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Abstract

In this study, a numerical method is developed for the approximate solution of the linear Volterra integro-
differential equations. This method is based Boole polynomial, its derivatives and the collocation points.
The aim is to reduce the given problem, as the linear algebraic equation, to the matrix equation. This
matrix equation is solved using Boole collocation points. As a result, the approximate solution is obtained
in the truncated Boole series in the interval [a,b]. The exact solution and the approximate solution are
included in the study. Also, the error analysis and residual correction calculations are performed in the
study. The results have been obtained by using computer program MATLAB.

Keywords: Boole polynomials, linear Volterra integro-differential equation, collocation points,
approximate solutions, Residual error analysis

1. Introduction Volterra integro-differential equation which is a type of
the integro-differential equations.

Integro-differential equations are a tool used to

representing problems in fields such as physics, biology, Charles Jordan has stated general form of Boole

chemistry, mechanics, astronomy, electrostatic, natural  polynomial as follows [26,30-31]

science, potential theory, economics. Since integro-

differential equation classes are difficult to solve by n+l (-D)™, x
analytical methods, numerical methods are preferred. R,(x) = om ( ) (1.1)
For the numerical solution of integro-differential = n—m

equation classes, the method based on the Bernoulli
polynomial by Erdem Biger et al. [1, 13], the method  The defined form of the Boole polynomial is written as
based on the Bessel polynomial by Yiizbasi et al. [11,

[ee]

28], the method based on the Laguerre polynomial by R, (x) 2(1+t)*
Baykus Savasaneril and Sezer [27] and the method Z oy th = 2+t (1.2)
based on the Dickson polynomial by Kiirkeii [15] have n=0

been developed [14, 16-24]. In addition, the numerical o ] .
methods such as Taylor collocation method [2], a  The aim is to get Boole solution of the mth order linear

multiscale Galerkin method [3], Bernstein polynomials ~ Volterra integro-differential equation
method[4], Legendre collocation method [5], Euler

wavelet method [6], Newton-Product method [7], % 0 x
homotopy-perturbation method [8], improved Bessel ZPk(x)y () =9 ‘”‘J K(x, t)y(®)dt,
collocation method [9], Spectral collocation method k=0 ¢
[10], Hybrid Euler-Taylor matrix method [29] and Tau asxtsb 1.3)

method [12] are included in the literature.
[12] with the initial boundary conditions

In this study, the numerical method is developed using
Boole polynomial, its derivatives and collocation points
for the approximate solution of the mth order linear
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-1

(ajkyk(a) + bjkyk(b)) =4
0
j=0123,..m—1.

3

&
Il

(1.4)
The Boole solution of Eg. (1.3) is obtained in the

following Boole series form

N

Y() = () = ) anRy(®)

n=0

(1.5)

where R, (x) is Boole polynomial and a,, n=
0,1,2,..., N are the unknown Boole coefficients.

. Matrix relations of the linear Volterra integro-
differential equation

In this section, the matrix relations to reduce the Eq.
(1.3) to the matrix equation system and the matrix
relation of conditions (1.4) are given. Firstly, the matrix
form of the Boole polynomial, R(x), is written as

R(x) = X(x)HT (2.1)
where
R(x) = [Ro(x) Ri(x) Rp(x) Ry(®)],
Xx)=[1 x x% .. xV]
and
[ 1 0 0 ]
I—% 1 0 I
H=14 [
| 3 -2 1 ...
| ¢ .

The matrix relation of the Boole series form (1.5) is
written as

y(x) = R(x)A (2.2)
and its kth derivative is
y®(x) = RO (x)A. (2.3)3.

The matrix form (2.1) is placed in the matrix relation
(2.3) and the matrix relation is obtained as

y®(x) = X® (x)HTA (2.4)
where

X® (x) = X(x)EX. (2.5)
First, the matrix form (2.5) is placed in the matrix
relation (2.4), the new matrix relation is obtained as

60

y®(x) = X(x)EFHTA (2.6)

where the matrix E is derivative transition matrix of
X(x),

[0 1 0 0 .. 0] Qo
0 02 0 .. 0 a
E=|: ¢+ : ¢+ =~ +{|[JA=|a;
0 00 0 .. N :
0 0 0 O 0 ay

In Eq. (1.3), the kernel function K(x,t) is defined as

follows for the Taylor polynomial and Boole
polynomial, respectively
K(x,t) = X(x)tKXT(t)} 2.7)
K(x,t) = R(x)RKRT(t) '

From these forms, the matrix relation is obtained as
follows

RK = (HT)"1tKH™?! (2.8)
where

N N
'K(x,t) = Z Z R x™ET,

m=0n=0
N N
RK GG =) Flenn Ry COR,(O,
m=0 n=0
and

1 9™"K(0,0)
dxmotn

Ko = mn=0,12,..,N.

m!n!

According to the relation (2.4), the corresponding
matrix form of the conditions (1.4) is written as

-1

(aij(a) + b]k X(b))EkHTA = Ak'

3

&
1l

0
j=012,..,m—1

(2.9)
Collocation method
The matrix relation (2.6), the kernel function for the
Taylor polynomial and the matrix form (2.1) are placed
in the Eq. (1.3). Then the matrix equation is obtained as
m
Z P, (x) X(x)EXHTA
k=0
=g(x) +AX(x)'KC(x)HTA 3.1)

where
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Cx) = f XT ()X (t)dt = [c;; ()],

a

xl+]+1 i+j+1

i+j+1

—a

cij(x) = ,i,j =012, ..,N.

By using in Eq. (15) the collocation points x; defined by

b—a. .
x;=a+ i, i=01,..,N (3.2)
the system of the matrix equations is gained as
m
Z Pk(xi) X(xi)EkHTA
k=0
= g(x;) + 1 X(x;)'KC(x;)HT A 3.3)

or briefly the fundamental matrix equation is shown as

m

{ P, XEXHT — A )‘(K(‘JF}A =G (3.4)
k=0

Where
Py (xo) 0 0
po=| O Plw) ; :
0 0 P Cen)d (s yxaneny
g(x0) R(x)
G= g(?cl) ’ R = R(?ﬁ)

)

g(xy) (N+D)x1 R(xy) (N+1)x(N+1)

X(x,) 0 0
x=| 0 X0 0 ,
0 0 X(xw) (N+1D)x(N+1)2
K 0 0
c_|0 K .0
0 0 Kln+1)2xn+1)?
HT
HT = H:T and
HT] 0
(N+1)*x(N+1)
Clx)) O 0
| o c@ 0
0 0 Clxn) (N+1)2x(N+1)2

The fundamental matrix relation (3.4) is written as
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WA = G or [W;G] (3.5)

where

m
W= Z P, XEKHT — 1 XKCH.
k=0

As a result of the operations, a system of (N + 1) of the
linear algebraic equation is obtained with the unknown
Boole coefficients a,, ay, ..., ay. The matrix form for
the conditions (2.9) are written as

UA=[4]or[U; 4], j=012,..,m—1(3.6)
where
m-—1
U = Z (axX(a) + by X(b))EXHT
k=0

=[Wo Un
j=012..,m-1.

Ujz Uin],

To reach the solution of the Eq. (1.3) under conditions
(1.4), the rows matrices (3.5) are replaced with m rows
of the matrix (3.6). So, the new augmented matrix form
is obtained as

Woo Won ; g(xo) 7
Wio Win ; g(xy)
[,\,’ G] = |Ww-m)o WN-m)N 5 gxn_m) |.
Upo Uon ; Ao
L U(m-1)0 Um-1)N An-1

If rankW = rank[W;G] = N + 1 is, the augmented
matrix is written as

A= (W) 1G. (3.7)
Finally, the unknown Boole coefficients from the matrix

(3.7) solution are found and placed in the series (1.5),
the Boole polynomial solution is obtained as

N

Y = () = ) anRe(®)

n=0

4, Residual correction and error estimation
The error estimation of the Boole collocation method
for the Eq. (1.3) and the residual correction of the Boole
approximate solution are given in this section. The
residual function of the Boole collocation method is
written as

Ry (x) = Llyy(x)] — g(x),
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where yy(x), which is the Boole polynomial solution
defined by (1.5), is the approximate solution of the
problem (1.3). Therefore y,(x)is improved the
equation

Liyw@)] = ) Py
k=0

—AfK(x, tyy(®)dt

=g(x) + Ry (), (4.1)
The error function ey (x) is defined as
ey(x) = y(x) —yn(x), (4.2)

where y(x) is the exact solution of the problem (1.3).
Substituting (4.2) into (4.1), and by simplifying the
error differential equation is found

Z Po(x)e® (x) — 2 f K(x, ey (t)dt
k=0

Ry (),

(4.3)

with homogeneous conditions

1

(ajkeIE,k)(a) + bjkelslk)(b)) = 0,
k=0

m

j=0,1,2,..,m—1

Boole collocation method is applied to Eq. (4.3), the
approximation ey , (x) to ey (x) is obtained, (M = N)
which is the error function based on the residual
function Ry (x) [1,13]. The corrected Boole polynomial
solution  yy p(x) = yy(x) + ey y(x). The corrected
Boole error function is obtained with the Boole error
function ey (x) and the estimated error function ey », (x)
as follows

Eym(x) = en(x) —eyu(x) = yn(x) — yym(x).

. Numerical examples

In order to demonstrate the applicability and validity of
the numerical method developed in this section, first
exact solution example and then approximate solution

examples are given.

Example 1. In the first example, the exact solution of
the linear Volterra integro differential equation given by

62

2xy*(x) = xy*(x) — y(x)
5
x
?—x4+x3—3x2+4x—1

X

- [ wyw,

0

(5.1)

with the initial conditions y(0) = 1 and y*(0) = —2 is
obtained in the interval 0 < x,t < 1. The approximate
solution y(x) by the truncated Boole series

3
YD) = ) anRal0),
n=0
where m=2,N=3,a=0,b=1,P,(x) =—-1,
5
Pi(x) = —x,Py(x) = 2%, g(x) =5 —x* + 2% —
3x2+4x—1, A=—-1 and K(x,t) =x2 The

collocation points (3.2) for N =3, a=0and b =1 are
calculated as

2

1
{xo = 0,x1 =§,x2 = 1,X3 =§,x4 = 1}

The fundamental matrix equation of the Eg. (5.1) is
written as

[P,XEZHT + P;XE'HT + PoXE°H"T — 1 XKCH” |A

where
-1 0 0 0
o -1 0 o
PO_0 0 -1 0 ’
0 O 0 _14X4
0 0 0 0
0 —— 0 0
P—[ 3
' 0 0 2 0 ’
PRI
0 0 0 -1
[0 0 0 0]
2 0100
P=0§00 E_[0 0 20
2 0 4 0 ’ 0 0 0 3]
3 0 0 0 Olyxa
0 0 244
) 1 1 3
1 -3 3 HT
r_lo 1 =2 5| = _ |HT
H—IO 1 9 ) _HT )
l J HT16x4
0 0 1
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00 0 O K 0 0 0
oo o0 o0 = |0 K 0 0
K= 10 00 K= 0 0 K 0 ’
0 0 0 O0lyye 0 0 0 Klixs
c0) o 0 0
o) 0 o]
C= 3
0 0 c(z) 0 '
3
O O O c(1)16X16
[R(0)] g(0)
R (3) ()
— g —_—
R = . ;) ,G = (;) and
[ (§J 9\3
R(l) 4x1 9(1)41
X(0) o0 0 0
1
- 0 X 5) 0 0
0 0 x(z) 0
3
0 0 0 X(1)4x16

The fundamental matrix relation is calculated, the
augmented matrix is obtained as

[W; G]
I 1 1 1 3 1 7
2 2 4 ’
26 29 1342 17207 991
_| 27 162 729 2916 729
19 143 5095 22373 _ 2291)|°
27 162 1458 2916 ' 729
0 3 13 21 _ 13
L 2 3 4 ’ 3

According to Eqg. (3.6), the matrix form of the initial
conditions is found as

Vo Al =[1 =5 3 =5 5 1]and [Ug; 4] =
0 1 -2 5 ; -2

In that case, the new augmented matrix based on
conditions is become as

i 1 1 1 3 _ 1'
2 2 4 ’
26 29 1342 17207 _ 991
WGl =[ 27 162 729 2916 ' 729]
1 1 1 3 —
2 2 4 ’
L 0 1 -2 5 ;0 —2
with the solution of this augmented matrix, unknown

Boole coefficients are found as
1
A= [— 0 1 0].
2

Finally, found Boole coefficients is placed in the
solution (1.5). The Boole solution of the Eq. (5.1) for
N =3 is gained as y(x) =x2—2x+1 and this is
exact solution.

Example 2. In the second example, the approximate
solution of the linear Volterra integro differential
equation given by

yW(x) = x(1 + e*) + 3e* + y(x)
X

—fy(t)dt, 0<x<1 (5.2)
0

with initial conditions y(0) = 1,y(1) =1 +¢,y"*(0) =
1 and y'(1) = 2e [16]. The exact solution of the
problem is y(x) = 1+ xe*. The results of the exact
solution y(x), Boole solution yy(x) and the corrected
Boole solution yy 5, (x) for the various values N, M have
been calculated in the computer program. The
calculated results are given in the Table 1 and compared
in the Figure 1 and 2. In addition, the absolute error
function |eyl, the estimated error function |ey | and
the corrected Boole error function |Ey | have been
calculated for the values N, M. The results are given
Table 2.

Table 1. The comparison of the exact solution y(x) =1+ xe*, Boole solutions yy(x) and corrected Boole

solutions yy 5 (x) for the Example 2.

X; Exact Solution Boole Solution yy (x) Corrected Boole Solution yy 5 (x)
y(x) =1+ xe*

N=5 N=12 N=5, M=6 N=12, M=13
0 1.0 1.0 1.0 1.0 1.0
0.2 1.244280552 1.243648041 1.244280552 1.244203327 1.244280552
0.4 1.596729879 1.595029888 1.596729879 1.596514071 1.596729879
0.6 2.09327128 2.091228319 2.09327128 2.092994076 2.09327128
0.8 2.780432743 2.779339894 2.780432743 2.78027061 2.780432743
1.0 3.718281828 3.718281828 3.718281828 3.718281828 3.718281828
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Table 2. The comparison of the error function |ey |, the estimated error function |eN_M| and the corrected Boole error

function |Ey | for the Example 2.

X; Absolute error function |ey| Estimated error function |ey,|  Corrected Boole error function |Ey |
N=5 N=12 N=5, M=6 N=12, M=13 N=5, M=6 N=12, M=13
0 0 0 0 0 0 0
0.2 6.3251e-04 3.2300e-12 5.5529¢-04 3.0890e-12 7.7224e-05 1.4105e-13
0.4 1.7000e-03 9.4901e-12 1.4842e-03 9.073%-12 2.1581e-04 4.1622e-13
0.6 2.0430e-03 1.3640e-11 1.7658e-03 1.3037e-11 2.7720e-04 6.0285e-13
0.8 1.0928e-03 1.0559-11 9.3072e-04 1.0082e-11 1.6213e-04 4.7673e-13
1.0 0 0 3.5293e-22 1.9590e-28 0 0

—4—Y5(X) App. Solution
*yle)=1+xe”

351" | —e—y, 4(x) Corr. App. Solution

Xosl
25

— I L I I L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 1. The comparison of the exact solution
y(x) =1+ xe* , Boole solution yy(x) and
corrected Boole solution yy ,(x) for the values
N,M = 5,6 for the Example 2.

4

T T
—4—¥,,(x) App. Solution

T y)T+xe”

3.5 H—#—Y,, 309 Corr. App. Solution

Figure 2. The comparison of the exact solution
y(x) =1+xe* , Boole solution yy(x) and
corrected Boole solution yy ,(x) for the values
N,M = 12,13 for the Example 2.

Example 3. Finally, the linear Volterra integro
differential equation given by

X

Yy (x) + y(x) + fxtan(t)y(t)dt = x(1 — cosx),

0

x € [0,1] (5.3)
with initial conditions y(0) =1, y(1) = cos1 and
the analytical solution y(x) = cosx [25]. The
absolute error function |ey|, the estimated error
function |eyy| and the corrected Boole error
function |Ey,| have been calculated in the
computer program for the various values N, M and
the results are given in the Table 3. Also, the results
of the exact solution y(x) = cosx , Boole solution
yn(x) and corrected Boole solution yy v (x) for the
various values N,M have been compared in the
Figure 3 and 4.

Table 3. The comparison of the error function |ey |, the estimated error function |€N,M| and the corrected Boole error

function |Ey | for the Example 3.

X Absolute error function [ey| Estimated error function |ey | Corrected Boole error function |Ey |
N=4 N=10 N=4, M=5 N=10, M=11 N=4, M=5 N=10, M=11
0 0 0 0 0 0 0
0.2 1.3042e-04 7.5296e-07 2.7030e-04 8.8365e-12 4,0072e-04 7.5297e-07
0.4 2.5308e-04 1.4758e-06 5.3168e-04 8.3035e-13 7.8476e-04 1.4758e-06
0.6 3.6707e-04 2.1365e-06 7.4133e-04 6.3750e-13 1.1084e-03 2.1365e-06
0.8 3.8882e-04 2.5889¢e-06 7.1303e-04 4.8659¢e-12 1.1019e-03 2.5889¢-06
1.0 0 0 2.6470e-23 1.0500e-24 0 3.6825e-56
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! T — T T T
—&—Y,(x) App. Solution
—*—y(x)=cos(x)
—#—y, 4(x) Corr. App. Solution

08
Zorst
07
065
086

0.55 [

0.2 0.3 0.4 0.5

x

0.6 0.7 0.8

Figure 3. The comparison of the exact solution y(x) =
cosx , Boole solution yy(x) and corrected Boole
solution yy »(x) for the values N,M = 4,5 for the
Example 3.

0.9 1

1 —— T T T T
i

- —4#—¥,,(x) App. Solution

0.95 - |
~~ —*— y(x)=cos(x)
RN —#—Y¥,4.4;(9 Corr. App. Solution
0.9 b :
.
0.85 \‘ 1
AN
08 N 1
— Y
2075 AN b
N
N
07 e N
N\
0.65 N ]
06 \’\\ b
0.55 9

0s I I I I I | I I I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

Figure 4. The comparison of the exact solution y(x) =
cosx , Boole solution yy(x) and corrected Boole
solution yym(x) for the values N,M = 10,11 for the
Example 3.
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Conclusions

In this study, a new method was developed by using the
Boole polynomial to find the solution of Volterra
integro differential equation. Numerical results were
obtained with the developed this method. The method
was used in the exact solution and approximate solution
the examples. The exact solution of Example 1 was
obtained the using the present method for value N = 3.
The exact solutions, Boole solutions and corrected
Boole solutions of the Example 2 and 3 were gained for
various values N, M. In addition, the error estimations
based on residual function of the Example 2 and 3 have

65

been calculated. According to the tables and figures, the
good results were obtained with this method. The
advantage of present method is the solutions and
calculations can be obtained easily the using computer
code in MATLAB program. The present method can be
develop to find solutions of other integro differential
equation classes.
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