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Abstract: SIRE1 is an active and relatively high copy-number retroelement belongs to the 

Tyl/Copia long terminal repeat (LTR) retrotransposon superfamily. Distinctive SIRE1 elements 

(ENV and GAG) distributions in barley genome were observed by using fluorescent in situ 

hybridization (FISH). We performed PCR to obtain tetramethylrhodamine-dUTP (TRITC)-labelled 

probes. Localizations of SIRE1 ENV and GAG domains were demonstrated under confocal 

microscope on Hordeum vulgare L. cv. Hasat root preparations. Our results revealed the 

distributions of SIRE1 elements ENV and GAG in barley genome. These results may provide to 

uncover the organization of SIRE retrotransposon pattern in barley genome.  

Özet: SIRE1, Tyl/Copia Uzun Uç Tekrarlı (Long Terminal Repeats- LTR) retrotranspozon üst 

ailesine ait olan aktif, nispeten yüksek kopyalı bir retroementtir. Arpa genomundaki ayırt edici 

SIRE1 elementlerinin (ENV ve GAG) dağılımları floresan in situ hibridizasyonu (FISH) 

kullanılarak gözlemlendi. Tetramethylrhodamine-dUTP (TRITC)-işaretli probların elde 

edilmesinde PCR gerçekleştirildi. SIRE1 ENV ve GAG domainlerinin yerleşimleri, Hordeum 

vulgare L. cv. Hasat kök preparatlarında konfokal mikroskobu altında gösterildi. Sonuçlarımız, 

arpa genomundaki SIRE1 elementlerinin ENV ve GAG dağılımlarını göstermektedir. Bu sonuçlar, 

SIRE1 elementlerinin arpa genomunun organizasyonunun ortaya çıkarılmasına katkı sağlayacaktır.  

 

Introduction

Transposable elements (TEs) are mobile genetic 

elements and are distributed throughout the plant genome, 

over the 14% of Arabidopsis thaliana (L.) Heynh. 

genome, over the 80% maize genome and 80.8% of barley 

genome consist of TEs (AGI 2000, Schnable et al. 2009, 

Mascher et al. 2017). TEs constitute DNA fragments 

which can move through the genome using a DNA 

intermediate (DNA transposons) or an RNA intermediate 

(retrotransposons). Retrotransposons encode their own 

proteins for replication and integration back into the 

genome can be subdivided into two main subclasses as 

LTR retrotransposons and non-LTR retrotransposons. 

Although both LTR and non-LTR retrotransposons are 

located on plant genomes, LTR retrotransposons are more 

abundant than non-LTR retrotransposons (Voytas & 

Boeke 2002, Sandmeyer et al. 2002, Schulman & Wicker 

2013) and are divided into two main superfamilies known 

as Tyl/copia and Ty3/gypsy groups (Wicker et al. 2007). 

Tyl/copia (Pseudoviridae) elements are prevalent in 

plants and grouped into three genera: Pseudovirus (Ty1), 

Hemivirus (Copia) and the Sirevirus which are closely 

related to the retroviruses, but have a different polyprotein 

(pol) gene order (Kumar & Bennetzen 1999, Llorens et al. 

2009). Sireviruses are plant specific unique 

retrotransposons among Tyl/copia elements (Gao et al. 

2003, Bousios et al. 2010). Sequence studies revealed that 

highly conserved sequence motifs of Sireviruses have 

been found within the extremely divergent non-coding 

part of the genome (Bousios et al. 2010). Recently, 

Sireviruses are named after the SIRE1 element from 

soybean, and they were originally named as Agroviruses 

according to their host specificity that they were only 

colonized in plants (Peterson-Burch & Voytas 2002). Two 

notable features of Sireviruses can be considered as that 

they consist of an env-like gene after pol and encode a 

significantly larger Gag protein which differentiate them 

from other Ty1/copia genera (Peterson-Burch & Voytas 

2002, Havecker et al. 2005). However, no known 

functions for either of these additional coding regions 

have been identified (Bousios et al. 2010). 

Interestingly, some evidence indicated that individual 

retrotransposon families demonstrate typical patterns of 

chromosomal localizations (Presting et al. 1998, Friesen 

et al. 2001). However, with the completion of the DNA 

mailto:elif.karlik@istinye.edu.tr


10 E. Karlık & N. Gözükırmızı 

 

sequencing project of Arabidopsis thaliana genome and 

various plant species, including barley, with large genome 

allowed the analysis of the retroelement distribution, and 

these studies revealed that TEs demonstrated non-random 

distribution through chromosomes (AGI 2000, Mascher et 

al. 2017). In barley genome project, Mascher et al. (2017) 

revealed that 3.7 Gb (80.8%) of barley genome consists 

of transposable elements and that only 10% of them are 

intact and potentially active. They distinguished the seven 

barley chromosomes into three fractions as fractions 1, 2 

and 3. In the proximal fraction 3 -where older 

transposable elements are diverged, unique and 

predominated- contains mostly repetitive 20-mers. 

Moreover, fraction 3 is favoured by Gypsy 

retrotransposons, while fractions 1 and 2 are populated by 

Copia elements. These differences in the relative 

abundance of retrotransposon families are considered as 

distinct distributions of functional domains. Additionally, 

Mariner transposons preferentially occupy within 1 kb 

up- or downstream of the coding regions of genes. 

However, Harbinger and long interspersed elements are 

observed to be located further away from genes. Selective 

pressures are considered to underlie the distribution of 

different types of transposable elements around genes. As 

expected, the smallest transposable elements such as 

Mariner may be more tolerated in regions close to the 

genes. However, intriguingly, the Harbinger superfamily 

elements possess a clear preference for promoter regions, 

while long interspersed elements preferentially possess 

for downstream regions of genes. Moreover, the large 

transposable elements such as LTR retrotransposons and 

CACTA elements are located at greater distances from 

genes (Mascher et al. 2017). 

Fluorescence in situ hybridization (FISH) using 

target-specific DNA probes have become a routine 

technique in modern molecular biology, cell research and 

medical diagnosis (Hausmann & Cremer 2003). However, 

application of FISH has been shown to be more difficult, 

because of the cell wall, the cytoplasm, which prevents 

chromosome spreading, low metaphase indices and often 

similar chromosome morphology (Salvo-Garrido et al. 

2001). The distribution of retrotransposon families has 

been analysed in a variety of plant genomes including, 

Allium cepa, Aegilops speltoides, Brachypodium 

distachyon and Glycine max using FISH (Lin et al. 2005, 

Kiseleva et al. 2014, Shams and Olga Raskina 2018, Li et 

al. 2018). Li et al. (2018) performed FISH analysis on 

pachytene chromosomes of soybean BAC and three 

subclones. FISH analysis revealed that a recently inserted 

SIRE1, a solo SIRE1 LTR and fragments of Calypso-like 

retroelements were located within this BAC. In barley, 

Acevedo-Garcia et al. (2013) used FISH analysis and 

YAC library to isolate Ror1 gene, which encodes 

Required for mlo-specified resistance genes and 

important for basal defence, due to fine mapping and gene 

synteny strategies. Additionally, BAC clones have also 

been used to demonstrate BARE1 patterns on barley 

chromosomes by FISH (Vicient et al. 1999).  

The aim of this study was to present the localization 

of SIRE1 patterns in Hordeum vulgare L. chromosomes 

using labelled-PCR products via FISH. SIRE1 patterns 

were observed under confocal microscope on barley root 

preparations. Our results indicated the SIRE1 

localizations in barley genome. 

Materials and Methods 

Plant materials  

Hordeum vulgare L.cv. Hasat was provided from the 

Directorate of Trakya Agricultural Research Institute. The 

plants were grown in a growth chamber under 16 h light/8 

h dark and 25°C ± 2°C conditions. Relative humidity was 

kept at 60-75%. After 72 hours, plants were harvested, 

directly treated with liquid nitrogen and then stored at –

80°C until DNA extraction. 

gDNA Extraction  

gDNA were extracted from 200 mg of the samples by 

using a modified version of the cetyltrimethylammonium 

bromide (CTAB) precipitation method described in Mafra 

et al. (2008). Specifically, 200 mg homogenized sample 

was incubated with 1 ml Edward's buffer (0.5% (w/v) 

SDS, 250 mM NaCl, 25 mM EDTA, 200 mM Tris pH 8.0) 

at 95oC for 5 min (Cold Spring Harbor Laboratory, 2005). 

The mixture was centrifugated at 16,000 g for 15 min. 

afterwards, the supernatant was extracted twice with 

chloroform. The aqueous phase was incubated with 2 

volumes of CTAB precipitation solution, then the CTAB 

protocol was followed as previously described (Mafra et 

al. 2008). DNA yield and purity were measured by UV 

spectrophotometry at 230, 260 & 280 nm using a 

NanoDrop 2000c instrument (Thermo Scientific, 

Wilmington, DE, USA). DNA integrity was evaluated by 

agarose gel electrophoresis with which samples were 

separated on 1% agarose gels in 1X TAE buffer. 

Chromosome preparation for FISH analysis  

Seeds were placed randomly in Petri dishes containing 

filter paper soaked in only water to germinate in an 

incubator at 18-25°C in the dark for 3 days. Root tips were 

harvested, directly fixed in Carnoy fixative (3:1 

ethanol:acetic acid solution) without any chemical pre-

treatment and stored at 4ºC. Chromosome preparations 

and FISH analysis were performed according to Jenkins 

& Hasterok (2001, 2007) with modifications. The slides 

were checked under the light microscope (Olympus U-

TVO.5XC-3) and kept in a freezer at -20ºC. 

Development of probes and labelling 

The FISH probes used in this study were generated 

from two sets of data which are the ENV (envelope-like) 

and GAG (encoding a structural protein) genes of SIRE1. 

To investigate the distribution of SIRE1, we amplified 

ENV and GAG domains of SIRE1 using designed specific 

primer sets (Table 1). The probes for ENV and GAG 

domains were designated by using IDT's PrimerQuest© 

Tool (2012). GC% and Tm values of the probes were 

around 62 and between 47°and 55°C, respectively. The 
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sequences of SIRE1 ENV and GAG were obtained from 

barley (KP420209 for GAG and KP420210 for ENV). 

Probe synthesis was carried out individually by using 

SIRE1 ENV and GAG primers. The reactions were 

performed in a total volume of 50 μl including 18.25 μl 

nuclease-free dH2O, 25 μl of HotStart PCR Master Mix 

(Bio-Rad), 1.5 μl of each primer (10 μM/μl), 1.75 μl of 

tetramethylrhodamine-dUTP (TRITC) (1 mM), and 2 μl 

template DNA (40 ng/μl). PCR conditions were as follows: 

94°C for 5 min followed by 40 cycles of 94°C for 25 s, 

annealing 50°C for 25 s and 72°C for 30 s. The reaction was 

completed by a final extension step at 72°C for 5 min. 

Table 1. Primers used in this study. 

No Primer Name Sequence (5’→3’) 

1 SIRE1 ENV F CGACAACACCAGAGGAGAATG 

2 SIRE1 ENV R CGCCTTGGTGGCCAATTA 

3 SIRE1 GAG F AACCGAGATGGAGGTAGTACA 

4 SIRE1 GAG R GAAACGGCACACGCTAGA 

Fluorescence in situ hybridization (FISH) analysis 

The FISH analysis protocol was adopted from Jenkins 

and Hasterok (2001, 2007) protocol with modifications. 

Chromosome spreads were scanned under light 

microscope with ×40 objective to determine the number 

and quality of well-spread metaphase plates, and then they 

were treated with 100 μg/ml of RNase at 37°C for 1 h. The 

hybridization mixture contains 20 μl of deionised 

formamide (50%), 8 μl of dextran sulphate (10%), 4 μl of 

20X SSC (2X SSC), 2 μl of 10% SDS (0.5%), 10 μl of 

probe (75-200ng/slide), 1 μl of blocking DNA (sonicated 

salmon sperm DNA) (25-100X probe) and added sterile 

dH2O to bring final volume 40 μl. Final concentrations 

were indicated in parenthesis. The mixture was denatured 

at 85°C for 10 min and kept on ice for 10 min. A 38 μl 

aliquot of the hybridization mixture was applied onto each 

slide, covered with a coverslip and sealed with paper 

bond. Both chromosomal DNA and probe DNA on the 

slides were denatured together in a thermal cycler at 70°C 

for 6 min and hybridized with each other at 37°C 

overnight in a humid dark box. Afterwards, hybridized the 

chromosome spreads were washed three times in 2X SSC: 

once 2X SSC to float coverslips off, once in 15% 

formamide/0.1X SSC and again once in 15% 

formamide/0.1X SSC, each for 10 min at 42°C. Then, the 

slides were washed in 2X SSC for 3 min at 42°C. This 

step was repeated twice with fresh 2X SSC at 42°C. 

Ultimately, the slides were washed three times in 2X SSC 

for 3 min at RT. Then, the slides were dehydrated in 

alcohol series (70, 90 and 100%), each for 1 min at RT 

and waited in the dark for 15-20 min. Vectashield-DAPI 

mounting-staining medium (7-10 μL) was dropped onto 

the chromosome spreads, which were then stored at 4°C 

until used. 

Image acquisition 

To image the slides, 551-575 nm wavelengths for 

probes labelled with TRITC and 420-480 nm wavelengths 

for DAPI were used for fluorescence detection in the Leica 

DM5500 confocal microscope. The different fluorescent 

images were acquired separately. Afterwards, they were 

merged into single composite images. The signal images 

were analysed by Adobe Photoshop CC 2014. 

Results 

To characterize the abundance and localization 

patterns of soybean SIRE1 ENV and GAG domains in 

barley, we used root tip cells and SIRE1 ENV and GAG 

probes were labelled with TRITC. Specifically, we 

observed TRITC labelled SIRE1 ENV exhibited 

characteristic patterns at prophase in nucleus (Fig. 1). 

TRITC labelled SIRE1 GAG probes also demonstrated 

distinctive patterns in prophase phase in barley 

chromosomes (Fig. 2).  

 

Fig. 1. Display of SIRE1 ENV distributions in barley root preparations via FISH. According to FISH results, characteristic feature of 

SIRE1 ENVs are localized in centred regions. Scale bar=7.5 and 25 µm for A and B, respectively. 



12 E. Karlık & N. Gözükırmızı 

 

 

Fig. 2. Demonstrations of SIRE1 GAG localizations in barley root preparations via FISH. According to FISH results, SIRE GAGs are 

distinctively localized close to centred regions, similarly SIRE1 ENV. Scale bar=5 and 10 µm for A and B, respectively.

Discussion 

In plants, retroelements cover a large zone of genomes 

and are considered to have participated in the genome 

organization and evolution (McCarthy et al. 2002). 

Several studies have focused to detecting the 

chromosomal position of Ty1-copia retroelements, 

including SIRE1 and anticipating their copy number 

(Pearce et al. 1996, Lin et al. 2005, Alipour et al. 2013, 

Kolano et al. 2013, Lee et al. 2013). In the current study, 

localizations of SIRE1 ENV and GAG domains were 

indicated on barley chromosomes (see Fig. 1 and 2). The 

results were obtained from Hordeum vulgare L. cv. Hasat 

root tips preparations using FISH analysis. Due to the 

large genome size of barley, researchers mostly prefer to 

use single-copy probes derived from BAC or YAC 

contigs (Vicient et al. 1999, Acevedo-Garcia et al. 2013, 

Bustamante et al. 2017). In our study, we used direct PCR 

products derived from barley DNA to produce single-

stranded probes were small, appx. 233 bp for ENV and 

120 bp for GAG. These small PCR probes were highly 

specific and stable for hybridization thus, it leads to very 

good amplification of the signals. By using short size of 

probes, we were able to visualize the first time SIRE1 ENV 

and GAG distribution patterns on barley chromosomes, 

indicating they intend to demonstrate different patterns. 

Additionally, it is possible to observe localization of 

lncRNAs on chromosomes and in the cells using direct 

labelled-PCR products via FISH techniques (Karlik et al. 

2018). 

In plant genomes, most of the TEs are amplified to 

thousands of copies and present as low- or moderate-

number copies (Baucom et al. 2009). Besides increasing 

genome sizes, TEs can impact on genome structure and 

gene expression at a global scale. Moreover, deletions of 

the interleaving genome sequences or creations of new 

chromosomal rearrangements can be generated by 

recombination between two TEs (Weil & Wessle 1993, 

Hughes et al. 2003, Vicient & Casacuberta 2017). 

However, TE karyotype differences may be significant 

tool contributing to reproductive isolations of TEs and 

crop domestication, to discriminate species diversification 

in plants (Vicient & Casacuberta 2017). Also, the 

abundance and size of LTR retrotransposons in plant 

genomes exert interesting questions on how they affect 

genes and how they are regulated so that their insertions 

do not negatively influence the host genome (Galindo-

González et al. 2017). Mascher et al. (2017) identified 3.7 

Gb (80.8%) of the assembled barley genome sequence as 

derived from TEs, most of them were present as truncated 

and degenerated copies. Interestingly, only 10% of mobile 

elements are intact and potentially active. According to 

the sequencing results of Mascher et al. (2017), TEs 

presented notable variation in their insertion site 

preferences. The distribution of SIRE1 ENV and GAG 

barley were consistent with each other that they were 

mostly characterized close to the centromere regions (see 

Fig. 1 and 2). Presting et al. (1998) demonstrated the 

centromere of barley is enriched with cereba is a member 

of the Ty3/Gypsy class, that ~200 copies of cereba have 

been determined in each barley centromere (Hudakova et 

al. 2001, Houben & Schubert 2003). Two conserved 

centromere-specific repeats [Cereal Centromeric 

Sequence1 (CCS1) and Sau3A9] were reported, later is 
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revealed that they are related to Ty3/Gypsy-like 

retrotransposons. In barley, parts of the LTRs of cereba 

element and parts of integrase region of its polygene 

correspond to CCS1 and Sau3A9, respectively (Hudakova 

et al. 2001). Our results also indicated that presence of 

SIRE1 is favoured mostly in regions close to centre 

locations that as we know SIRE1 is active and belongs to 

the Tyl/Copia retrotransposon superfamily (Lin et al. 

2005). However, SIRE1 may be related to the centromeric 

repeats BCS1/CCS1 (barley cereal centromeric 

sequence), thus these elements may also contribute to 

SIRE1 elements movements. Lin et al. (2005) reported the 

presence of a 102-bp tandem repeat (STR102) which was 

a SIRE1 element and a SIRE1 solo LTR in soybean. 

However, the flanking sequences of 3 of 10 SIRE1 

insertions were found to be repetitive, belonging to either 

Ty3/gypsy or other repetitive families (Laten et al. 1998). 

Moreover, these fragments have been demonstrated for 

maize and rice (Ananiev et al. 1998, Cheng et al. 2002) 

suggesting that they are common motifs of higher plants 

of centromeric/pericentromeric regions (Martinez-

Zapater et al. 1986, Ananiev et al. 1998, Cheng et al. 

2002, Lin et al. 2005), which is also consistent with our 

results. In soybean, Lin et al. (2005) also considered that 

SIRE1 may preferentially get in heterochromatic and/or 

pericentromeric regions which may alternatively be 

selected against the gene-rich euchromatic regions. In 

barley, we also observed that SIRE1 elements were mostly 

concentrated in centred regions. FISH analysis of barley 

SIRE1 elements provided us to allow cursory insight into 

the barley genome organization.  

In conclusion, we were able to observe the distinctive 

distributions of the SIRE1 ENV and GAG elements via 

FISH analysis by using labelled-PCR products as probes 

in barley root preparations. How these elements function 

to organize genome is still a mystery, however the 

applications of FISH analysis of TEs may have an 

important potential to uncover the organization of higher 

plant genomes. 
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