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Abstract. The study of interaction between predator and prey species is one

of the important subjects in mathematical biology. Optimal strategy control
plays a vital role in preserving animals from extinction. Harvesting of species

is a vital issue for the conservation biologists. In this work, we investigate the

bifurcation and chaos control of the two species interaction model of fractional
order in discrete time with harvesting of both prey and predator species. Ex-

istence results and the stability conditions of the system are analyzed using

the fixed points and jacobian matrix. The chaotic behavior of the system is
discussed with bifurcation diagrams. Linear control and hybrid control meth-

ods are used in controlling the chaos of the system. Numerical experiments

with different phase portraits are simulated for the better understanding of
the qualitative behavior of the considered model.

1. Introduction

Modelling of real life phenomena by fractional order equations is more realistic
and follows the laws of nature very well. Fractional calculus is used in modelling
of physical and chemical phenomena like diffusion waves, nonlinear oscillations in-
volved in earthquakes, hydrologic models, blood vessel models and various other
interdisciplinary fields. In construction of biological models, fractional calculus re-
lates the memory effects of biological populations very well rather than ordinary
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integer order calculus. Recently, models of species interaction and biological popu-
lations are developed using fractional calculus with discrete time [2, 21, 22, 24, 25].

Mathematical models of the species by Lotka in 1925 and Volterra in 1926 were
the first models on the interactions involving multi species [11]. Later several models
on interacting species were developed by Robert May in 1972, Holling and Tanner
in 1975 and many other researchers proving the necessity in studying mathematical
ecology [15, 26]. Biological populations with non overlapping generations are mod-
eled with difference equations and some of the discrete time models are studied by
[8, 9, 12, 13, 14].

The population dynamics gives an accurate and deep understanding of the factors
threatening the existence of the species in ecosystem. Apart from the natural forces
like drought and natural calamities there are some artificial factors that has human
involvement such as hunting, human habitat and harvesting also paves way for the
extinction of the species. Continuous harvesting results in unstability of ecosystem
with loss in biodiversity. Thus, it is necessary to bring forth some conservation
policy for optimal harvesting of species. Myerscough et al [20] reported the effects
of predator harvesting on ecosystem, harvesting and its effects in aquasystem was
studied in [16], [19] studied the prey-predator system with constant harvesting
policy and the fractional order model of quadratic harvesting of scavenger was
studied in [23].

The paper is structured with discretization of fractional order system in section
2 followed with analysis of stability condition in Section 3. The bifurcation analysis
and chaos control in section 4 and 5 respectively. Section 6 provides some numerical
examples with simulations.

2. Fractional Order System with Discretization

In the recent decades, Fractional order has emerged as one of the significant
interdisciplinary subjects in physical & biological sciences and Engineering [4], [3],
[1]. In this work, the biological system with harvesting of predator and prey species
are considered. The non-dimensional form of system is

dx

dt
= sx(1− x)− βxy − cx

dy

dt
= −wy + ηxy − fy

(1)

In system (1), the prey and predator populations are represented by x(t) and y(t).
All the system parameters s, β, c, w, η, f take positive real values that stand for
growth rate of prey, interaction rate, harvesting effort of prey, mortality rate of
predator, conversion rate of prey and harvesting effort of predator respectively.

Generalization of (1) to arbitrary order yield

Dυ
t (x) = sx(1− x)− βxy − cx

Dυ
t (y) = −wy + ηxy − fy

(2)
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with x(0) = x0 and y(0) = y0, where υ ∈ (0, 1) is non integer order and fractional

order caputo derivative is aD
υ
t f(t) = 1

Γ(1−υ)

∫ t
a

f(n)(τ)
(t−τ)υ−n+1 dτ, for n− 1 < υ < n [5].

2.1. Discretization Process. The discretization of the system (2) with initial
point x(0) = x0 and y(0) = y0 is carried out using piecewise constant arguments
method [2, 7]. The fractional order predator prey system with harvesting at discrete
time is

x(t+ 1) = x(t) +
ρν

Γ(1 + ν)
[sx(t)(1− x(t))− βx(t)y(t)− cx(t)]

y(t+ 1) = y(t) +
ρν

Γ(1 + ν)
[−wy(t) + ηx(t)y(t)− fy(t)]

(3)

where υ ∈ (0, 1] and ρ > 0 is step size.

2.2. Existence and Uniqueness of the Solution. Let the region be defined by
Θ× (0,T] where

Θ =
{

(x, y) ∈ R2 : max(|x| , |y| ≤ L)
}

The existence results are established with method as in [17]. Consider a mapping
H(C) = (H1(C),H2(C)) such that

H1(C) = sx(1− x)− βxy − cx
H2(C) = −wy + ηxy − fy.

(4)

Let C, C̄ ∈ Θ. We have from (4) that∥∥H(C)−H(C)
∥∥ =

∣∣H1(C)−H1(C)
∣∣+
∣∣H2(C)−H2(C)

∣∣
= |sx(1− x)− βxy − cx− sx̄(1− x̄) + βx̄ ȳ + cx̄|
+ |−wy + ηxy − fy + wȳ − ηx̄ ȳ + f ȳ|
= |s(x− x̄)− s(x− x̄)(x+ x̄)− β(xy − x̄ ȳ)− c(x− x̄)|
+ |η(xy − x̄ ȳ)− w(y − ȳ)− f (y − ȳ)|
≤ s|(x− x̄)|+ 2sL|x− x̄|+ βL|(y − ȳ)|+ βL|(x− x̄ )|
+ c|(x− x̄)|+ η |(x− x̄ )|+ η(y − ȳ)|+ w|(y − ȳ)|+ f | (y − ȳ)|
≤ [(1 + 2L)s+ (β + η)L+ c] |x− x̄|+ [(β + η)L+ w + f ] |y − ȳ|∥∥H(C)−H(C)

∥∥ ≤ Ω
∥∥C − C∥∥

and

Ω = max {(1 + 2L)s+ (β + η)L+ c, (β + η)L+ w + f} .
For Ω < 1, we obtain C = H(C) and hence H(C) is a contraction mapping.

Theorem 1. The sufficient condition for existence of unique solution of the frac-
tional system (2) in Θ× (0,T] is

Ω = max {(1 + 2L)s+ (β + η)L+ c, (β + η)L+ w + f} < 1.
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3. Equilibrium points and Stability of system (3)

This section investigates the stability results of the (3) using Jury conditions.

3.1. Equilibrium Points and its Existence. The positive equilibrium points of
system (3) are obtained by solving

sx(1− x)− βxy − cx = 0

−wy + ηxy − fy = 0.
(5)

(1) ES0 = (0, 0)
(2) ES1 =

(
s−c
s , 0

)
(3) ES2 =

(
x∗, s−cβ −

s
βx
∗
)

.

where x∗ = w+f
η .

Theorem 2. The equilibrium points satisfy

(1) The trivial equilibrium point ES0 always exists.
(2) The axial equilibrium steady state ES1 exists if s > c

(3) The interior equilibrium point ES2 exists if η > s(w+f)
s−c .

3.2. Stability Results of System (3). Jacobian matrices are formulated at the
steady states and jury conditions are employed to investigate the stability of the
system (3). At (x, y), the Jacobian matrix is

J(x, y) =

[
1 +Q [s(1− 2x)− βy − c] −Qβx

Qηy 1 +Q [ηx− w − f ]

]
(6)

where Q = ρυ

Γ(1+υ) . Now the characteristic equation of (6) is

Φ(m) = m2 − Tm+D = 0 (7)

where T = 2 +Q[s− c−w− f + (η− 2s)x−βy] is the trace of (6) and determinant
of (6) is D = 1 +Q [s− c− w − f − βy + x(η − 2s)]
+Q2 [(s− 2sx− c)(ηx− w − f) + βy(w + f)].

Lemma 3. [18] Let m1,m2 satisfy Φ(m) = 0 and suppose that Φ(1) > 0. Then
(x∗, y∗) is

(1) stable if |m1| < 1, |m2| < 1⇔ Φ(−1) > 0, Φ(0) < 1.
(2) saddle point if |m1| < 1 , |m2| > 1 (or |m1| > 1, |m2| < 1) ⇔ Φ(−1) < 0.
(3) unstable if |m1| > 1,|m2| > 1⇔ Φ(−1) > 0 , Φ(0) > 1.
(4) |m1| = −1, |m2| 6= 1 ⇔ Φ(−1) = 0.
(5) m1,m2 are complex and |m1| = |m2| ⇔ T 2 − 4D < 0 and Φ(0) = 1.

Theorem 4. The equilibrium point ES0 is

(a) unstable for |m2| > 1 i.e. ρ >
[

2Γ(1+υ)
w+f

] 1
υ

.

(b) saddle point for |m2| < 1, i.e. 0 < ρ <
[

2Γ(1+υ)
w+f

] 1
υ

.
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(c) non-hyperbolic for ρ =
[

2Γ(1+υ)
c

] 1
υ

.

Proof. At ES0, (6) becomes

JES0 = J(0, 0) =

[
1 +Q(s− c) 0

0 1−Q(w + f)

]
whose eigenvalues are m1 = 1 +Q(s− c) and m2 = 1−Q(w+ f). Since ρυ

Γ(1+υ) > 0

for 0 < υ ≤ 1.

(a) It is obvious that |m2| > 1. Then ES0 is source if |1−Q(w + f)| > 1 which

yields ρ >
[

2Γ(1+υ)
w+f

] 1
υ

.

(b) ES0is saddle point if |1−Q(w + f)| < 1, i.e. 0 < ρ <
[

2Γ(1+υ)
w+f

] 1
υ

.

(c) This result is a consequence of (I) and (II).

Theorem 5. The axial equilibrium point ES1 is

(a) stable for c < s < ηc
η−w−f and ρ < min

{[
2Γ(1+υ)
s−c

] 1
υ

,
[

2Γ(1+υ)
s(w+f)−η(s−c)

] 1
υ

}
.

(b) unstable for ηc
η−w−f < s < c and ρ > max

{[
2Γ(1+υ)
s−c

] 1
υ

,
[

2Γ(1+υ)
s(w+f)−η(s−c)

] 1
υ

}
.

(c) saddle for s > max
{

ηc
η−w−f , c

}
and

[
2Γ(1+υ)

s(w+f)−η(s−c)

] 1
υ

< ρ <

{[
2Γ(1+υ)
s−c

] 1
υ

}
.

(d) non-hyperbolic for s = c (or) s =
{

ηc
η−w−f

}
and ρ =

[
2Γ(1+υ)

s(w+f)−η(s−c)

] 1
υ

(or)

ρ =

{[
2Γ(1+υ)
s−c

] 1
υ

}
.

Proof. For ES1, Jacobian matrix is

JES1 = J

(
s− c
s

, 0

)
=

[
1 +Q(s− c) −Qβ(s−c)

s

0 1−Q
[
w + f − η(s−c)

s

]]

whose eigen values are m1 = 1−Q(s− c) and m2 = 1−Q
[
w + f − η(s−c)

s

]
. Since

ρυ

Γ(1+υ) > 0 for 0 < α ≤ 1.

(a) ES1 is stable if |1−Q(s− c)| < 1 and
∣∣∣1−Q [w + f − η(s−c)

s

]∣∣∣ < 1 which

yields

c < s <
ηc

η − w − f
and ρ < min

{[
2Γ(1 + υ)

s− c

] 1
υ

,

[
2Γ(1 + υ)

s(w + f)− η(s− c)

] 1
υ

}
.
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(b) ES1 is unstable if |1−Q(s− c)| > 1 and
∣∣∣1−Q [w + f − η(s−c)

s

]∣∣∣ > 1, i.e.

ηc

η − w − f
< s < c and ρ > max

{[
2Γ(1 + υ)

s− c

] 1
υ

,

[
2Γ(1 + υ)

s(w + f)− η(s− c)

] 1
υ

}
(c) ES1 is Saddle if |1−Q(s− c)| < 1 and

∣∣∣1−Q [w + f − η(s−c)
s

]∣∣∣ > 1, i.e.

s > max

{
ηc

η − w − f
, c

}
and

[
2Γ(1 + υ)

s(w + f)− η(s− c)

] 1
υ

< ρ <

{[
2Γ(1 + υ)

s− c

] 1
υ

}
(d) The proof follows from result (a) and (b).

At ES2, (6) becomes

JES2
=

[
1 +Qa11 −Qa12

Qa21 1

]
(8)

The characteristic equation of JES2 is Φ(m) = m2−Tm+D = 0, with T = 2+Qa11

and D = 1 + Qa11 + Q2a12a21, where Q = ρυ

Γ(1+υ) , a11 = − s(w+f)
η , a12 = β(w+f)

η

and a21 = η(s−c)−s(w+f)
β . Eigen values are

m1,2 = 1 +
QM

2
± Q

2

√
M2 − 4N,

here M = a11 and N = a12a21.

Theorem 6. The interior equilibrium point ES2 is a

(a) sink if one of the following conditions are satisfied:
(i) S∗ < 0 and ρ < ρ3,
(ii) S∗ ≥ 0 and ρ < ρ2,

(b) source if one of the following conditions are satisfied:
(i) S∗ < 0 and ρ > ρ3,
(ii) S∗ ≥ 0 and ρ > ρ1,

(c) saddle, if
(i) S∗ ≥ 0 and ρ2 < ρ < ρ1,

(d) non-hyperbolic, if one of the following conditions are satisfied:
(i) S∗ < 0 and ρ = ρ3.
(ii) S∗ > 0 and ρ = ρ1 or ρ = ρ2,

S∗ = (M2 − 4N) and ρ1 =
{

Γ(1 + υ)
[
−M+

√
M2−4N
N

]} 1
υ

,

ρ2 =
{

Γ(1 + υ)
[
−M−

√
M2−4N
N

]} 1
υ

, ρ3 =
{[
−Γ(1+υ)M

N

]} 1
υ

4. Bifurcation Analysis of (3)

The existence of bifurcation is investigated in this section.
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4.1. Periodic Doubling Bifurcation. The parameter for analyzing existence of
bifurcation is chosen as ρ. The equilibrium point ES2 is said to undergo periodic
doubling bifurcation if one of the eigenvalue is −1 and other shall not be 1 (or) -1
[10].

The quadratic equation obtained from (8) is

Φ(m) = m2 − (2 +QM)m+ (1 +QM +Q2N).

By Theorem (6), if S∗ ≥ 0 and ρ =
[

2Γ(1+υ)
s−c

] 1
υ

, the eigen values are

m1 = −1,m2 = 1− 2(w + f)

s− c
+

2η

s
.

Theorem 7. The periodic doubling bifurcation occurs causing instability to ES1

when S∗ =
(
Q(s− c)−Q

(
w + f − η(s−c)

s

))2

≥ 0 and ρ =
[

2Γ(1+υ)
s−c

] 1
υ

, and

m1 = −1,m2 = 1− 2(w + f)

s− c
+

2η

s
6= ±1.

4.2. Neimark Sacker Bifurcation. Let ρ be the bifurcation parameter consid-
ered to analyzes Neimark-Sacker bifurcation. The occurance of this bifurcation
is ensured when the eigenvalues at steady state ES2 are complex conjugate with
modulus equal to 1 [10]. The quadratic equation obtained from (8) is

Φ(m) = m2 − (2 +QM)m+ (1 +QM +Q2N).

From Theorem (6), if S∗ < 0 and ρ = ρ3, then

m1,2 = 1− M2

2N
± i M

2N

√
4N −M2.

are the corresponding eigen values.

Theorem 8. The Neimark-Sacker bifurcation of system (3)occurs when S∗ < 0
and ρ = ρ3, and

|m1,2| =
∣∣∣∣1− M2

2N
± i M

2N

√
4N −M2

∣∣∣∣ = 1.

5. Control Strategies

The system with linear feedback controller [6] is

x(t+ 1) = x(t) +
ρυ

Γ(1 + υ)
[sx(t)(1− x(t))− βx(t)y(t)− cx(t)] +R(t)

y(t+ 1) = y(t) +
ρυ

Γ(1 + υ)
[−wy(t) + ηx(t)y(t)− fy(t)]

(9)

where feedback control is R(t) = −r1

(
x(t)− s−c

s

)
− r2y(t) with r1, r2 being feed-

back gains. The Jacobian of system (9) at
(
s−c
s , 0

)
is
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J1

(
s− c
s

, 0

)
=

[
1−QA− r1 −QβAs − r2

0 1−QB

]
(10)

Here A = (s − c) and B =
[
w + f − η(s−c)

s

]
. The corresponding characteristic

equation of J1

(
s−c
s , 0

)
is

m2 − (2−Q(A+B)− r1)m+ (Q2AB −Q(A+B +Br1) + 1− r1) = 0. (11)

If m1,m2 are the eigenvalues of (11), then

m1,2 =
(2−Q(A+B)−r1)±

√
(2−Q(A+B)−r1)2−4(Q2AB−Q(A+B−Br1)+1−r1)

2
and

m1m2 = 1− r1 −Q(A+B −Br1) +Q2AB (12)

The equations m1 = ±1 and m1m2 = 1 ensure that absolute values of the eigen
values are less than 1. Suppose m1m2 = 1, then (12) becomes

l1 : Q2AB −Q(A+B) = r1 −QBr1

Suppose that m1 = 1 or m1 = −1, then equation (11) yields

l2 : −QA = r1

l3 : Q2AB − 2Q(A+B) + 4 = 2r1 −QBr1

The triangular region with lines l1, l2 and l3 contains the eigenvalues.
Next, the system with hybrid controlled strategy is given by

x(t+ 1) = αx(t) +
αρν

Γ(1 + ν)
[sx(t)(1− x(t))− βx(t)y(t)− cx(t)] + (1− α)x(t)

y(t+ 1) = αy(t) +
αρν

Γ(1 + ν)
[−wy(t) + ηx(t)y(t)− fy(t)] + (1− α)x(t)

(13)

where 0 < α < 1. Parameter perturbation and feedback control are combined in
(13) as control strategy and appropriate choice of α results in partial or completely
elimination of Neimark sacker bifurcation. Jacobian of (13) at ES2 is

J2 (ES2) =

[
1 + αAa11 −αAa12

αAa21 1

]
. (14)

where A, a11, a12, a21 are given in (8). The presence of the roots of the (14) in the
unit disk ensure the asymptotic stability of ES2.
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6. Numerical Experiments

This section illustrates the results obtained above with suitable examples.

Example 9. Let ν = 0.85, s = 2.3, β = 0.8, c = 0.05, w = 0.3, η = 0.81, f = 0.5
and 0.75 ≤ ρ ≤ 1.31 of system (3) and x(0) = 0.55, y(0) = 0.45. We obtain
ES1 = (x∗, y∗) = (0.9782, 0). Eigen values are m1 = −1 and m2 = 0.9932 6= 1. The
critical point of periodic doubling bifurcation given in Theorem (7) is ρ = 0.8151.
Figure 1(a), 1(b) show flip bifurcation diagrams in (ρ, x) and lyapunov exponent.
The periodic windows of the corresponding bifurcation diagrams are represented in
1(c), 1(d), 1(e) and 1(f) respectively.

Figure 1. Flip bifurcation diagram in (ρ, x) plane and Maximum
Lyapunov exponents of the system (3) with different periodic win-
dows

Example 10. Let ν = 0.85, ρ = 0.82, s = 2.3, β = 0.8, c = 0.05, w = 0.3, η =
0.81, f = 0.5 and x(0) = 0.55, y(0) = 0.45 for the system (3), periodic doubling
bifurcation occurs as ρ varies in ρ ∈ [0.75, 1.31]. Moreover, Figure 2(a) displays the
time plots for both prey and predator populations at ρ = 0.82.
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Figure 2. Time series for the system 3 and (15)

The controlled system (9) for above values takes the form

x(t+ 1) = x(t) +
ρυ

Γ(1 + υ)
[sx(t)(1− x(t))− βx(t)y(t)− cx(t)] +R(t)

y(t+ 1) = y(t) +
ρυ

Γ(1 + υ)
[−wy(t) + ηx(t)y(t)− fy(t)]

(15)

where R(t) = −r1

(
x(t)− s−c

s

)
− r2y(t) and r1 = −0.07 and r2 = 0.075. The plots

for the system (15) with control terms are provided in Figure 2(b). It is clear that
the equilibrium ES1 is stable. The time plots at different ρ values are displayed in
Figure 3 and Figure 4.

Figure 3. Different periodic orbits of the axial Bifurcation of the
system (3)

Example 11. Taking ν = 0.85, s = 0.35, β = 0.4, c = 0.01, w = 0.01, η = 0.56, f =
0.12 and 2 ≤ ρ ≤ 4.5 in system (3) and x(0) = 0.55, y(0) = 0.45, we get ES2 =
(x∗, y∗) = (0.2321, 0.6469). For M = −0.0804;N = 0.0336, S∗ = −0.1279, ρ3 =
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Figure 4. Different periodic orbits of the axial Bifurcation of the
system (3)

2.6124, the eigen values are m1,2 = 0.9038 ± i0.4280 with |η1,2| = 1. The critical
value given in Theorem (8) is ρ3 = 2.6124.

The bifurcation diagrams in x and y plane are presented in Figure 5(a), 5(b).
Phase trajectories obtained for various values of ρ are given in Figure 6 and Figure
7. System (3) at ES2 is locally asymptotic stable for ρ < ρ3 = 2.6124 and becomes
unstable at ρ = ρ3 followed by formation of invariant cycles for ρ > ρ3 which are
presented in Figure 5, Figure 6 and Figure 7.

Example 12. Consider the values ν = 0.85, ρ = 2.67, s = 0.35, β = 0.4, c =
0.01, w = 0.01, η = 0.56, f = 0.12 and x(0) = 0.55, y(0) = 0.45. The occurrence
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Figure 5. Neimark- Sacker Bifurcations for the system 3

Figure 6. Phase portraits of system (3) for different values of ρ

of the Neimark-Sacker bifurcation for ρ ∈ [2, 4.5] of the system (3) is illustrated
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Figure 7. Phase portraits of system (3) for different values of ρ

in Example (11). The unstable closed path formed at ρ = 2.67 enclosing unstable
steady state ES2 = (x∗, y∗) = (0.2321, 0.6469) is presented in Figure-8.

Figure 8. Phase portrait for the system 3 with time series plot

The controlled system (13) for above values can be written as

x(t+ 1) = x(t) +
αρν

Γ(1 + ν)
[sx(t)(1− x(t))− βx(t)y(t)− cx(t)]

y(t+ 1) = y(t) +
αρν

Γ(1 + ν)
[−wy(t) + ηx(t)y(t)− fy(t)]

(16)

with ν = 0.85, ρ = 2.67, s = 0.35, β = 0.4, c = 0.01, w = 0.01, η = 0.56, f = 0.12
and 0 < α < 1. The stability of ES2 is confirmed by the phase trajectory and time
plots in Figure 9 for (16) at α = 0.95.

7. Conclusion

The qualitative study of the fractional order discrete equations of the prey- preda-
tor model with harvesting is carried out. The stability conditions and bifurcation
analysis of the system is studied. The chaos control is performed with feedback
control and numerical simulations for bifurcations with different phase trajectories
are performed as well in accordance with the theoretical work. The periodic win-
dows and different time plots are provided to understand the dynamics exhibited
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Figure 9. Phase portrait for the system 13 with time series plot

by the prey predator model.
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