
Hacettepe Journal of
Mathematics & Statistics

Hacet. J. Math. Stat.
Volume 50 (5) (2021), 1268 – 1279

DOI : 10.15672/hujms.775508

Research Article

The Hermite-Hadamard inequalities for p-convex
functions

Zeynep Eken1, Serap Kemali∗2, Gültekin Tınaztepe2, Gabil Adilov1

1Faculty of Education, Akdeniz University, Antalya, Turkey
2Vocational School of Technical Sciences, Akdeniz University, Antalya, Turkey

Abstract
In this paper, the Hermite-Hadamard inequality for p−convex function is provided. Some
integral inequalities for them are also presented. Also, based on the integral and double
integral of p−convex sets, the new functions are defined and under certain conditions,
p−convexity of these functions are shown. Some inequalities for these functions are ex-
pressed.

Mathematics Subject Classification (2020). 26A51

Keywords. Hermite-Hadamard inequality, convex set, convex function, p-convex
function

1. Introduction
The inequalities are very useful tools in almost all branches of mathematics. They have

been sometimes a control mechanism or filtration for mathematical facts to be proved,
sometimes they impose constraints, and sometimes the sets such as the feasible sets in
constrained optimization problems are expressed by inequalities. The inequalities have
been indispensable tools to natural sciences as well as all branches of mathematics to han-
dle various problems. In many engineering sciences, they are especially used in estimating
error bounds or in limiting physical variables to suitable boundaries in algorithms [21]
the Chebyshev and the Markov inequalities in stochastic analysis and probability [12,18],
the Hadamard inequality in matrix theory [17], the Lyapunov inequality in control the-
ory, which is inevitable for current artificial intelligent based technology [26], variational
inequalities, which is frequently used at handling equilibrium issues in economics [16] can
be given as the most well-known examples.

The existence of many inequalities are connected with the convexity. The convexity of
a set is defined as follows:

Let X be a set in a vector space V over real number field R. X is said to be a convex
set, if

λx+ µy ∈ X
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for all x, y ∈ X and λ, µ ∈ R with λ+µ = 1, which states that each line segment connecting
for any elements of X is contained by the set X.

At the beginning, the geometric aspect of convex bodies (compact nonempty convex
sets) caused to obtain many inequalities such as the Brunn-Minkowski and Blashcke San-
talo inequalities related to the volumes of sum and product of two convex bodies respec-
tively. Later, convexity has been extended for different mathematical structures equipped
with different operations such as posets, lattices, metric spaces etc [4, 13,20].

Later, the convexity of a function is defined as follows:
Let X be a convex set and f : X → R. f is said to be a real valued convex set If

f(λx+ µy) ≤ λf(x) + µf(y)
for all x, y ∈ X and λ, µ ∈ R with λ+ µ = 1.

Also functional convexity gave birth to a large number of inequalities such as Jensen’s
inequality and the Hermite-Hadamard inequalities, which are the most leading two in-
equalities based on convexity.

The theoretical and applied developments leads to the new kind of convexities such
as B−convexity, B−1−convexity, p−convexity etc [2, 5, 15, 19]. Many types of inequalities
obtained for classical convex functions are studied and extended for new convexity types.
By far the most modified one for new classes is the Hermite-Hadamard inequalities. A
great number of studies on it can be seen in [1, 6–11,14,23–25] and references therein.

In this work, the Hermite-Hadamard type inequality for p-convex functions is expressed,
then inequality relations involving the right and left part of it are given. Finally, new
functions via integral and double integral of p-convex functions are defined. p-convexity
of them and some related inequalities are given.

2. Preliminaries
Throughout the paper, R,R+,Z+,Rn denote the set of real numbers, the set of non-

negative real numbers, the set of positive integers and n−dimensional Euclidean space,
respectively.

Definition 2.1 ([19]). Let U be a subset of Rn and 0 < p ≤ 1. U is called p−convex set
if

tx+ sy ∈ U

for all x, y ∈ U and t, s ∈ [0, 1] such that tp + sp = 1.

Since we study on R+, let us express a related proposition.

Proposition 2.2 ([3]). For a > 0, [0, a) is a p-convex set.

Definition 2.3 ([19]). Let U ⊆ Rn be a p−convex set and f : U → R. If for all x, y ∈ U
and t, s ∈ [0, 1] such that tp + sp = 1,

f(tx+ sy) ≤ tf(x) + sf(y), (2.1)
then f is said to be p-convex function.

Inequality (2.1) can be expressed in terms of one parameter in two ways we often use
in results. First, since tp + sp = 1, hence, s = (1 − tp)

1
p , we can write

f(tx+ (1 − tp)
1
p y) ≤ tf(x) + (1 − tp)

1
p f(y).

Second, replacing the condition tp + sp = 1 with
(
t

1
p

)p
+
(
s

1
p

)p
= 1 and solving for s in

the definition, we have

f(t
1
px+ (1 − t)

1
p y) ≤ t

1
p f(x) + (1 − t)

1
p f(y).

The Hermite-Hadamard inequality for convex functions is given as follows:
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Let f : [a, b] → R be an integrable convex function. Then

f

(
a+ b

2

)
≤ 1
b− a

b∫
a

f(x)dx ≤ f(a) + f(b)
2

. (2.2)

This theorem states that the average value of a function on closed interval can be
squeezed between the image of the average of boundary points under the function and the
average of the images of boundary points under function.

Two of the tools used in some of the results below are the gamma and beta functions
and some relations. These functions are defined as follows, respectively:

Γ(α) =
∞∫

0

e−xxα−1dx for α > 0 , B(α, β) =
1∫

0

xα−1(1 − x)β−1dx for α, β > 0.

Beta and gamma functions have the following properties:
For x, y > 0 and n ∈ Z+,

B(x, y) = B(y, x), B(x+ 1, y) = x

x+ y
B(x, y)

and

B(x, y) = Γ(x)Γ(y)
Γ(x+ y)

, Γ(n) = (n− 1)!.

Now, let us give an inequality on gamma function:

Theorem 2.4 ([22]). Let x > 0 and 0 < a < 1. Then(
x

x+ a

)1−a

≤ Γ(x+ a)
xaΓ(x+ 1)

≤ 1. (2.3)

3. Main results
Theorem 3.1. Let f : R+ → R+ be an integrable p−convex function For a, b ∈ R+ with
a < b, the following inequality holds

2
1
p

−1
f(a+ b

2
1
p

)(b− a) 6
b∫

a

f(x)dx 6 1
2p

{
p [bf(b) + af(a)] + [bf(a) + af(b)]B(1

p
,
1
p

)
}
.

Proof. First we show the right part of the inequality. By changing variable x = t
1
p b +

(1 − t)
1
pa, we have

b∫
a

f(x)dx = 1
p

1∫
0

f(t
1
p b+ (1 − t)

1
pa)(bt

1
p

−1 − a (1 − t)
1
p

−1)dt.

From the p−convexity of f and the nonnegativity of a and b,

b∫
a

f(x)dx ≤ 1
p

1∫
0

{[
t

1
p f(b) + (1 − t)

1
p f(a)

] [
bt

1
p

−1 + a (1 − t)
1
p

−1
]}
dt

≤ 1
p

f(b)
1∫

0

[
bt

2
p

−1 + at
1
p (1 − t)

1
p

−1
]
dt+ f(a)

1∫
0

[
b(1 − t)

1
p t

1
p

−1 + a(1 − t)
2
p

−1
]
dt

 .
Using the beta function and its properties, we obtain
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b∫
a

f(x)dx ≤ 1
p

{
p

2
bf(b) + af(b)B(p+ 1

p
,
1
p

) + bf(a)B(1
p
,
p+ 1
p

) + p

2
af(a)

}

= 1
2

[bf(b) + af(a)] + 1
2p

[bf(a) + af(b)]B(1
p
,
1
p

).

For the first part of the inequality, from the p−convexity of f , for all x,w > 0, we have

f(x+ w

2
1
p

) 6 f(x) + f(w)
2

1
p

.

Let x = ta+ (1 − t)b and w = tb+ (1 − t)a for t ∈ (0, 1]. Then

f(a+ b

2
1
p

) 6 f(ta+ (1 − t)b) + f((1 − t)a+ tb)
2

1
p

.

Integrating both side and using the fact that
1∫

0

f (ta+ (1 − t) b) dt =
1∫

0

f (tb+ (1 − t) a) dt

one can have

2
1
p

−1
f(a+ b

2
1
p

) 6 1
b− a

b∫
a

f(x)dx.

�
Theorem 3.2. Let f : R+ → R be an integrable p−convex function. For a, b ∈ R+ with
a < b, the following inequality holds:∫ 1

0
f
(
(1 − t)

1
p a+ t

1
p b
) [

1 + (1 − tp)
1
p

−1
t

1
p

]
dt ≤

(
1 +

Γ2(1
p)

pΓ(2
p)

)[
f(a) + f(b)

2

]
. (3.1)

Proof. From the p-convexity of f , for t ∈ [0, 1] and a, b ∈ R+ with a < b, we can write

f
(
ta+ (1 − tp)

1
p b
)

≤ tf(a) + (1 − tp)
1
p f(b)

and
f
(
(1 − tp)

1
p a+ tb

)
≤ (1 − tp)

1
p f(a) + tf(b).

By summing these inequalities side by side, it is derived that

f
(
ta+ (1 − tp)

1
p b
)

+ f
(
(1 − tp)

1
p a+ tb

)
≤ [f(a) + f(b)]

[
(1 − tp)

1
p + t

]
.

Using the definite integration on [0, 1] yields∫ 1

0
f
(
ta+ (1 − tp)

1
p b
)
dt+

∫ 1

0
f
(
(1 − tp)

1
p a+ tb

)
dt ≤ [f(a) + f(b)]

1∫
0

[
(1 − tp)

1
p + t

]
dt.

(3.2)
By changing variable v = (1 − tp)

1
p at first integral of right hand side of the inequality

above, tp = 1 − vp, v ∈ [0, 1] and tp−1dt = −vp−1dv, hence
1∫

0

f
(
ta+ (1 − tp)

1
p b
)
dt = −

0∫
1

f
(
(1 − vp)

1
p a+ vb

) v

(1 − vp)
1
p

p−1

dv

=
1∫

0

f
(
(1 − tp)

1
p a+ tb

)
(1 − tp)

1
p

−1
tp−1dt.
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Using this equality, we have
1∫

0

f
(
ta+ (1 − tp)

1
p b
)
dt+

1∫
0

f
(
(1 − tp)

1
p a+ tb

)
dt

=
1∫

0

f
(
(1 − tp)

1
p a+ tb

) [
1 + (1 − tp)

1
p

−1
tp−1

]
dt.

Since
1∫

0

[
(1 − tp)

1
p + t

]
dt = 1

2

(
1 +

Γ2(1
p)

pΓ(2
p)

)
,

we have
1∫

0

f
(
(1 − t)

1
p a+ t

1
p b
) [

1 + (1 − tp)
1
p

−1
tp−1

]
dt ≤

(
1 +

Γ2(1
p)

pΓ(2
p)

)[
f(a) + f(b)

2

]
.

�

The upper bound for the integral at the left side of (3.1) is given in terms gamma
function. We can find the upper bound without gamma function for 1

p /∈ Z+.

Theorem 3.3. Let f : R+ → R be an integrable p−convex function and 1
p /∈ Z+. For

a, b ∈ R+ with a < b, the following inequality holds∫ 1

0
f
(
(1 − t)

1
p a+ t

1
p b
) [

1 + (1 − tp)
1
p

−1
t

1
p

]
dt ≤ ψ(p)

[
f(a) + f(b)

2

]
where

ψ(p) = 1 +

⌊
1
p

⌋ 2
p

−2
⌊

1
p

⌋ (⌊
1
p

⌋
!
)2 (2

p

) p−2
p

+
⌊

2
p

⌋
p
⌊

2
p

⌋ ⌊
2
p

⌋
!

and ⌊.⌋ denotes the greatest integer value.

Proof. By x =
⌊

1
p

⌋
and a = 1

p −
⌊

1
p

⌋
at the right side of (2.3), we have

Γ(1
p

) ≤
⌊1
p

⌋ 1
p

−
⌊

1
p

⌋ (⌊1
p

⌋)
! .

By using (2.3) also for x =
⌊

2
p

⌋
and a = 2

p −
⌊

2
p

⌋
,⌊

2
p

⌋ (⌊
2
p

⌋)
!(

2
p

) p−2
p

+
⌊

2
p

⌋ ≤ Γ(2
p

) ≤
⌊2
p

⌋ 2
p

−
⌊

2
p

⌋ (⌊2
p

⌋)
! .

So

1 +

[
Γ(1

p)
]2

p
[
Γ(2

p)
] ≤ 1 +

⌊
1
p

⌋ 2
p

−2
⌊

1
p

⌋ (⌊
1
p

⌋
!
)2 (2

p

) p−2
p

+
⌊

2
p

⌋
p
⌊

2
p

⌋ ⌊
2
p

⌋
!

.

Using this inequality in Theorem 3.2, we get desired inequality. �
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Theorem 3.4. Let U ⊆ R+ be a p−convex set and f : U → R be a nondecreasing
p−convex function. For a, b ∈ U with a < b, the following inequality holds:

f

(
a+ b

2
2
p

−1

)
≤

1∫
0

f

(
a+ b

2
1
p

[
t+ (1 − tp)

1
p

])
dt

≤ 1
2

1
p

1∫
0

f
(
(1 − tp)

1
p a+ tb

) [
1 + (1 − tp)

1
p

−1
tp−1

]
dt. (3.3)

Proof. Since h(x) = x
1
p is convex function on R+ for 0 < p < 1, we know that

h

(
x+ y

2

)
≤ h(x) + h(y)

2
.

Writing x = tp and y = 1 − tp, we have(
tp + 1 − tp

2

) 1
p

= 1
2

1
p

≤ (tp)
1
p + (1 − tp)

1
p

2

a+ b

2
1
p

· 1
2

1
p

≤ a+ b

2
1
p

· t+ (1 − tp)
1
p

2
hence,

a+ b

2
2
p

−1
≤ a+ b

2
1
p

·
[
t+ (1 − tp)

1
p

]
.

Using the fact that f is monotonic nondecreasing on (0,∞), we obtain

f

(
a+ b

2
2
p

−1

)
≤ f

(
a+ b

2
1
p

[
t+ (1 − tp)

1
p

])
, ∀t ∈ [0, 1].

Integration on [0, 1] yields to the left inequality in (3.3). From f being p−convex, it is
known that for all x, y ∈ R+,

f

(
x+ y

2
1
p

)
≤ f(x) + f(y)

2
1
p

. (3.4)

Putting x = ta+ (1 − tp)
1
p b and y = (1 − tp)

1
p a+ tb with t ∈ [0, 1] above, we deduce

f

(
a+ b

2
1
p

[
t+ (1 − tp)

1
p

])
≤ 1

2
1
p

[
f
(
ta+ (1 − tp)

1
p b
)

+ f
(
(1 − tp)

1
p a+ tb

)]
.

If each side of inequality is integrated on [0,1] over t, then
1∫

0

f

(
a+ b

2
1
p

[
t+ (1 − tp)

1
p

])

≤ 1
2

1
p

 1∫
0

f
(
ta+ (1 − tp)

1
p b
)
dt+

1∫
0

f
(
(1 − tp)

1
p a+ tb

)
dt

 . (3.5)

By changing variable v = (1 − tp)
1
p as indicated in the proof of Theorem 3.2 we have,

1
2

1
p

[
1∫
0
f
(
ta+ (1 − tp)

1
p b
)
dt+

1∫
0
f
(
(1 − tp)

1
p a+ tb

)
dt

]
= 1

2
1
p

1∫
0
f
(
(1 − tp)

1
p a+ tb

) [
1 + (1 − tp)

1
p

−1
tp−1

]
dt .
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Thus
1∫

0

f

(
a+ b

2
1
p

[
t+ (1 − tp)

1
p

])
dt ≤ 1

2
1
p

1∫
0

f
(
(1 − tp)

1
p a+ tb

) [
1 + (1 − tp)

1
p

−1
tp−1

]
dt

is obtained. �
Combining Theorem 3.2 with Theorem 3.4 and Theorem 3.3, we conclude the following

result:

Corollary 3.5. Let U ⊆ R+ be a p−convex set and f : U → R be a nondecreasing
p−convex function. For a, b ∈ U with a < b, the following inequality holds

2
1
p

−1
f

(
a+ b

2
2
p

−1

)
≤
(

1 +
Γ2(1

p)
pΓ(2

p)

)[
f(a) + f(b)

2

]
≤ ψ(p)

[
f(a) + f(b)

2

]
where ψ(p) is the same as in Theorem 3.3.

Theorem 3.6. Let f : R+ → R+ be an increasing p−convex function. If a, b ∈ R+ with
a < b, then

1∫
0

f(t
1
pa+ (1 − t)

1
p b)dt ≤ f(a) + f(b)

2
.

Proof. From p−convexity of f , for all x, y ∈ R+ and t ∈ [0, 1],

f(t
1
pa+ (1 − t)

1
p b) ≤ t

1
p f(a) + (1 − t)

1
p f(b).

Since t
1
p < t and (1 − t)

1
p < 1 − t, we have

f(t
1
pa+ (1 − t)

1
p b) ≤ tf(a) + (1 − t)f(b).

Integration on t gives
1∫

0

f(t
1
pa+ (1 − t)

1
p b)dt ≤ f(a) + f(b)

2
.

�
Theorem 3.7. Let f : R+ → R be an increasing p−convex function. If a, b ∈ R+ with
a < b, then the following inequality holds:

f

(
a+b

2
2
p −1

)
≤

∫ 1
0 f

(
a+b

2
1
p

[
t

1
p + (1 − t)

1
p

])
dt

≤ 21− 1
p
∫ 1

0 f
(
at

1
p + b(1 − t)

1
p

)
dt

≤ 2p

2
1
p (p+1)

[f(a) + f(b)].

Proof. The fact that h(x) = x
1
p is convex function for p ∈ (0, 1] on [0,∞) implies

1
2

1
p

≤ t
1
p + (1 − t)

1
p

2
, ∀t ∈ [0, 1].

From the monotonicity of f , one can get

f

(
a+ b

2
1
p

· 2
2

1
p

)
= f

(
a+ b

2
2
p

−1

)
≤ f

(
a+ b

2
1
p

[
t

1
p + (1 − t)

1
p

])
for all t ∈ [0, 1]. Thus the first inequality (from left to right) is obtained.
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By using the p−convexity of f , we have

f

(
a+ b

2
1
p

[
tp + (1 − t)

1
p

])
≤ 1

2
1
p

[
f
(
at

1
p + b(1 − t)

1
p

)
+ f

(
a(1 − t)

1
p + bt

1
p

)]
. (3.6)

From the changing of variables, it is clear that∫ 1

0
f
(
a(1 − t)

1
p + bt

1
p

)
dt =

∫ 1

0
f
(
at

1
p + b(1 − t)

1
p

)
dt.

So (3.6) yields to the second inequality (from left to right). On the other hand, the
p−convexity of f on R+ implies

f
(
t

1
pa+ (1 − t)

1
p b
)

≤ t
1
p f(a) + (1 − t)

1
p f(b) , ∀t ∈ [0, 1].

By integrating this inequality over t in [0, 1], one can have that∫ 1

0
f
(
t

1
pa+ (1 − t)

1
p b
)
dt ≤ p

p+ 1
[f(a) + f(b)].

By multiplying each side with 21− 1
p , we get the last part of the inequality. �

Theorem 3.8. Let f : R+ → R+ be a p−convex integrable function and let 0 < a < b. If
∞∫

a

x
2

p−1 f(x)dx

is finite, then

1
b− a

b∫
a

f(x)dx ≤ p

1 − p

a 1+p
1−p

∞∫
a

x
2

p−1 f(x)dx+ b
1+p
1−p

∞∫
b

x
2

p−1 f(x)dx

 .
Proof. Using the p−convexity of f on R+ for any z, y ≥ 0 and u ∈ [0, 1], we have

f
(
u

1
p z + (1 − u)

1
p y
)

≤ u
1
p f(z) + (1 − u)

1
p f(y).

By making substitutions z = u
1− 1

pa, u ∈ (0, 1] and y = (1−u)1− 1
p b, u ∈ [0, 1), the following

inequality is obtained:

f(ua+ (1 − u)b) ≤ u
1
p f
(
u

1− 1
pa
)

+ (1 − u)
1
p f
(
(1 − u)1− 1

p b
)
, ∀u ∈ (0, 1). (3.7)

To show the validity of the inequality above, first, let us testify that
∫ 1

0 u
1
p f
(
u

1− 1
pa
)
du is

finite. The change of the variable x = u
1− 1

pa, u ∈ (0, 1] yields

u =
(
x

a

) 1
1− 1

p =
(
x

a

) p
p−1

= x
p

p−1

a
p

p−1

and
du = p

p− 1
· 1
a

p
p−1

x
p

p−1 −1
dx = p

p− 1
· 1
a

p
p−1

x
1

p−1dx.

Thus,
1∫
0
u

1
p f
(
u

1− 1
pa
)
du =

a∫
∞

[
x

1
p−1

a
1

p−1
· p

p−1 · x
1

p−1

a
p

p−1
f(x)

]
dx

= p
1−p · a

1+p
1−p

∞∫
a
x

2
p−1 f(x)dx < ∞.
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For the integral

1∫
0

(1 − u)
1
p f
(
(1 − u)1− 1

p b
)
du,

the change of variable t = 1 − u, u ∈ [0, 1) yields to

∫ 1

0
t

1
p f
(
t
1− 1

p b
)
dt.

In a similar way above, by the substitution x = t
1− 1

p b, t ∈ (0, 1],

∫ 1

0
t

1
p f
(
t
1− 1

p b
)
dt = p

1 − p
· b

p+1
1−p

∫ ∞

b
x

2
p−1 f(x)dx < ∞

is deduced. Integrating the inequality (3.7) on (0,1) over u, taking into account that

∫ 1

0
f(ua+ (1 − u)b)du = 1

b− a

b∫
a

f(x)dx

and

∫ 1

0
uf
(
u

1− 1
pa
)
du = p

1 − p
· a

1+p
1−p

∫ ∞

a
x

2
p−1 f(x)dx∫ 1

0
(1 − u)f

(
(1 − u)1− 1

p b
)
du = p

1 − p
· b

1+p
1−p

∫ ∞

b
x

2
p−1 f(x)dx

respectively, one can obtain the desired inequality. �

Theorem 3.9. Let f : R+ → R+ be a p−convex function and let 0 < a < b. Then
(i) Let g : [0, 1] → R be a function defined as follows

g(t) = 1
b− a

b∫
a

f(tx+ (1 − t)a+ b

2
)dx.

If f is decreasing (or nonincreasing) function then g is p−convex function.
(ii) If f is integrable on [a, b], then the following inequality holds for t ∈ (0, 1],

g(t) ≥ 2
1
p

−1
f

(
a+ b

2
1
p

)
.
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Proof. (i) Let x, y ∈ [0, 1] and λ, µ ≥ 0 with λp + µp = 1. Using λ+ µ < 1, monotonicity
and p−convexity of f , we can write

g (λt1 + µt2) = 1
b− a

b∫
a

f

(
(λt1 + µt2)x+ [1 − (λt1 + µt2)] a+ b

2

)
dx

= 1
b− a

b∫
a

f

(
λt1x− λt1

a+ b

2
+ µt2x− µt2

a+ b

2
+ a+ b

2

)
dx

≤ 1
b− a

b∫
a

f

(
λt1x− λt1

a+ b

2
+ µt2x− µt2

a+ b

2
+ (λ+ µ)a+ b

2

)
dx

= 1
b− a

b∫
a

f

(
λ

[
t1x+ (1 − t1) a+ b

2

]
+ µ

[
t2x+ (1 − t2) a+ b

2

])
dx

≤ 1
b− a

b∫
a

[
λf

(
t1x+ (1 − t1) a+ b

2

)
+ µf

([
t2x+ (1 − t2) a+ b

2

])]
dx

= λg (t1) + µg (t2) .

(ii) Assume that t ∈ (0, 1]. By changing variable u = tx+ (1 − t)a+b
2 , we have

g(t) = 1
t(b− a)

∫ tb+(1−t) a+b
2

ta+(1−t) a+b
2

f(u)du = 1
m− n

∫ m

n
f(u)du

where m = tb+(1−t)a+b
2 and n = ta+(1−t)a+b

2 . The right part of the Hermite-Hadamard
inequality gives

1
m− n

∫ m

n
f(u)du ≥ 2

1
p

−1
f

(
m+ n

2
1
p

)
= 2

1
p

−1
f

(
a+ b

2
1
p

)

hence, we get the required inequality. �

Theorem 3.10. Let f : R+ → R be a p−convex function. Let a, b ∈ R+ with a < b.
Consider the function

h(t) = 1
(b− a)2

b∫
a

b∫
a

f(tx+ (1 − t)y)dxdy , t ∈ [0, 1]

(i) If f is decreasing function, then h(t) is also p− convex function on [0, 1].

(ii) If f is integrable on [a, b], then the following inequality holds:

21− 1
ph(t) ≥ 1

(b− a)2

b∫
a

b∫
a

f

(
x+ y

2
1
p

)
dxdy , t ∈ [0, 1].

Proof. (i) Let x, y ∈ [0, 1] and λ, µ ≥ 0 with λp + µp = 1. Taking into account that
λp−1 − t1 ≥ 1 − t1 for t1, λ ∈ [0, 1] and µp−1 − t2 ≥ 1 − t2 for t2, µ ∈ [0, 1], then using the
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monotonicity and p−convexity of f , respectively, we have

h (λt1 + µt2) = 1
(b− a)2

b∫
a

b∫
a

f((λt1 + µt2)x+ (1 − (λt1 + µt2))y)dxdy

= 1
(b− a)2

b∫
a

b∫
a

f
(
λ
[
t1x+

(
λp−1 − t1

)
y
]

+ µ
[
t2x+

(
µp−1 − t2

)
y
])
dxdy

≤ 1
(b− a)2

b∫
a

b∫
a

f (λ [t1x+ (1 − t1) y] + µ [t2x+ (1 − t2) y]) dxdy

≤ 1
(b− a)2

b∫
a

b∫
a

{λf ([t1x+ (1 − t1) y]) + µf([t2x+ (1 − t2) y])}dxdy

= λh (t1) + µh (t2) .
(ii) From (3.4), we can write

f

(
x+ y

2
1
p

)
≤ f(tx+ (1 − t)y) + f(ty + (1 − t)x)

2
1
p

for all t ∈ [0, 1] and x, y ∈ [a, b]. Integrating this inequality on [a, b]2 we get

1
2

1
p

 b∫
a

b∫
a

f(tx+ (1 − t)y)dxdy +
b∫

a

b∫
a

f((1 − t)x+ ty)dxdy

 ≥
b∫

a

b∫
a

f

(
x+ y

2
1
p

)
dxdy

since
b∫

a

b∫
a

f(tx+ (1 − t)y)dxdy =
b∫

a

b∫
a

f((1 − t)x+ ty)dxdy

the above inequality gives us the desired result. �
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