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Abstract  Öz 

The severe impacts of disruptive events on real-world supply chains 
have attracted the researcher’s attention on supply chain disruptions in 
the last decade. In the related literature, several strategies aimed at 
reducing the impact of disruptions have developed and analyzed. 
However, there exists no study which analyzes the effectiveness of 
pricing strategies in presence of disruptions on real-world supply chains 
to the best of our knowledge. Within this scope, a dynamic pricing 
approach is developed to mitigate stock-out risks aroused from 
disruptions. The rationale behind the proposed approach is to channel 
customer demand from a scarce product to a substitute product. The 
proposed approach is implemented in a retail supply chain. The 
computational results confirm the effectiveness of the dynamic pricing 
policy in the presence of disruptions. 

 Yıkıcı olayların gerçek hayat tedarik zincirleri üzerindeki etkileri son on 
yılda araştırmacıların dikkatini tedarik zinciri kesintileri üzerine 
çekmiştir. İlgili yazında kesintilerin etkilerini azaltmayı amaçlayan 
birçok strateji geliştirilmiş ve analiz edilmiştir. Ancak, fiyatlandırma 
stratejilerinin kesintiler altındaki etkinliğini gerçek tedarik zincirleri 
üzerinde analiz eden herhangi bir çalışma bildiğimiz kadarıyla 
bulunmamaktadır. Bu kapsamda, kesintilerden kaynaklanan stok açlığı 
riskini azaltmak için bir dinamik fiyatlandırma yaklaşımı 
geliştirilmiştir. Önerilen yaklaşımın arkasındaki mantık, müşteri 
talebini az bulunan bir üründen ikame bir ürüne yönlendirmektir. 
Önerilen yaklaşım bir perakende tedarik zincirine uygulanmıştır. 
Hesaplamalı sonuçlar, dinamik fiyatlandırma politikasının kesintilerin 
varlığındaki etkinliğini ortaya koymuştur. 

Keywords: Supply chain disruptions, Dynamic pricing, Simulation.  Anahtar kelimeler: Tedarik zinciri kesintileri, Dinamik fiyatlama, 
Benzetim. 

1 Introduction 

Supply chain disruption is the outcome of a process whereby 
one or more adverse events taking place at a particular location 
in a supply chain which impact on the performance of one or 
more locations in the supply chain. Causes of supply chain 
disruptions may be natural disasters, demand shifts, supplier 
problems, human/organizational behavior, information 
technology problems, financial problems, and regulatory 
problems [1]. As supply chain disruptions have huge impacts on 
costs and service levels, they can pose a threat on competitive 
advantage on organizations. For example, Ericsson lost $400 
million in potential revenues due to a fire at its major supplier. 

The bad experiences of large companies about disruptive 
events have attracted researchers’ attention on supply chain 
disruptions recently. In the last decade, several studies which 
develop models for disruptive events and their consequences, 
and mitigation strategies are published. In this context, a 
number of strategies against disruptions have been developed 
such as holding buffer inventory [2], sourcing flexibility [3], 
adaptive ordering [4], and back-up capacity [5]. For a 
comprehensive review of the related literature, the reader may 
refer to [6],[7], and [8]. 

The related literature lacks a quantitative study which employs 
the dynamic pricing strategy against disruptions. Besides, the 
widely known Dell case [9] demonstrates the benefits of an 
effective pricing strategy on mitigating supply chain disruption 
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risks. During a few weeks after Taiwan earthquake in 1999, 
several component suppliers of Apple and Dell could not 
deliver computer components. To deal with the component 
shortages, Apple tried to convince its customers to buy a slower 
version of G4 computers. However, this strategy provoked 
severe customer complaints. On the other hand, Dell offered 
special prices to steer its customers to the computers with the 
components supplied from other countries instead of alerting 
them about the component shortages. The pricing strategy 
improved the earnings of Dell by 41% in 1999 despite the 
supplier disruption [10]. 

In the related literature, there are a few studies that consider 
pricing strategies in presence of disruptions. Zhu [11] derived 
optimal policies for replenishment, production and pricing in 
presence of supply disruptions and demand uncertainty. Gong, 
Chao [12] characterized the optimal ordering and pricing 
policies for a dual sourcing system with disruptions and 
random price-sensitive demand. Huang, He [13] developed a 
Stackelberg model in presence of production disruptions for a 
food supply chain to obtain inventory, pricing and preservation 
decisions. Ghomi-Avili, Naeini [14] proposed a fuzzy bi-
objective, bi-level model by considering a price-dependent 
demand for a competitive supply chain under disruptions. 
Huang, Wang [15] analyzed the impact of disruptions on 
equilibrium pricing and production decisions in a closed-loop 
supply chain in which the manufacturer licenses the third party 
for remanufacturing activities. Hosseini-Motlagh et al. [16] 
derived the optimal pricing, corporate social responsibility and 
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sustainability decisions by considering demand disruptions for 
centralized and decentralized reverse supply chain systems. 
Hou et al. [17] addressed a joint problem consisting of hub 
location and revenue management problem in airline networks 
by considering disruptions. Rahmani, Yavari, [18] analyzed 
pricing and greening decisions in a dual-channel green supply 
chain with demand disruptions for centralized and 
decentralized cases. 

The unique study which considers pricing as a mitigation 
strategy against disruptions is [19]. Bugert and Lasch [19] 
extended the system dynamics model developed by Wilson [20] 
with responsive pricing. Our study differs from the 
aforementioned studies in its generalizability to more than two 
products and consideration of customers’ willingness to pay. 
Moreover, there exists no real-world case study employing 
dynamic pricing for disruption risk mitigation to the best of 
author’s knowledge. 

In this study, a dynamic pricing strategy concerning inventory 
levels is applied to a multi-commodity supply chain system in 
presence of disruptions. A disruption in supply of a product can 
cause shortages in finished goods inventory which diminish 
service levels of the supply chain. To overcome a potential 
shortage, a dynamic pricing policy is employed to channel 
demand from a scarce product to a substitute product. In 
particular, dynamic pricing policy sets higher prices to scarce 
products so that demand for the scarce products can shift to 
substitute products. The performance of proposed approach is 
tested on a real-world supply chain. The simulation results 
reveal that dynamic pricing is a promising mitigation strategy 
against supply chain disruptions. 

The rest of the paper is structured as in the following. In Section 
2, the problem addressed in this study is described. In Section 
3, we give detailed information related with the real-world 
application, and explain the simulation model. In Section 4, the 
computational study is presented. Finally, conclusive remarks 
and future research directions are provided in Section 5. 

2 Problem description 

This paper addresses a supply chain planning problem with 
disruptions and dynamic pricing. In this context, we consider a 
wholesaler selling multiple types of product to several retailers. 
The retailers place orders to the wholesaler on daily basis. The 
wholesaler fills the retailers’ orders from its on-hand inventory. 
The wholesaler adopts an order up-to-level policy, and places 
orders to manufacturers on each day. The manufacturers 
deliver the orders of the wholesaler after a transportation lead 
time. However, the manufacturers are vulnerable to disruptive 
events, such as labor strikes, border closings, natural disasters 
and economic crises. Occurrence probabilities and severities of 
the disruptive events cannot be predicted. During a disruption, 
a manufacturer loses a part of its shipment capacity. The 
amount of the lost capacity depends on the severity of the 
disruptive event. When the disruption is over, the 
manufacturer recovers its shipment capacity gradually. If the 
shipment capacity of the manufacturer is insufficient to fill the 
wholesaler’s order, the manufacturer backorders the order to 
fill it in the next period. 

Daily operations of the wholesaler in a typical period are 
depicted in Figure 1. At the beginning of the day (see Step (1) in 
Figure 1), inventory level of the wholesaler for each product is 
updated by considering the deliveries received. It is assumed 

that deliveries are received at the beginning of the period 
before the customer demand is realized.  

Formally, the inventory level of the wholesaler for each product 
at the beginning of period t is calculated as in Eq. 1. 

( , ) ( , 1) ( , )
b e

I i t I i t D i t    (1) 

Where ( , )
b

I i t  is the inventory level of product i  at the 

beginning of period t , ( , 1)
e

I i t   is the inventory level of 

product i  at the end of period 1t  , and ( , )D i t  is the amount of 

delivery of product i  received at period t . 

Once the inventory levels are updated, the wholesaler specifies 
its requirement for each product (see Step (2) in Figure 1). The 
amount required is calculated by considering updated 
inventory levels and customer demand forecast. Customer 
demand forecast is determined based on historical demand 
information. Herein, several statistical forecasting methods can 
be employed depending on the customer demand pattern. For 
a stable customer demand without trend and seasonality, 
simple exponential smoothing method is a suitable forecasting 
method. In this study, the supply chain faces a high and stable 
customer demand. Therefore, the simple exponential 
smoothing method is employed to obtain demand forecasts  
(Eq. 2). 

( , ) ( , 1) (1 ) ( , 1)C i t C i t C i t       (2) 

Where ( , )C i t  is the demand forecast for product i  at period t

,  0,1   is the smoothing parameter, and ( , 1)C i t   is the 

amount of demand for product i  at period 1t  . 

The amount of order placed by the wholesaler for product i  at 

period t , ( , )O i t , is calculated as follows: 

 ( , ) max 0, ( , ) ( , ) ( , )
b

O i t C i t I i t B i t   
 

 (3) 

Where γ is the inventory adjustment parameter, and ( , )B i t  is 

the amount of order placed by the manufacturer which is 
backordered at period t . 

The order placed at period t is delivered at the next period as 
long as the manufacturer’s available shipment capacity is 
sufficient. However, the manufacturer’s available shipment 
capacity is uncertain due to disruptive events. If the current 
available capacity is insufficient to meet the wholesaler’s order, 
the unfilled portion of the order is backordered. The amounts 
of delivery and backorder at the next period are specified as in 
Eq. 4 and 5, respectively. 

  ( , 1) min ( , ) ( , ) , ( , )D i t O i t B i t S i t    (4) 

  ( , 1) max 0, ( , ) ( , ) ( , )B i t O i t B i t S i t     (5) 

Where ( , )S i t  is the available shipment capacity of the 

manufacturer for product i  at period t . 

Note that the wholesaler has no prior information about the 
customer demand. The demand is realized after the ordering 
decisions are made (See Step 3 in Figure 1).  The demand is 
filled from wholesaler’s on-hand inventory.  
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Figure 1. Flowchart for the daily operations. 
 

If the on-hand inventory is insufficient to meet the customer 
demand, the unfilled portion of the demand is lost. In this case, 
a shortage cost is incurred. To avoid a possible shortage, the 
wholesaler adopts a dynamic pricing policy (See Step 4 in 
Figure 1). 

The aim of the dynamic pricing to channel the customer 
demand from scarce product to other products. The dynamic 
pricing policy yields high prices in case of low inventory levels. 
In particular, the price to be offered to the customer is 
calculated as follows: 

( , ) ( ) ( , ) ( , )
b

p i t u i C i t I i t    
 

 (6) 

Where ( , )p i t  is the price of product i  offered at period t , 

( )u i  is the unit price of product i , and   is the price 

adjustment parameter. The discrepancy between the desired 
and actual inventory levels is adjusted by the price adjustment 
parameter,  , and added on the unit price.  

If the offered price is not higher than the one that the customer 
is willing to pay for the product, the demand is filled from the 
on-hand inventory (Step 5). Otherwise, a substitute product is 
offered to the customer (Step 6). If the customer is willing to 
buy the substitute product, the customer demand is filled. 
Otherwise, the customer demand is lost and a shortage cost is 
incurred. 
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At the end of the period, inventory level for each product is 
updated as in Eq. 7. 

( , ) ( , ) ( , ) ( , , )
e b

I i t I i t R i t RS j i t    (7) 

Where ( , )
e

I i t  is the inventory level of product i  at the end of 

period t , ( , )R i t  is the amount of sales of product i  at period 

t , and ( , )RS j t  is the amount of sales product j  which 

substitutes product i  at period t . 

For the problem described above, the critical supply chain 
performance indicators are sales revenue, holding and 
shortage costs. Therefore, the objective function of the 
problem is total annual contribution (TAC) which is calculated 
by subtracting the annual holding and shortage costs from the 
annual sales revenue (Eq. 8). 

1 1 1 1

1 1 1 1

( , ) ( , ) ( ) ( , )

        ( ) ( , ) ( , ) ( , , )

T N T N

t i t i

T N T N

e

t i t j

TAC p i t R i t s i L i t

h i I i t p j t RS j i t

   

   

 

 

 

 
 (8) 

Where T is the number of periods in a year, N is the number of 

products, ( )h i  is unit holding cost of product i  per period, 

( )s i  is shortage cost of product i , and ( , )L i t  is the amount of 

customer demand for product i  which is lost at period t . 

To maximize TAC, optimal values of the exponential smoothing 
parameter ( ), the inventory adjustment parameter (  ) and 

the price adjustment parameter ( ) should be determined. 

However, this problem consists of several uncertain 
parameters and a nonlinear objective function which cannot 
be addressed by analytical methods efficiently. Therefore, a 
discrete event system simulation model is developed to 
specify the parameter values which maximize total annual 
contribution. 

3 Case study 

The effectiveness of the dynamic pricing strategy in the 
presence of disruptions is demonstrated on a case study 
conducted at a company operating in construction materials 
industry. The company is one of the major suppliers in Turkish 
paint and insulation sector. The company produces wide range 
of products such as interior and exterior paints, synthetic 
paints, water and thermal insulation materials. The company 
name is kept confidential due to the policy of the company.  

This study focuses on a wholesaler associated with the 
company. The wholesaler distributes the products of the 
company to the retailers located at Aegean Region of Turkey. 
The wholesaler aims at high service quality and 
responsiveness. However, it has confronted a number of 
disruptions in paint supply which deteriorate the service 
performance in the last couple of years. The disruptions are 
originated from the problems in pigment import such as 
unpredictable fluctuations in exchange rates, and delays 
during border crossings. As the disruptions are unpredictable, 
the aim of the wholesaler is to develop strategies to reduce the 
impact of them.  

In this study, effectiveness of the dynamic pricing strategy on 
the wholesaler performance in presence of disruptions is 
investigated. In particular, we focus on two best-selling types 

of exterior paints, namely, product A and B, which have the 
same characteristics except their color. It is anticipated that 
the dynamic pricing strategy will channel the demand for the 
scarce product to other product, and the sales revenue might 
hereby increase.  

3.1 Simulation model 

The simulation model is developed by using Arena 14.0. The 
Arena model is provided in the Appendix. For each period, the 
simulation model initiates the events described in Section 2 at 
the same order as in Figure 1. Average demands for both 
products are the same and have similar pattern. Demand for 
each product is modeled by analyzing the historical demand 
information. To obtain a reliable demand model, the demand 
data related to sales promotion periods are excluded from the 
analysis. As a result, it is confirmed that demands for both 
products follow a normal distribution with mean of 50 and 
standard deviation of 4 units. Since the demand for each 
product is sufficiently high and stable, simple exponential 
smoothing method is employed for the demand forecast.  

Sale prices of products are the same and 150 TL per unit. 
Holding and shortage costs per unit are 50 TL and 200 TL, 
respectively. The dynamic pricing strategy (see Eq. 6) is 
adapted to the system described above. In this sense, sales and 
marketing experts classified the retailers into two categories 
by considering their buying behavior. The retailers belonging 
to the first category are defined as “Type 1” retailers. Type 1 
retailers are willing to pay for the desired product with a price 
at most 15% higher than the regular sale price. If the increase 
in sale price of the desired product is higher than 15%, a Type 
1 retailer will not purchase the product and the demand will 
be lost. On the other hand, Type 2 retailers are willing to buy 
the substitute product if the price of the desired product 
increases by a rate more than 15%. However, the price of the 
substitute product is increased by a rate more than 5%, the 
Type 2 demand will be lost. Sales and marketing experts agree 
that the portions of Type 1 and Type 2 customers are 
approximately 40% and 60%, respectively.  

The manufacturer’s daily shipment capacity is 300 units for 
each product. However, the past experiences have shown that 
the shipment capacity is vulnerable against disruptions. 
Therefore, the developed simulation model consists of a 
disruption model which calculates the manufacturers’ 
shipment capacity levels for each period. The proposed 
disruption model is explained subsequently.  

3.1.1 Disruption model 

The disruption model developed in this study is illustrated in 
Figure 2. As soon as the disruptive event occurs, the 
manufacturer’s shipment capacity decreases by the disruption 
intensity (  ). The shipment capacity remains constant until 

the recovery plans are developed. This phase is described as 
the stagnation phase. As soon as the recovery plans are 
implemented, the stagnation phase is over and the recovery 
phase begins. It is assumed that the capacity recovers linearly 
during the recovery phase. Moreover, the length of stagnation 
and recovery phases ar linearly dependent to the disruption 
intensity (  ). The proposed disruption model ensures that 

severe disruptions last for a long time and it is difficult to 
recover from them. According to the developed disruption 

model, the ending time of the stagnation ( s
t ) and recovery ( r

t

) phases are derived as in the following: 
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0s
t t    (9) 

0r
t t    (10) 

 

Where   and   are stagnation and recovery factors. 

Since there are limited data related to past disruptions, 
parameters of the disruption model are specified by consulting 
the managers of the wholesaler. The disruptions are 
independent. The time between two disruptions is generated 
from a normal distribution with mean of 90 and standard 
deviation of 5 days. In the simulation model, as soon as a 
disruption is initiated, its intensity (  ) is generated from a 

normal distribution with mean of 90% and standard deviation 
of 0.5%. Stagnation (  ) and recovery factors (  ) are 

specified as 3 and 4, respectively.  

 

Figure 2. The disruption model. 

3.1.2 Simulation model setting 

The developed simulation model is highly complex and has 
several uncertain parameters. Therefore, the reliability of the 
simulation outputs is difficult to attain. To ensure the 
reliability, the performance is measured only for the periods 
in which the system is in steady-state. To eliminate the effects 
of initial conditions on output statistics, a warm-up period is 
specified. The warm-up period is identified as 100 days by 
observing the inventory levels of the products. Moreover, the 
model is run for 3000 days, and the performance values for 
each year are averaged to obtain a unique performance value. 
Furthermore, the simulation model is replicated for five times 
to ensure the reliability of the results. Furthermore, the values 
for the exponential smoothing ( ), the inventory adjustment 

(  ) and the price adjustment ( ) parameters that maximizes 

TAC (Eq. 8) are determined by OptQuest for Arena. 

4 Computational study 

To demonstrate the effectiveness of the dynamic pricing 
strategy, the results obtained from the developed model are 
compared with those from a simulation model without 
dynamic pricing. The second simulation model represents the 
current condition of the system. In this model, the wholesaler 
adopts base sale price and does not change it in any way. 
Hereafter, this model will be called as “static pricing model”. 

In particular, the same parameter values may not guarantee 
the best result for both models. In this sense, the best 
parameter values for each model should be determined 
independently. Therefore, the best values for the exponential 
smoothing ( ), the inventory adjustment (  ) and the price 

adjustment ( ) parameters are specified by employing 

OptQuest for Arena to each model. The results presented in 
this section have been obtained with the best parameter 
values. 

The results obtained from the simulation models are 
presented in Table 1. It is clear that dynamic pricing strategy 
increases TAC by 21% without a significant change in   and 

 . Moreover, the components of TAC are given in Table 2. As 

one can see from Table 2, dynamic pricing increases the sales 
revenue and reduces the shortage cost while increasing the 
holding cost slightly. In particular, the small increase in the 
holding cost originates from the increase in sales. The dynamic 
pricing channels the demand for the scarce product to the 
substitute product. In this case, the sales of the substitute 
product increase. Consequently, the system tends to hold more 
stock to fill higher demand. Still, the increase in holding cost is 
compensated by the decrease in shortage cost and the increase 
in sales revenue. As a result, the dynamic pricing strategy 
yields higher TAC. The results reveal that dynamic pricing 
strategy is effective in protecting the performance during 
disruptions. 

Table 1. The simulation results. 

       TAC 
Dynamic pricing 0.27 2.69 0.03 2,498,400 

Static pricing NA 2.66 0.03 2,059,600 

Table 2. The components of TAC. 

 Sales 
revenue 

Holding 
cost 

Shortage 
cost 

Dynamic 
pricing 

5,732,000 3,049,100 184,590 

Static pricing 5,252,400 2,992,800 200,200 

4.1 The alternative disruption scenarios 

In this study, the parameters of the disruption model are 
determined by consulting the managers of the wholesaler. 
Since the parameters are specified by imprecise judgments, it 
is worthwhile to investigate the results obtained for 
alternative disruption scenarios. In this sense, two alternative 
disruption scenarios, namely “long disruptions” and “less 
severe disruptions”, are defined. The parameters for the 
disruption scenarios considered in this study are provided in 
Table 3. Long disruptions scenario differs from the base 
scenario in stagnation (  ) and recovery (  ) factors. In this 

scenario, stagnation and recovery phases are longer. In the less 
severe disruptions scenario, disruptions are more frequent 
but their severity is relatively low. In this scenario, the 
stagnation and recovery factors are the same as those in the 
base scenario. 

Table 3. The alternative disruption scenarios. 

Disruption 
scenario 

Inter-
disruption 

time         

Base scenario N(90,5) N(90%,0,5%) 3 4 
Long disruptions N(90,5) N(90%,0.5%) 5 7 
Less severe 
disruptions 

N(50,5) N(50%,0.5%) 3 4 

TAC values, which are obtained for alternative disruption 
scenarios, are presented in Table 4. As expected, TAC is 
relatively low in case of long disruptions while it is high in that 
of less severe disruptions. The results confirm that dynamic 
pricing yields higher TAC than static pricing in all scenarios. In 
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particular, dynamic pricing is relatively less effective in long 
disruptions scenario but it still improves TAC by 18%. In order 
to ensure a high protection level against long disruptions, the 
dynamic pricing strategy may be combined with a back-up 
supplier strategy. 

Table 4. Results obtained for alternative disruption scenarios. 

Disruption scenario Dynamic pricing Static pricing 
Base scenario 2,498,400 2,059,600 

Long disruptions 2,358,000 1,983,900 
Less severe disruptions 2,677,900 2,212,900 

4.2 The impact of retailer purchase behavior 

The purchase behavior of the retailers may have significant 
impact on the success of dynamic pricing strategy. In 
particular, Type 1 retailers are more conservative in 
purchasing the substitute product than Type 2 retailers. 
Therefore, the proportion of Type 1 retailers may affect the 
success of dynamic pricing strategy. In this sense, additional 
analysis is performed for different proportions of Type 1 
retailers. The obtained results are given in Table 5.  

Table 5. The results obtained for different proportions of 
Type 1 customers. 

Proportion of Type 1 retailers TAC 
20% 2,512,400 

40% (Base case) 2,498,400 
60% 2,447,200 

As expected, the performance increases as the proportion of 
Type 1 customer decreases, and diminishes otherwise. Still, 
TAC values presented in Table 5 are higher than those 
obtained for the static pricing case (see Table 1). 

5 Conclusion 

In this study, we consider a supply chain planning problem 
with disruptions. In this context, a dynamic pricing mechanism 
is developed to prevent possible stock-outs during 
disruptions. The effectiveness of the proposed dynamic 
pricing mechanism is analyzed by using a simulation model. In 
particular, the optimal values for pricing and inventory control 
parameters are identified by a simulation-based optimization 
approach. The proposed pricing approach is implemented to a 
real-world supply chain. The results reveal the effectiveness of 
the dynamic pricing policy. Additional analyses for alternative 
disruption and customer purchase behavior scenarios confirm 
the applicability of the proposed pricing policy to different 
supply chain systems. Further effort will focus on the 
application of the proposed pricing policy to a multi-echelon 
supply chain. Moreover, the present work can be extended 
with a non-linear disruption model. Furthermore, combining 
information sharing strategies with dynamic pricing is a 
promising future research direction. 
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Figure A. 1. The part of the simulation model related to the daily operations of the wholesaler. 
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Figure A. 2. The part of the simulation model related to the daily operations of the wholesaler (continued). 
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Figure A. 3. The part of the simulation model related to the retailer’s demand and purchasing behavior. 
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Figure A. 4. The part of the simulation model which generates disruption. 


