1 ∪ L2.

Proof. Let L = {t1, . . . , tn} be a lower set of P . If L ∈ LS(P1) or L ∈ LS(P2),
then we are done. Otherwise, without loss of generality, we can assume that L1 =
{t1, · · · , tk} ⊆ P1 and L2 = {tk+1, · · · , tn} ⊆ P2 (1 ≤ k < n). If t ∈ Li, t′ ∈ L and
t′ ≤ t for i = 1, 2, then t′ ∈ Li by Definition 10. Now Li ∈ LS(Pi), as required. �
Theorem 12. Let (P1,≤) and (P2,≤) be decomposition components of a poset
(P,≤). Then

|LS(P )| = (|LS(P1)|+ 1)(|LS(P2)|+ 1)− 1

.

Proof. Assume that |LS(P1)| = m and |LS(P2)| = n. Then the number of lower set
that satisfies conditions (i) and (ii) in Proposition 11 are n+m and nm, respectively,
as required. �
Corollary 13. (i) Let (P1,≤), · · · , (Pn,≤) be decomposition components of a

poset (P,≤). Then |LS(P )| = Πn
i=1(|LS(Pi)|+ 1)− 1.

(ii) Assume that (P,≤) is any poset and let p be a prime number such that
|Ls(P )| = p− 1. Then (P,≤) is indecomposable.

Proof. •
(i) The proof is straightforward by induction on n and Theorem 12.
(ii) Assume to the contrary, let there exist decomposition components (P1,≤)

and (P2,≤) of a poset P . By assumption and (i), (|LS(P1)|+1)(|LS(P2)|+
1) = p that is a contradiction (because |LS(Pi)| ≥ 1).

�
Definition 14. Let (P1,≤1) and (P2,≤2) be two finite posets with P1 ∩ P2 = ∅.
Then we can define the poset (P1 ∪ P2,≤) as follows:

(i) For any i = 1, 2, a, b ∈ Pi, a ≤ b if a ≤i b.
(ii) For any a ∈ P1 and b ∈ P2, a ≤ b.

Lemma 15. Let (P1,≤p1) ∼= (P ′1,≤p′1) and (P2,≤p2) ∼= (P ′2,≤p′2) with P1 ∩ P ′1 =
P2 ∩ P ′2 = ∅. Then (P1 ∪ P2,≤) ∼= (P ′1 ∪ P ′2,≤).

Proof. The proof is straightforward by Definition 14. �



LATTICE STRUCTURES OF AUTOMATA 1139

Proposition 16. Let (P1,≤1) and (P2,≤2) be two posets with P1 ∩P2 = ∅ and let
(P1 ∪ P2,≤). Then the following hold:

(i) (LS(P1 ∪ P2),⊆) is poset isomorphic to (LS(P1) ∪ LS(P2),⊆). Moreover,
|LS(P1 ∪ P2)| = |LS(P1)|+ |LS(P2)|

(ii) If (P1,≤1) is an upper semilattice, then (B(P1)∪B(P2),⊆) = (B(P1∪P2),⊆
).

Proof. •
(i) Define the mapping f : LS(P1) ∪ LS(P2) → LS(P1 ∪ P2) as follows: If

L ∈ LS(P1), then L ∈ LS(P1 ∪ P2); so we set f(L) = L. If L ∈ LS(P2),
then we set f(L) = P1 ∪L. It is easy to see that f is a poset isomorphism.

(ii) It suffi ces to show that B(P1∪P2) = B(P1)∪B(P2). Clearly, B(P1∪P2) ⊆
B(P1)∪B(P2). For the reverse inclusion, let l ∈ P1 and deg−(l) 6 1. Then
indegree l in P1∪P2 is equal to 1 or 0. Moreover, if l ∈ P2 and deg−(l) = 1,
then indegree l in P1 ∪ P2 is equal to 1. Also, if l ∈ P2 and deg−(l) = 0,
then we have only < 1, l > in P1 ∪ P2 (1 is the greatest element in P1 );
hence indegree l in P1 ∪ P2 is equal to 1. So l in B(P1 ∪ P2), and we have
equality.

�

Corollary 17. (i) Let (P,≤) be a poset and t ∈ P be a maximum element of
P . Then |LS(P )| = |LS(P1)|+ 1 where P1 = P \ {t} is subposet of P .

(ii) Let (P,≤) be a poset and t ∈ P be a minimum element of P . Then
|LS(P )| = |LS(P1)|+ 1 where P1 = P \ {t} is subposet of P .

Proof. Apply Proposition 16 (i). �

According to the above results, computation |σ(A)| become easier.

Example 18. In the Example 3, consider subposets P1 = ({T4, T5},�) and P2 =
({T1, T2, T3},�). Then (ρ(D),�) ∼= (P1 ∪ P2,�). We have |LS(P1)| = 2 and
|LS(P2)| = 5 by Lemma 8 and Theorem 12 , then |σ(D)| = 7 by Proposition 16 (i)
.

The following theorem gives estimate for the number of lower set of a poset.

Theorem 19. Let (P,≤) is a poset with |P | = n and t1, · · · , tm be the all of
minimal element of P . Then the following inequality is valid:

2m − 1 ≤ |LS(P )| ≤ 2n−1 + 2m−1 − 1

Proof. Clearly, every nonempty subset of A = {t1, · · · , tm} is a lower set of P .
we know the number of the all non-empty subsets of A is equal to 2m − 1. So
|LS(P )| ≥ 2m − 1. It remains to prove the other side unequal. It easily seen
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that every lower set is equal to union the number of principle lower sets. Assume
that a, b be two maximal elements of P . Then < a > ∪ < b > is a lower set
of P which is distinct from < a > and < b >. Therefor, if P has more maximal
elements, then there exist more lower sets. Now, if each element of P is maximal
element, then n = m. It follows |LS(P )| = 2m − 1; Hence we are done. otherwise,
we consider poset P = {t1, · · · , tm, l1, · · · , ln−m} where t1 ≤ li and each couple
tj , li are incomparable for i = 1, · · · , n − m, j = 2, · · · ,m. In this case P has
n − 1 maximal elements. Also P1 = {t1, l1, · · · , ln−m} and P2 = {t2, · · · , tm} are
decomposition components of P . Thus |LS(P1)| = 2n−m by Corollary 16(ii) and
Corollary 13 (i) and |LS(P2)| = 2m−1 − 1 by Corollary 13(i). Now the assertion
follows from Theorem 12 . �
Definition 20. An automaton A = (X,Σ, λ) is called decomposable, if there exist
proper subautomata A1 = (X1,Σ, λ1), · · · ,An = (Xn,Σ, λn) of A such that X =
∪ni=1Xi and Xi ∩Xj = ∅ for i 6= j (1 ≤ i, j ≤ n). In this case, we say that Ai is a
decomposition component of A (1 ≤ i ≤ n).

The next Theorem follows from Proposition 11, Corollary 13, Proposition 16 and
Theorem 19.

Theorem 21. (i) Let B = (XB,Σ, λB) and C = (XC ,Σ, λC) be decomposition
components of an automaton A = (X,Σ, λ). Then A′ = (X ′,Σ, λ′) is a
subautomaton of A if and only if it satisfies one of the following conditions:
(1) Either A′ is a subautomaton of B or is a subautomaton of C.
(2) There exist a subautomaton B′ = (X ′1,Σ, λ1) of B and a subautomaton
C′ = (X ′2,Σ, λ2) of C such that X ′ = X ′1 ∪X ′2.

(ii) (1) Let A1 = (X1,Σ, λ1), · · · ,An = (Xn,Σ, λn) be decomposition compo-
nents of an automaton A = (X,Σ, λ). Then |σ(A)| = Πn

i=1(|σ( Ai)|+
1)− 1.

(2) Assume that A is any automaton and let p be a prime number such
that |σ(A))| = p− 1. Then A is indecomposable.

(iii) Let A be an automaton and (P1,�) and (P2,�) be subposets of (ρ(A),�)
such that P1 ∩ P2 = ∅ and (ρ(A),�) ∼= (P1 ∪ P2,�). Then |σ(A)| =
|LS(P1)|+ |LS(P2)|

(iv) Let A be an automaton , |(ρ(A)| = n and |{T ∈ (ρ(A) : T is a minimal
layer}| = m. Then Then the following inequality is valid:

2m − 1 ≤ |σ(A)| ≤ 2n−1 + 2m−1 − 1

The remaining of this paper is dedicated to the following question: For which
posets L does there exist an automaton A such that σ(A) is isomorphic to L?.

Theorem 22. If (P,≤) is a poset, then (P,≤) ∼= (B(LS(P )),⊆).

Proof. We define the mapping f : P → B(LS(P )) as follows: If t ∈ P , then
we set f(t) = {t′ : t′ ∈ P, t′ ≤ t}. It is clear that f(t) ∈ LS(P ). Since t is
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an unique maximum element in f(t), Proposition 7 (ii) gives deg−(f(t)) ≤ 1; so
f(t) ∈ B(LS(P )). An inspection will show that f is a poset isomorphism. �

Theorem 23. If A = (X,Σ, λ) is an automaton, then

(B(σ(A)),v) ∼= (ρ(A),�).

Proof. By Theorem 5, we have (B(σ(A)),v) ∼= (B(LS(ρ(A)),⊆)); hence (B(σ(A)),v
) ∼= (ρ(A),�) by Theorem 22. �

Theorem 24. An upper semilattice (L, ≤) is isomorphic to an upper semilattice
of subautomata of an automaton if and only if (LS(B(L)),⊆) ∼= (L, ≤).

Proof. If (L, ≤) is an upper semilattice, then (B(L), ≤) is a poset; hence there
exists an automaton A such that (B(L), ≤) ∼= (ρ(A),�) by Lemma 1 which implies
that (LS(B(L)), ⊆) ∼= (LS(ρ(A)),⊆) ∼= (σ(A),v) by Theorem 5. If (L, ≤) ∼=
(LS(B(L)),⊆), then we are done. If (L, ≤) � (LS(B(L)),⊆), then we show that
there is not any automaton C such that (L, ≤) ∼= (σ(C), v). Assume to the contrary,
let (L, ≤) ∼= (σ(C), v) for some automaton C. Since (B(σ(C)),v) ∼= (B(L), ≤), it
follows that (B(L), ≤) ∼= (ρ(C),�) by Theorem 23, so (ρ(C),�) ∼= (ρ(A),�); hence
(σ(C), v) ∼= (σ(A), v) by Corollary 6. Thus (L, ≤) ∼= (σ(A), v) ∼= (LS(B(L)),⊆)
that is a contradiction. �

Example 25. (i) Let L be an upper semilattice as described in Figure 2. Then
there is not any automaton A such that (L, ≤) ∼= (σ(A), v). If it is,
then we conclude that the graph G in Figure 3 corresponds to G(B(L)), so
|LS(B(L))| = (2 + 1)(2 + 1) − 1 = 8 by Lemma 8 and Theorem 12, but
|L| = 6. Thus (LS(B(L)),⊆) � (L, ≤).

(ii) Let L1 be an upper semilattice as described in Figure 4. Then there exists
an automaton A such that (L, ≤) ∼= (σ(A), v) (The graph G1 in Figure 5
corresponds to G(B(L)). An inspection will show that (LS(B(L1)),⊆) ∼=
(L1, ≤)).
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Theorem 26. Let (L1,≤1), (L2,≤2) and (L,≤) be upper semilattices such that
L1 ∩ L2 = ∅ and (L,≤) ∼= (L1 ∪ L2,≤). Then there exists an automaton A such
that (σ(A),v) ∼= (L,≤) if and only if there exist automata B and C such that
(σ(B),v) ∼= (L1,≤1)and (σ(C),v) ∼= (L2,≤2).

Proof. Apply Proposition 16 and Theorem 24 . �

Example 27. Let L be an upper semilattice as described in Figure 6. Then
L1 = {B1, B2, B3, B4, B5, B6} and L2 = {B7, B8, B9, B10, B11, B12} are subupper
semilattices satisfy conditions of Theorem 26. Also there is not any automaton B
such that (L1,≤) ∼= (σ(B),v) (see Example 25 (i)). Thus there is not any automa-
ton A such that (L,≤) ∼= (σ(A),v).

Example 28. let L be an upper semilattice as described in Figure 7. Then L1 =
{B1, B2, B3, B4, B5, B6, B7, B8, B9, B10, B11} and
L2 = {D1, D2, D3, D4, D5, D6, D7, D8, D9} are subupper semilattices satisfy condi-
tions of Theorem 26. There exists an automaton C such that (L2,≤) ∼= (σ(C),v)
(see Example 25 (ii)). Similarly, there exists an automaton B such that (L1,≤) ∼=
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(σ(B) v). Hence there exists an automaton A such that (L,≤) ∼= (σ(A),v) By
Theorem 26.

With the help of results proved by Saliß̆, we find another way to detect whether
there exists some automaton A such that (σ(A),v) isomorphic to a given finite
upper semilattice (L,≤). Saliß̆ consider = (∅,Σ, λ) as a subautomaton of an
automaton A = (X,Σ, λ); so (σ(A) ∪ {},v) is a lattice.

Theorem 29. [3,Theorem 8.4] A finite lattice L isomorphic to the lattice (σ(A)∪
{},v) for some automaton A if and only if it is distributive.

Lemma 30. Assume that (L, ≤) is an upper semilattice and let 0∗ be an element
such that 0∗ /∈ L. Then (L̄ = {0∗} ∪ L,≤) is a lattice.

Proof. This follows from the Definition 14. �

Theorem 31. An upper semilattice (L, ≤) is isomorphic to the upper semilattice
of subautomata of an automaton if and only if L̄ is a distributive lattice.

Proof. Assume that L̄ = {0∗} ∪ L is distributive. Then there exists automaton A
such that L̄ is poset isomorphic to σ(A) ∪ {} by Theorem 29. Note that 0∗ and
are minimum elements in L̄ and σ(A)∪ {}, respectively. Thus (L, ≤) ∼= (σ(A),v).
Conversely, suppose that (L, ≤) ∼= (σ(A),v) for some automaton A. Then (L̄,≤
) ∼= (σ(A) ∪ {},v) by Lemma 15. Now the assertion follows from Theorem 29. �

Example 32. Consider upper semilattices L and L1 as described in Example 25
(i),(ii), respectively. L̄ and L̄1 are defined in Figure 8 and Figure 9. By [2,Theorem
1.7] L̄ is not distributive and L̄1 is distributive. Then (L1, ≤) ∼= (σ(A), v) for some
automaton A and (L, ≤) � (σ(A), v) for every automaton A by Theorem 31.
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Definition 33. (a) [11, Definition 2.1]An algebra L = (L,≤,∧,∨, •, 0, 1) is
called a lattice-ordered monoid if
(1) L = (L,≤,∧,∨, 0, 1) is a lattice with the least element 0 and the great-

est element 1.
(2) (L, •, 1) is a monoid with identity 1 ∈ L such that for all a, b, c ∈ L.
(3) a • 0 = 0 • a = 0.
(4) a ≤ b⇒ ∀x ∈ L, a • x ≤ b • x and x • a ≤ x • b.
(5) a • (b ∨ c) = (a • b) ∨ (a • c) and (b ∨ c) • a = (b • a) ∨ (c • a).

(b) [11,Definition 2.2] Let L be a lattice-ordered monoid. Then a 5-tuple F =
(X,Σ,Γ, λ, θ) is a called crisp deterministic fuzzy automaton if
(1) A = (X,Σ, λ) is a finite automaton and Γ is a nonempty finite set.
(2) θ : X × Σ∗ × Γ∗ −→ L is a map called the output function such

that θ(p, ε, ε) = 0 , θ(p, w, ε) = θ(p, ε, u) = 1 for ε 6= w ∈ Σ∗ and
ε 6= u ∈ Γ∗ and θ(p, w1w2, u1u2) = θ(p, w1, u1) • θ(λ(p, w1), w2, u2),
for all p ∈ X, w1, w2 ∈ Σ∗ and u1, u2 ∈ Γ∗.

(c) [11,Definition 2.4] A crisp deterministic fuzzy automaton F1 = (X1,Σ,Γ, λ1, θ1)
is called a subautomaton of a crisp deterministic fuzzy automaton F =
(X,Σ,Γ, λ, θ) if X1 ⊆ X, λ1 = λ|X1×Σ∗ and θ1 = θ|X1×Σ∗×Γ∗

Remark 34. (i) It is not to hard to see that : If F1 = (X1,Σ,Γ, λ1, θ1) is a
subautomaton of a crisp deterministic fuzzy automaton F = (X,Σ,Γ, λ, θ),
then A1 = (X1,Σ, λ1) is a subautomaton of an automaton A = (X,Σ, λ).
Moreover, if A1 = (X1,Σ, λ1) is a subautomaton of an automaton A , then
F1 = (X1,Σ,Γ, λ1, θ1) where θ1 = θ|X1×Σ∗×Γ∗ is a subautomaton of a crisp
deterministic fuzzy automaton F = (X,Σ,Γ, λ, θ). This gives the results
obtained in Theorem 5, Corollary 9 , Theorem 21 is correct similarly for
crisp deterministic fuzzy automata.

(ii) Let A = (X,Σ, λ) be an automaton and L = {0, 1} be a lattice-ordered
monoid where 0•0 = 1•0 = 0•1 = 0 and 1•1 = 1 . Then F = (X,Σ,Γ, λ, θ)
is a crisp deterministic fuzzy automaton where θ is defined as follow: if
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w = u = ε, then θ(p, w, u) = 0 . Otherwise θ(p, w, u) = 1 . From this, we
conclude that there exists a crisp deterministic fuzzy automaton for each
automaton. Which gives An upper semilattice (L, ≤) is isomorphic to an
upper semilattice of subautomata of a crisp deterministic fuzzy automaton
if and only if (LS(B(L)),⊆) ∼= (L, ≤).
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