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Abstract. In this paper, we �rst give a new de�nition of 
-Dedekind com-
plete Riesz space (E;�) in the frame of vector metric space (
; �; E) and
we investigate the relation between Dedekind complete Riesz space and our
new concept. Moreover, we introduce a new contraction so called �-vector
proximal contraction mapping. Then, we prove certain best proximity point
theorems for such mappings on vector metric spaces (
; �; E) where (E;�) is

-Dedekind complete Riesz space. Thus, for the �rst time, we acquire best
proximity point results on vector metric spaces. As a result, we generalize
some �xed point results proved on both vector metric spaces and partially
ordered vector metric spaces. Further, we provide nontrivial and comparative
examples to show the e¤ectiveness of our main results.

1. Introduction and Preliminaries

Cevik et al. [11] brought to the literature a notion of vector metric and proved
Banach �xed point theorem [7] which is considered starting of metric �xed point
theory in these spaces. Then, many authors have studied to obtain various �xed
point results in context of vector metric spaces [2,12,16,17,18,21]. However, when
consider the topological structure of vector metric spaces, it may not be easy to
prove a result existing in the real valued metric spaces. This is an important and
interesting point for the authors. Now, we state de�nition of Riesz space and related
properties:
Let E be nonempty set and � be a relation on 
. Then, the relation � is called

partial order, if it satis�es

(o1) & � &;
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(o2) & � � and � � & imply & = �;
(o3) & � � and � � z imply & � z:
for all &; �; z 2 E. Moreover, the pair (E;�) is said to be partially ordered set.

An ordered vector space is real vector space equipped with an partial order which
is compatible operations of vector space, that is,

(c1) & � � implies & + z � � + z for all &; �; z 2 E.
(c2) & � � implies �& � �� for all positive real number � and all &; � 2 E.
Then, ordered vector space (E;�) is called Riesz space if it is satis�ed the

supremum & _ � and in�mum & ^ � in E for all &; � 2 E. Let (E;�) be a Riesz
space. We denote positive cone of E by E+.The notation an # a means that the
sequence fang in E is nonicreasing such that inffan : n 2 Ng = a. If there exists
a sequence fang in E satisfying an # 0 such that jbn � bj � an for all n 2 N, then
the sequence fbng in E is said to be order converges to b 2 E where the modul of
any point a in E is de�ned by jaj = a _ (�a). Moreover, if there exists a sequence
fang in E satisfying an # 0 such that jbn � bn+pj � an for all n; p 2 N, then the
sequence fbng in E is called order-Cauchy sequence. A Riesz space E is said to be
order-Cauchy complete if every order-Cauhy sequence in E is order converges to a
point in E. A Riesz space (E;�) is called an Archimedean if 1na # 0 for all a 2 E+.
Further, if every subset of E with upper bound (lower bound) has a supremum
(in�mum) in E, then (E;�) is said to be Dedekind complete. Note that every
Dedekind complete Riesz space is an Archimedean Riesz space. For more details
about Riesz spaces see [3, 11].
We continue this section with de�nition of a vector metric space and its related

properties.

De�nition 1 ( [11]). Let 
 be a nonempty set and (E;�) be a Riesz space. Then
the mapping � : 
 � 
 ! E is said to be a vector metric if it satis�es following
conditions for all &; �; z 2 
:

v1) �(&; �) = 0, & = �;
v2) �(&; z) � �(&; �) + �(z; �):

Moreover, (
; �; E) is called vector metric space.

De�nition 2 ( [11]). Let (
; �; E) be a vector metric space and f&ng be a sequence
in 
. Then,

(i) The sequence f&ng is said to be E-converges to & 2 
, denoted by &n
�;E! &,

if there exists a sequence fang satisfying an # 0 such that �(&n; &) � an for
all n 2 N:

(ii) The sequence f&ng is said to be E-Cauchy sequence if there exists a sequence
fang satisfying an # 0 such that �(&n; &n+p) � an for all n; p 2 N:

(iii) The vector metric space (
; �; E) is said to be E-complete if every E-Cauchy
sequence in 
 E-converges to a point in 
.
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Lemma 3 ( [11]). Let (
; �; E) be a vector metric space, f&ng; f�ng be sequences
in 
 such that &n

�;E! & 2 
 and �n
�;E! � 2 
. Then, we have following properties:

(i) The limits & and � are unique.
(ii) Each subsequence of f&ng E-converges to &.
(iii) The sequence f�(&n; �n)g order converges to �(&; �).

De�nition 4 ( [10]). Let (
; �; E) and (�; �; F ) be vector metric spaces, f&ng be
a sequence in 
, & 2 
. For a mapping T : 
 ! � if &n

�;E! & implies T&n
�;F! T&,

then T is said to be vectorially continuous at &. If the mapping T is vectorially
continuous mapping at each point in 
, then it is called vectorially continuous on

.

On the other hand, recently, considering nonself mappings on complete metric
spaces, the results proved in �xed point theory have been extended. Let (
; �)
be a metric space, M;N � 
 be nonempty subsets of 
 and T : M ! N be
a mapping. If M \ N = ;, then T does not have a �xed point. In this case,
best proximity point theory tries to �nd existence of a point & 2 M such that
�(&; T &) = �(M;N) which is called a best proximity point. Note that, searching
for the existence a best proximity point of the mapping T is actually searching
a optimal solution for the minimization problem min&2M �(&; T &). Further, best
proximity point results become �xed point results in special case M = N = 
.
Because of these reasons, best proximity point theory is one of the area attracted
the most attention lately [1, 4, 5, 6, 9, 13,15,19,20].
In the present paper, we aim to extend some �xed point results obtained on both

vector metric spaces and partially ordered vector metric spaces. Introducing two
new concepts so called 
-Dedekind complete Riesz space and �-vector proximal
contraction mapping, we prove some best proximity point theorems for such map-
pings on vector metric spaces (
; �; E) where (E;�) is 
-Dedekind complete Riesz
space. Finally, we give nontrivial examples to support our main results.

2. Main Results

We start to this section with the following our new de�nitions which are useful
in the sequel.

De�nition 5. Let (
; �; E) be a vector metric space. If, for every subsets M;N of

, �(M;N) is in E, then (E;�) is said to be a 
-Dedekind complete Riesz space.

Note that every Dedekind complete Riesz space (E;�) is an 
-Dedekind com-
plete Riesz space for all (
; �; E) vector metric space. However, the converse may
not be true. The following example shows this fact:

Example 6. Let E = C[0; 1] be the family of all continuous function from [0; 1] to
real numbers and 
 = [0;1). Then, E is Riesz space with the pointwise ordering
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� but it is not Dedekind complete. Indeed, consider a sequence of functions ffng
de�ned by:

fn(&) =

8<: 1 ; 0 � & � 1
2 �

1
n

�n(& � 1
2 ) ; 1

2 �
1
n < & <

1
2

0 ; 1
2 � & � 1

Then, it can be seen that ffngn�3 � E and the set of functions ffn : n 2 Ng is
bounded from above with the function 1 : [0; 1] ! R de�ned as 1(x) = 1 for all
x 2 [0; 1]. However,

sup fn = f(&) =

�
1 ; 0 � & � 1

2
0 ; 1

2 � & � 1
:

and hence f =2 E. Now, consider the mapping � : 
� 
! E de�ned by

�(&; �) = f&� =

�
0 ; & = �

maxf&; �g1 ; & 6= �

for all &; � 2 
 where the function 0 : [0; 1]! R de�ned as 0(x) = 0 for all x 2 [0; 1].
In this case, �(M;N) is real valued constant function and so �(M;N) 2 E for all
M;N � 
. Therefore, (E;�) is 
-Dedekind complete Riesz space.

Considering structure of vector metric spaces, we restate the de�nitions intro-
duced in the frame of metric space as follows.

De�nition 7. Let (
; �; E) be a vector metric space where (E;�) is an 
-Dedekind
complete Riesz space and M;N be nonempty subsets of 
. Let T : M ! N and
� :M �M ! [0;1) be mappings. If the mapping T satis�es

�(&; �) � 1
�(u; T &) = �(M;N)
�(v; T�) = �(M;N)

9=;) �(u; v) � 1

for all &; �; u; v 2M , then T is said to be �-vector proximal admissible.

De�nition 8. Let (
; �; E) be a vector metric space where (E;�) is an 
-Dedekind
complete Riesz space, M;N be nonempty subsets of 
 and T : M ! N be a
mapping. If there exists q 2 [0; 1) such that

�(u; T &) = �(M;N)
�(v; T�) = �(M;N)

�
) �(u; v) � q�(&; �)

for all &; �; u; v 2M , then T is said to be vector proximal contraction.

Now, we introduce a new concept which is more general than proximal contrac-
tion mapping.

De�nition 9. Let (
; �; E) be a vector metric space where (E;�) is an 
-Dedekind
complete Riesz space and M;N be nonempty subsets of 
. For two mappings T :
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M ! N and � :M �M ! [0;1) if there exists q 2 [0; 1) such that
�(&; �) � 1

�(u; T &) = �(M;N)
�(v; T�) = �(M;N)

9=;) �(u; v) � q�(&; �)

for all u; v; &; � 2M , then the mapping T is said to be �-vector proximal contraction
mapping.

Let (
; �; E) be a vector metric space where (E;�) is an 
-Dedekind complete
Riesz space. We will consider the following sets in the rest of paper.

M0 = f& 2M : �(&; �) = �(M;N) for some � 2 Ng
and

N0 = f� 2 N : �(&; �) = �(M;N) for some & 2Mg
where �(M;N) = inff�(&; �) : & 2M , � 2 Ng.
Theorem 10. Let (
; �; E) be an E-complete vector metric space where (E;�) is
an Archimedean and an 
-Dedekind complete Riesz space and M;N be nonempty
subsets of 
 where M0 is E-closed and M0 6= ;. Let � : M �M ! [0;1) be a
mapping. Assume that T : M ! N is a vectorially continuous �-vector proximal
contraction mapping satisfying following conditions:

(i) T (M0) � N0,
(ii) T is an �-vector proximal admissible,
(iii) There exist &0 and &1 in M0 such that �(&1; T &0) = �(M;N) and �(&0; &1) �

1.
Then T has a best proximity point &� in M . Moreover, if there exists an another

best proximity point �� 2M such that �(&�; ��) � 1, then &� = ��.
Proof. From the hypothesis, there exist &0; &1 2M0 such that

�(&1; T &0) = �(M;N) and �(&0; &1) � 1: (1)

Since T&1 2 T (M0) � N0, there exists &2 2M0 such that

�(&2; T &1) = �(M;N): (2)

Since T is �-vector proximal contraction mapping, from (1) and (2), there exists
q 2 [0; 1) such that

�(&1; &2) � q�(&0; &1)
and by condition (ii), we have

�(&1; &2) � 1:
Continuing this process, we construct a sequence f&ng such that

�(&n+1; T &n) = �(M;N) (3)

�(&n; &n+1) � q�(&n�1; &n) � � � � � qn�(&0; &1) (4)
and

�(&n; &n+1) � 1



BEST PROXIMITY POINT THEORY ON VECTOR METRIC SPACES 135

for all n 2 N. For arbitrary n; p 2 N
�(&n; &n+p) � �(&n; &n+1) + �(&n+1; &n+2) + � � �+ �(&n+p�1; &n+p)

� qn�(&0; &1) + q
n+1�(&0; &1) + � � �+ qn+p�1�(&0; &1)

�
�
qn + qn+1 + � � �+ qn+p�1

�
�(&0; &1)

� qn

1� q �(&0; &1)

which implies that f&ng is E-Cauchy sequence because of the fact that (E;�) is an
Archimedean Riesz space. Since (
; �; E) is E-complete vector metric space and
M0 is E-closed, there exist a sequence fang � E satisfying an # 0 and &� 2 M0

such that
�(&n; &

�) � an (5)

for all n 2 N. Since T is a vectorially continuous mapping on M , T&n
�;E! T&�.

Then, there exists a sequence fbng satisfying bn # 0 such that
�(T&n; T &

�) � bn (6)

for all n 2 N. Hence, from (3), (5) and (6), we have

�(&�; T &�) � �(&�; &n+1) + �(&n+1; T &n) + �(T&n; T &
�)

� an+1 + �(M;N) + bn

which implies that

0 � j�(&�; T &�)� �(M;N)j � an+1 + bn
for all n 2 N. Therefore, &� is a best proximity point of T , that is,

�(&�; T &�) = �(M;N): (7)

To show the uniqueness of best proximity point, assume that there exists another
best proximity point �� 2M which is distinct from &� such that

�(&�; ��) � 1: (8)

Since T is �-vector proximal contraction mapping, from (7), (8) and �(��; T ��) =
�(M;N), we obtain

�(&�; ��) � q�(&�; ��)
which contradicts &� 6= ��. Then, proof is �nished. �

The following example shows the e¤ectiveness of Theorem 10 because of the fact
that any real valued metric can not be applied to this example.

Example 11. Let E = R2 be an Archimedean Riesz space with the componentwise
ordering relation � and the usual operations. Let 
 = [0;1) � [0;1) and � :

� 
! E be a mapping de�ned by

�((&1; &2); (�1; �2)) =
1

2
(j&1 � �1j ; j&2 � �2j)
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for all (&1; &2); (�1; �2) 2 
. Then, the tripled (
; �; E) is an E-complete vector
metric space and (E;�) is an 
-Dedekind complete Riesz space. Consider the
subsets of 


M = f(&; 0) : & 2 Rg
and

N = f(&; 1) : & 2 Rg:
Then, M0 =M , N0 = N and �(M;N) =

�
0; 12

�
. Moreover, it can be seen that M0

is E-closed. De�ne the mapping T : M ! N as T (&; 0) =
�
&
2 ; 1
�
for all (&; 0) 2 M

and � :M �M ! [0;1) as

�((&1; 0); (�1; 0)) =

�
1 + j&1 � �1j 0 � &1 � 1

2 and 0 � �1 �
1
2

0 otherwise
:

Then, T is a vectorially continuous and �-vector proximal contraction mapping with
q = 1

2 . Also, we have T (M0) � N0 and T is �-proximal admissible. Further, if we
take & =

�
1
2 ; 0
�
, � =

�
1
4 ; 0
�
, then it is satis�ed

�(�; T &) = �(M;N) and �(&; �) � 1:
Therefore, all hypotheses of Theorem 10 are satis�ed. Hence, the mapping T has
a unique best proximity point. On the other hand, it is clear that any real valued
metric cannot applicable to this example.

Using Theorem 10, we can obtain the following result in partially ordered vector
metric spaces.

Corollary 12. Let (
; �; E) be an E-complete vector metric space where (E;�) is
an Archimedean and an 
-Dedekind complete Riesz space and (
;.) is a partially
ordered set. Let M;N be nonempty subsets of 
 where M0 is E-closed and M0 6= ;.
Assume that the mapping T : M ! N is a vectorially continuous mapping on M
satisfying following conditions:

(i) T (M0) � N0,
(ii) It is satis�ed

�(u; T &) = �(M;N)
�(v; T�) = �(M;N)

�
) u . v or v . u

for all u; v; &; � 2M with & . � or � . &,
(iii) There exist &0 and &1 in M0 such that �(&1; T &0) = �(M;N) and &0 . &1 or

&1 . &0,
(iv) There exists q 2 [0; 1) such that

�(u; T &) = �(M;N)
�(v; T�) = �(M;N)

�
) �(u; v) � q�(&; �)

for all u; v; &; � 2M with & . � or � . &.
Then T has a best proximity point &� in M . Moreover, if there exists an another

best proximity point �� 2M such that &� . �� or �� . &�, then &� = ��.
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Proof. If we de�ne a mapping � :M �M ! [0;1) as

�(&; �) =

�
1 ; & . � or � . &
0 ; otherwise

for all &; � 2 
, then from condition (ii) T is an �-vector proximal admissible
mapping. Further, using (iv) we have that T is an �-vector proximal contraction
mapping. Therefore, all hypotheses of Theorem 10 are satis�ed and so T has a best
proximity point. �

If we take �(&; �) = 1 in Theorem 10, we deduce a best proximity point result
as follows.

Corollary 13. Let (
; �; E) be an E-complete vector metric space where (E;�) is
an Archimedean and an 
-Dedekind complete Riesz space. Let M;N be nonempty
subsets of 
 where M0 is E-closed, M0 6= ; and T : M ! N be a vectorially
continuous vector proximal contraction mapping satisfying T (M0) � N0. Then, T
has a unique best proximity point in M .

In Theorem 10, to remove vectorially continuous of the mapping T , we can utilize
the following condition (H):
(H) For every sequence f&ng in M satisfying �(&n; &n+1) � 1 for all n 2 N

and &n
�;E! & 2 M as n ! 1, there exists a subsequence f&nkg of f&ng such that

�(&nk ; &) � 1 for all k 2 N.

Theorem 14. Let (
; �; E) be an E-complete vector metric space where (E;�) is
an Archimedean and an 
-Dedekind complete Riesz space and M;N be nonempty
subsets of 
 where M0 is E-closed and M0 6= ;. Assume that the condition (H)
holds. Let � : M �M ! [0;1) be a mapping and T : M ! N be an �-vector
proximal contraction mapping satisfying following conditions:

(i) T (M0) � N0,
(ii) T is an �-vector proximal admissible,
(iii) There exist &0 and &1 in M0 such that �(&1; T &0) = �(M;N) and �(&0; &1) �

1.

Then T has a best proximity point &� in M . Moreover, if there exists an another
best proximity point �� 2M such that �(&�; ��) � 1, then &� = ��.

Proof. From the hypothesis, there exist &0; &1 2M0 such that

�(&1; T &0) = �(M;N) and �(&0; &1) � 1. (9)

Since T&1 2 T (M0) � N0, there exists &2 2M0 such that

�(&2; T &1) = �(M;N): (10)

Since T is �-vector proximal contraction mapping, from (9) and (10) there exists
q 2 [0; 1) such that

�(&1; &2) � q�(&0; &1)
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and bycondition (ii), we have
�(&1; &2) � 1:

Continuing this process, we construct a sequence f&ng such that
�(&n+1; T &n) = �(M;N) (11)

�(&n; &n+1) � q�(&n�1; &n)
and

�(&n; &n+1) � 1 (12)

for all n 2 N. For arbitrary n; p 2 N, it can be seen that

�(&n; &n+p) �
qn

1� q �(&0; &1)

which implies that f&ng is E-Cauchy sequence because of the fact that (E;�) is an
Archimedean Riesz space. Since (
; �; E) is E- complete vector metric space and
M0 is E-closed, there exists a sequence fang satisfying an # 0 and &� 2 M0 such
that

�(&n; &
�) � an (13)

for all n 2 N. Since T&� 2 T (M0) � N0, there exists z� 2M0 such that

�(z�; T &�) = �(M;N). (14)

On the other hand, from (12), (13) and the condition (H) there exists a subsequence
f&nkg of f&ng such that �(&nk ; &�) � 1 for all k 2 N. Because of (11) and (14), we
get

�(&nk+1; z
�) � q�(&nk ; &

�)

� qank

for all k 2 N which means &nk+1
�;E! z�. Because of the fact that the limit of

f&nk+1g is unique, it is obtained that &� = z�. Therefore, from (14), &� is a best
proximity point of T . It can be shown the uniqueness of best proximity point as in
Theorem 10. �

The following example is important to show the di¤erence between Theorem 10
and Theorem 14.

Example 15. Let E = R2 be an Archimedean Riesz space with the componentwise
ordering relation � and the usual operations. Let 
 = [0;1) � [0;1) and � :

� 
! E be a mapping de�ned by

�((&1; &2); (�1; �2)) = (
1

2
j&1 � �1j ;

1

3
j&2 � �2j)

for all (&1; &2); (�1; �2) 2 
. Then, the tripled (
; �; E) is an E-complete vector
metric space and (E;�) is an 
-Dedekind complete Riesz space. Consider the sets

M = f(&; 0) : & � 0, & 2 Rg
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and
N = f(&; 1) : & � 0, & 2 Rg:

Then, M0 = M , N0 = N and �(M;N) =
�
0; 13

�
. Moreover, it can be easily seen

that M0 is E-closed. De�ne the mapping T :M ! N as

T (&; 0) =

� �
&
3 ; 1
�
; & < 1

2�
&
2 ; 1
�
; & � 1

2

for all (&; 0) 2M and � :M �M ! [0;1) as

�((&1; 0); (�1; 0)) =

�
1 + j&1 � �1j ; 0 � &1 � 1

3 and 0 � �1 �
1
3

0 ; otherwise
:

Then, T is an �-vector proximal contraction mapping with q = 1
3 . However, al-

though T is not a vectorially continuous mapping, the condition (H) holds. Indeed,

if we consider the sequence (&n) =
�
1
2 �

1
n ; 0

�
n2N, then &n

�;E!
�
1
2 ; 0
�
. But, the se-

quence (T&n) =
�
1
6 �

1
3n ; 1

�
n2N is not E-convergent to T& =

�
1
4 ; 1
�
. Also, we have

T (M0) � N0 and T is �-vector proximal admissible. Further, if we take & =
�
1
3 ; 0
�
,

� =
�
1
9 ; 0
�
, then it is satis�ed

�(�; T &) = �(M;N) and �(&; �) � 1:
Therefore, all hypotheses of Theorem 14 are satis�ed. Hence, the mapping T has
a best proximity point. On the other hand, since the mapping T is not vectorially
continuous, Theorem 10 cannot be applied to this example.

Using Theorem 14, we can obtain the following result in partially ordered vector
metric spaces.

Corollary 16. Let (
; �; E) be an E-complete vector metric space where (E;�) is
an Archimedean and an 
-Dedekind complete Riesz space and M;N be nonempty
subsets of 
 where M0 is E-closed and M0 6= ;. Let T : M ! N be a mapping
satisfying following conditions:

(i) T (M0) � N0,
(ii) It is satis�ed

�(u; T &) = �(M;N)
�(v; T�) = �(M;N)

�
) u . v or v . u

for all u; v; &; � 2M with & . � or � . &,
(iii) There exist &0 and &1 in M0 such that �(&1; T &0) = �(M;N) and &0 . &1 or

&1 . &0;
(iv) There exists q 2 [0; 1) such that

�(u; T &) = �(M;N)
�(v; T�) = �(M;N)

�
) �(u; v) � q�(&; �)

for all u; v; &; � 2M with & . � or � . &,
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(v) for every sequence f&ng in M satisfying &n . &n+1 or &n+1 . &n for all

n 2 N and &n
�;E! & 2 M as n ! 1, there exists a subsequence f&nkg of

f&ng such that &nk . & or & . &nk for all k 2 N.
Then, T has a best proximity point &� in M . Moreover, if there exists an another

best proximty point �� 2M such that &� . �� or �� . &�, then &� = ��.
If we take �(&; �) = 1 in Theorem 14, we deduce the following best proximity

point result for the vector proximal contraction mappings.

Corollary 17. Let (
; �; E) be an E-complete vector metric space where (E;�) is
an Archimedean and an 
-Dedekind complete Riesz space and M;N be nonempty
subsets of 
 where M0 is E-closed and M0 6= ;. Let T : M ! N be a vector
proximal contraction mapping satisfying T (M0) � N0. Then, T has a unique best
proximity point &� in M .

TakingM = N = 
 in Theorem 10 and Theorem 14, we can obtain the following
�xed point result in vector metric spaces.

Corollary 18. Let (
; �; E) be an E-complete vector metric space where (E;�) is
an Archimedean and an 
-Dedekind complete Riesz space. Assume that � : 
�
!
[0;1) and T : 
! 
 are mappings satisfying following conditions:

(i) T is �-admissible,
(ii) There exist &0 in 
 such that �(&0; T &0) � 1,
(iii) T is a vectorially continuous or condition (H) holds,
If there exists q 2 [0; 1) such that

�(T&; T�) � q�(&; �)
for all &; � 2 
 with �(&; �) � 1, then T has a �xed point &� in 
. Moreover, if
there exists an another �xed point �� 2 
 such that �(&�; ��) � 1, then &� = ��.
TakingM = N = 
 in Corollary 12 and Corollary 16, we can obtain the following

�xed point result in vector metric spaces which is the main result of [12].

Corollary 19. Let (
; �; E) be an E-complete vector metric space where (E;�) is
an Archimedean and an 
-Dedekind complete Riesz space and (
;.) is a partially
ordered set. Assume that T : 
! 
 is a mapping satisfying following conditions:

(i) & . � or � . & implies T& . T� or T� . T& for all &; � 2 
,
(ii) There exists &0 2 
 such that &0 . T&0 or T&0 . &0,
(iii) There exists q 2 [0; 1) such that

�(T&; T�) � q�(&; �)
for all &; � 2 
 with & . � or � . &,

(iv) T is a vectorially continuous or for every sequence f&ng in 
 satisfying

&n . &n+1 or &n+1 . &n for all n 2 N and &n
�;E! & 2 
 as n ! 1, there

exists a subsequence f&nkg of f&ng such that &nk . & or & . &nk for all
k 2 N.
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Then, T has a �xed point &� in 
. Moreover, if there exists an another �xed
point �� 2 
 such that &� . �� or �� . &�, then &� = ��.

3. Conclusion

In this paper, we �rst give a new de�nition of 
-Dedekind complete Riesz space
(E;�) on a vector metric space (
; �; E), and so we obtain a new family of Riesz
space which is a larger than the class of Dedekind complete Riesz space in the frame
of vector metric space. We also introduce a new notion so called �-vector proximal
contraction mapping including the concept of �-proximal contraction de�ned Samet
et al. [14]. Then, for the �rst time, we obtain some best proximity point results
on vector metric spaces (
; �; E) where (E;�) is 
-Dedekind complete Riesz space
and hence we extend some �xed point results proved on both vector metric spaces
and partially ordered vector metric spaces such as [7, 8, 12].
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