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ABSTRACT In this study, a novel 4D chaos model is introduced to improve an existing chaotic system.
Equations of the chaos model have been written. The dynamical analyses of the system have been executed
by means of phase portraits, equilibrium points, eigenvalues, compound structure, and initial conditions.
MATLAB/Simulink model has been designed to analyze load which is driven by an induction machine against
chaos. Finally, the states of induction machine that is with and without chaotic load is compared.
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INTRODUCTION
In the universe, most of systems do not linearly. Thus, we
always need chaotic systems. Improving existing chaos sys-
tems is so important to introducing new models of chaos. In
the literature, many chaos studies have been presented since
Lorenz first introduced chaos (Lorenz 1963) . Lorenz im-
proved notable parameters of chaos. Lorenz’s chaos arises
in science studies such as dynamos, chemical events and
electric circuits (Knobloch 1981; Poland 1993; Cuomo and
Oppenheim 1993). Chua used a simple circuit with a non-
linear resistor to show chaos (Kennedy 1993). Introducing
new chaotic systems and analyzing them are executed in
many studies such as (Sundarapandian and Pehlivan 2012;
Vaidyanathan 2014, 2015; Wang et al. 2017b; Li et al. 2013;
Wang et al. 2019; Liu 2009; Lü et al. 2004; Dadras and Mo-
meni 2009). In recent studies, Wang et al. (2017a) presented
an circuit implementation of chaos and showed sensitivity.
In this study, a novel chaotic system is proposed by adding
a new state variable to (Wang et al. 2017a) chaotic attractor.

Chaos studies on the specific fields of electricity and elec-
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trical machines also available in the literature. Singh and
Sharma (2012) have realized sliding mode control on ma-
chines with chaotic system, relevant studies such as, electric
power systems (Chiang et al. 1994), electric fields (Che et al.
2009; Wang et al. 2007), synchronization and load (Ge and
Wu 2004), high power loads in transmission lines (O’Neill-
Carrillo et al. 1999), chaotification on induction motors (Gao
2003), chaos control in the induction motor (Messadi and
Mellit 2017; Ozer and Akin 2008).

This study presents the dynamical properties of the pro-
posed chaos system in Section 2. The main purpose of this
study is presented in Section 3.

Asynchronous motors are basically used to produce me-
chanical energy on loads. In this study, the circuit diagram
and control structure were placed on the asynchronous ma-
chine. The load connected to the asynchronous motor is
the chaotic load. It has been considered as chaotic loaded
operation of the asynchronous motor. The performance and
sensitivities of the asynchronous motor under the chaotic
load were analyzed.
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PROPERTIES AND DYNAMICAL ANALYSES OF
NOVEL CHAOS SYSTEM
The new chaos system is described by the following differ-
ential equations in Eq. 1:

.
x = y + yz
.
y = z
.
z = k1y3 − xz− yz− k2

.
w = yz

(1)

In Eq. 1, x, y, z and w are state variables and ki (i =
1, 2) are constant parameters that can be improved. The
system has eight terms and two parameters. The variables
of proposed parameters are taken as k1 = 0.49 and k2 = 50.
The initial conditions of system are taken as x(0) = 0.3,
y(0) = 0.3, z(0) = 3 and w(0)) = 0.3. Novel chaos system
can be described using proposed parameters by Eq. 2:

.
x = y + yz
.
y = z
.
z = 0.49y3 − xz− yz− 50

.
w = yz

(2)

Phase portraits
The phase portraits of dynamical system were realized
in MATLAB/Simulink. Ode45 method and 10−15 rela-
tive tolerance value are selected. Phase portraits were
shown in Figure 1. The initial conditions are set as
(x(0), y(0), z(0), w(0)) = (0.3, 0.3, 3, 0.3)

Figure 1 Phase portraits of the system (the x-y, z-w, y-z,
and x-y-z)

System equilibria
Equilibrium points are a constant solution for a dynamical
system that is transformed into a differentiation system. For
this purpose, the differential equations are equalized to 0 as
follows:

0 = y + yz

0 = z

0 = 0.49y3 − xz− yz− 50

0 = yz

(3)

When the equation system is solved for x, y, z, w, k1 =
0.49 and k2 = 50, it is found that system has no equilibrium
points.

The eigenvalues should be obtained to determine 
whether these equilibrium points are stable or unstable. 
The fact that at least two real values of the real part are 
positive indicates that chaos and the equilibrium point are 
unstable. The Jacobian matrix should be obtained to show 
eigenvalues.

J =



0 1 + z y 0

0 0 1 0

−z 1.47y2 − z −x− y 0

0 z y 0


(4)

For finding eigenvalues, Equation 5 should be solved.
In this equation, I is the unit matrix, and J is the Jacobian
matrix.

|λI − J| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −1− z −y 0

0 λ −1 0

z z− 1.47y2 λ + x + y 0

0 −z −y λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (5)

After relevant determinant was found in MATLAB, the
characteristic equation is obtained as follows:

λ(λ3 + (x + y)λ2 + (−1.47y2 + yz + z)λ + z2 + z) = 0

As it can be seen from the characteristic equation, one
of the eigenvalues of the system is λ = 0. The Lyapunov
exponents of the system are found as λL1 = 0.0263, λL2 =
0, λL3 = −0.0164, λL4 = −1.686 and they are depicted in Fig.
2. Lyapunov dimension of the proposed system is obtained
in Eq. 6.
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DL = j +
1∣∣λLj+1
∣∣ j

∑
i=1

λLi = 2+
(λL1 + λL2)∣∣λL3

∣∣ = 3.60365 (6)

Since λL1 > 0 and the Lyapunov dimension is fractal
(DL = 3.60365), the corresponding system exhibits chaotic
behaviour.
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Figure 2 Lyapunov exponents of the system

Sensitivity to initial conditions
For systems which heavily depends on the initial conditions,
even a small change in the initial conditions will lead to dif-
ferent chaotic behaviours. To show this property, difference
between separate initial conditions should be chosen small
enough. By using the ode45 function for x1(0) = 0 and x2(0)
= 0.01, the time series were obtained as Fig. 3. It shows that
trajectories of chaos system are not very sensitive to initial
conditions.
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Figure 3 Time series for x1(0) = 0 and x2(0) = 0.01

Compound structure method
It is added that control parameter named as “u” to (y’) in
Eq. 2 for analyzing dynamical system. Control parameter
“u” is a constant to observe unique dynamic behaviors of
the system (Lü et al. 2002). The variation between the phase

portraits can be seen in Figs. 1, 4, and 5. Obtained results
show that for 5 ≤ |u| ≤ 20, the chaos system has limit cycles.
For |u| ≥ 100, the chaos system has partial attractor that is
bounded.

Figure 4 For u=12, the phase portraits of the system (the
x-y, z-w, y-z, and x-y-z)

Figure 5 For u=1000, the phase portraits of the system (the
x-y, z-w, y-z, and x-y-z)
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DESIGNING CIRCUIT FOR USING CHAOS AS A
LOAD
The control circuit of chaos was simulated in MAT-
LAB/Simulink. The one of the compound structures of
chaos system (u = −50) is taken for more chaotic load
performance. In this study, high power asynchronous ma-
chine has been selected to show chaos effects. Its features
can be seen in Table 1. Asynchronous machine has been
loaded by chaos system. Whole performance analyses have
been executed by rotor currents, stator currents, rotor angle,
electromagnetic torque and rotor speed.

n Table 1 Features of selected induction machine

Power 75 kW

Voltage 400 V

Frequence 50 Hz

Speed 1484 RPM

Simulink Results
The proposed system in Fig. 6 was performed in MAT-
LAB/Simulink. By using nonadaptive algorithm, 10−15

tolerance value, and 5.10−6 time step, the system is solved
for 10 seconds. It is aimed to observe chaos effects efficiently.
For this purpose, results for without chaotic load are pre-
sented in Fig. 7, too. By comparing Fig. 7 and 8, the effects
of chaotic load on the high power induction machine can be
seen clearly.

According to the results obtained, in case of chaotic load,
the rotor currents of the electric machine showed chaotic be-
havior at specific times. The currents are shown as 3 phases.
The balances of the phases in the currents are disturbed.
Each phase is affected separately. Asynchronous motor has
returned to normal conditions after specific time intervals.
Stator currents have increased and decreased over a certain
period of time. Rotor angle is only slightly affected by the
chaotic load. Rotor speed has shown short-lived and small
amplitude chaotic oscillations. Electromagnetic torque is
much more affected than rotor speed by the chaotic load.
The amplitude of chaotic oscillations in electromagnetic
torque is large enough to allow the electrical machine to
collapse.

The effects of chaos on the asynchronous machine can be
seen in the Table 2. The peak value of the effects of chaos is
taken in the Table 2. As the chaotic load was changed, asyn-
chronous machine sensitivities were observed to change.
But the sensitivities and waveforms are similar.

n Table 2 Variations between asynchronous machines

Parameter Time Normal Value Chaos Value

Rotor Currents 9.276 s -0.658 A
1.979 A
-1.32 A

-218.9 A
1479 A
-1260 A

Stator Currents 7.587 s 41.48 A
-66.71 A
25.23 A

1526 A
-641.4 A
-884.2 A

Rotor Angle 5.563 s 844 rad 845.5 rad

Electromagnetic Torque 5.916 s 6.147 Nm 3028 Nm

Rotor Speed 4.306 s 157.1 wm 181 wm

Chaotic Loaded Working Results
Asynchronous motors or induction motors are AC electric
motors, and they are widely used in many industrial fields
to provide mechanical energy. The adjusted variable speed
and frequency settings of asynchronous motors are realized
by the drivers. Asynchronous motors are generally studied
as they drive constant and variable loads (Kay et al. 2000).
The corresponding loads are shown in Fig. 9. The vari-
able loads can be linear or nonlinear. Control applications
have been executed for linear and nonlinear loads such as
fans (Yildirim and Bilgic 2008), conveyors (Kovalchuk and
Baburin 2018), lifts (Cernys et al. 2003) on the asynchronous
machine.

Unlike these cases, chaotic states have been recently dis-
covered. In this study, it drives a chaotic load. Chaos is
considered to be a very specific condition that occurs in
load. It can be seen in Fig. 10. This study presented a novel
load type that is mentioned as "Chaotic Load" for electrical
machines. Asynchronous motor characteristics have been
investigated under the chaotic loads. The asynchronous
machine is affected by the state of the chaotic oscillator.
Amongst chaotic oscillators, increasing the control parame-
ter (u) caused the increase of the duration and effect of the
instantaneous currents.
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Figure 7 Asynchronous motor performance without the
chaotic load

Figure 8 Asynchronous motor performance with the
chaotic load
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Figure 9 Illustration of the existing loads
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Figure 10 Illustration of the proposed chaotic load

CONCLUSION
In this paper, a novel 4D chaotic system has been obtained
from an existing chaotic system. The corresponding dy-
namic analyses such as phase portraits and system equilib-
rium have been presented. The compound structure method
was applied to determine various dynamic behaviors of the
chaotic system. Sensitivity to initial conditions of the system
was investigated. Simulink circuit implementation of the
chaotic system has been designed with an electrical machine
in MATLAB. Thus, the effects of chaos on loads and the per-
formances of electrical machines in chaotic states have been
commented.
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